

ATARI SOFTWARE PROTECTION TECHNIQUES

by George Morrison

Forward by Ed Stewart

(Author of Letterman)

AN ALPHA SYSTEMS PRODUCT

SOFTWARE PROTECTION TECHNIQUES
DISK UTILITIES

(C) COPYWRITE 1983
FROM ALPHA SYSTEMS

ATARI is a registered trademark of Atari, Inc.

Atari Software Protections Techinques Disk Utilities is a
utility package designed for use by software writers to help
protect your software from, illegal copying. The theory is
described in the book (Atari Software Protection Techniques)
that is included in this package, but this disk utility should
help even the beginner use some of the methods described.

A menu of options will automatically appear on your screen
when the disk is loaded (with the BASIC cartridge in), or just
type RUN "D:MENU" from BASIC. Each of the utilities and options
contain instructions which appear on the screen when the program
is run. For your convenience, most of the programs are listable,
and are well documented to help you understand them. I suggest
you LIST or RUN each one to see the instructions, but type NO
when asked ~f you wish to execute the program. Also all the
program listings from the book are contained on this disk. For
example, Figure 4.4 from the booJ{ is called "FIG44" on the disk.

The following information will help you better understand some
of the programs on the disk

Directory Hider (called H~DER on the disk)
The directory Hider is used to help prevent DOS copies. It

is especially useful for menu driven programs, or programs which
must epe-A files or run other programs from the disk. The
Directory Hider hides your disk directory in a new locatTonon
the disk. Your programs will automatically use the hidden
directory (because this program changes DOS to point to it). But
others trying to copy your programs will see 707 free sectors.

WARNING - Make a back-up of the disk you wish to protect
before running this program.

SETSCAN - Th i s program wi 11 scan the sec tors on the di s~{ for
bad or misassigned sectors. It asks for the starting and ending
sectors you wish to scan, and then displays a message for each
sector.

SECTLOOK - This displays the contents of a sector in
character format. Just enter the sector you wish to read, and it
will be displayed on the screen.

VTOCER - This program has two parts. Option One shows you
which sectors on the disk are used and which are free (according
to the VTOC) •

Option Two is used to reserve space on a disk for a hidden
directory. As indicated in the book, the directory should be
hidden in a certain range of sectors. If HIDER can/t find the
space to hide your directory, a message will be displayed
telling you to run this program. Complete instructions are
displayed on the screen.

BADWRITE - This program enables you to protect your disKs
with bad-sectoring. The methods used to have your program checK'
for the bad sectors are explained in the book. This utility lets
you create bad sectors on your disk. There are two simple ways
to create a bad sector on a disk using only standard hardware.

This utility will do both.
Bad Sector Writer Option One requires that you slow down

your disK speed, but is much quicKer than Option Two. Som~ types
of disK drives cannot be slowed down enough to wrlte bad
sectors, so if yours is one of those, you must use Option Two.

USING OPTION 1. The first step in using Option 1 is to
adjust your drive speed down to 220 +-10 RPMS. Before changing
your drive speed, go to option 3 - ADJUST DRIVE SPEED. This
option will help you get your speed properly adjusted. To write
bad sectors adjust your speed to aprox. 220 +-10 RPMs. Try to
write the bad sectors at the slowest possible speed without
getting I/O errors. To get the best bad sectors, your disk
should just barely be able to write.

Adjusting Your Drive Speed
To adjust your disk drive speed, it is necessary to remove the

top cover and adjust one screw. To remove the cover, just pry
off the four little tabs on the top of the drive with any sharp
instrument. Then with a standard phillips head screwdriver,
loosen the four screws (under the tabs) that hold the cover on,
and gen t 1 y 1 if t off the cover. There are- two basi c types of
ATARI 810 disk drives around. The newer drives have a circuit
board across the top (see diagram DAn). The older drives have no
circuit board across the top and have a large white plastic
screw in the back left corner of the drive (see diagram "B").
This large white screw can be turned by hand to adjust your
speed. It is very sensitive so a quarter turn may be all you
need.

The newer drives are a bit trickier to adjust. To find the
speed adjustment, look for a small green box with a tiny silver
screw on it. It is located in toward the rear and a little left
of center in the drive. I t is very sm~.,ll but can be ~jusfed
using a micro-screwdriver •. The speed adjustment on the newer
drive is not very precise. It may take as many as 8 complete
revolutions to properly adjust your speed.

The next step is to write the sectors. Use option 1 to do
this. Just enter the sectors you wish to create then press
return. After all your bad sectors are complete, return to
option 3 to adjust your speed back to normal.

USING OPTION 2
This method provides an alternate method of writing bad

sectors. I still recommend option 1 as a faster and easier
method, however if your disk drive was purchased after Jan 83,
or you own a non-Atari disk drive, you may need to use option 2.

To use this method, you must attach two long pieces of tape
(fol ded over on to themsel ves) f i rml y to the top of the di sk >-'ou
wish to write bad sectors on (see Diagram 1). Then insert the
disK in your drive, so that the tape sticks out when the door is
closed (be sure tape is long enough to get a grip on when the
disk door is closed). Next, enter the destination disk drive
number (the disk drive you wish to write bad sectors on) and the
sector number. Then be sure everything is set and type return.
The screen will now prompt you to shaKe the tape. You can gently
move the tape bacK and forth, and alternately push on one piece
while pulling on the other. The computer will beep and signal
you when the bad sector is written. Then stop pulling while it
rechecks the sector. Note that until you Qet Qood at it, it can
take 10 minutes or more to write a single bad sector. So Keep at
it, and wait for the computer to signal you that it is done. If
you wish to abort the process, hit any key.

.J

DIAGRAM A

0 0 o

.-,-.
-. ; .. - ::..: ---. -- _...... ---. -,. ~: ,", . -,-,~,," ... " .

@

\
~\

@

0

\

DIAGRAM 1

DIAGRAM R _' __ ORO._." •

J J I J

C,O
{) I

r; ~

~ /

~ '\

- -d

WARRANTY
ALPHA SYSTEMS warrants to the original consumer/purchaser that

this program disK (not including the computer programs) shall be
free of any defects in material or worKmanship for a period of
60 days from the date of purchase. If a the disK "fails to load
during this 60 day warranty period, Alpha Systems will repair or
replace the disK at Alpha Systems option, provided the disK and
proof of purchase is delivered or mailed, postage prepaid, to
Alpha Systems.

This warranty shall not apply if the disK (1) has be~n misused
or shows signs of excessive wear, (2) has been damaged by
playbacK equipment, or (3) if the purchaser causes or permits
the disK to be serviced or modified by anyone other than Alpha
Systems. Any applicable implied warranties, including warranties
of merchantabillty and fitness are hereby limited to 60 days
from the date of purchase. Consequential or incidental damages
resulting from a breach of any applicable express or implied
warranties are hereby excluded.

NOTICE
As with most computer software, all Alpha Systems computer

programs are distributed on an Has is" basis without warranty of
any Kind. The entire risK as to the quality and performance of
such program.s is wi th the purchaser. Shoul d the porgrams prove
-~ ~~:~;t"-,o-t"frtrtr puf~,~~~" ff\~~~it~~ .. ~pt·,~,·~~
manufacturer, distrlbli't'br-, orretart~ as~umestilil,e enUre cost
of all necessary servicing or repair.

Alpha Systems shall have no liability or responsibility to a
purchaser, customer, or any other person or entity with respect
to any liability, loss or damage caused or alleged to be caused
directly or indirectly by computer programs sold through Alpha
Systems. This includes but is not limited to any interruption of
service, loss of business or anticipatory profits or
consequential damages resulting from the use or operation of
such computer programs.

The provisions of the foregoing warranty are subject to the
laws of the state in which th disK is purchased. Such laws may
broaden the warranty protection available to the purchaser of
the disK.

ATARI SOFTWARE PROfECTION TECHNIQUES

by George Morrison

Forward by Ed Stewart
{Author of Letterman}

AN ALPHA SYSTEMS PRODUCT

Atari, Atari 400 Computer, Atari 410
Program Recorder, Atari 800 Computer,
Atari 810 Disk Drive are all trademarks of
Atari, Inc.
Apple is a trademark of Apple, Inc.
IBM-PC is a trademark of IBM, Inc.

u

u

u

u

v

u

u

u

u

u

u

U
(c) Copyright 1983 by Alpha Systems, Stow,
Ohio, 44224. U

Printing 116 batch 2, Jan 1985 U

All rights reserved. No part of this book U
may be reproduced by any means without
permission in writing from Alpha Systems. U

Printed in the United States of America U
10 9 8 7 6 5 4 3

u
Cover design by Richard M. Morrison

u

u

u

u

u
-

V

FORE WARD

The need for software authors to protect
their property from theft is increasing. The
unauthorized duplication" of computer
programs has become such a widespread
activity as to threaten the very existence
of the element that has helped to popularize
the home computer most, namely the
independent software entrepreneu"r. The
phenomenal growth of the computer market
has opened up vast new horizons of
possibility for both the creator and the
thief. It is therefore important for
programmers to have at their disposal all
of the available techniques to inhibit a
potential pirate.

This book provides the fuel" necessary
to make an informed decision on what
protection schemes would be most approp­
riate to employ and as such fills a void in
the literature. It may be argued that
disclosure of this information will only
encourage piracy. I do not agree with this
argument for two reasons. First, an
advanced pirate is already aware of the
contents of this book and would not benefit
in the least from a review of it. Secondly,
the would-be pirate does not have the
technical acumen to break the protection
techniques suggested herein. This book is
therefore a valuable asset to you, the
software author, in identifying the strong
points and shortcomings of the various
methods a vailable today.

I found this book to be well wcitten
and authoritative in its approach to the

i

v

u

u

u
problem. I feel that most readers will find V
it both informative and helpful in their
endeavor to protect their investment. U

Ed Stewart, April, 1983 U
Honeybear Software

u

u

u

u

u

u

u

u

u

u

u

u

u

u
~-

U

ii u

ACKNOWLEDGEMENTS

Alpha Systems would like to thank John
Liang for the encouragement to market the
book. Ed Stewart (the author of letterman)
for his technical help. Helen Proiialeck for
doing all the little things that helped to
get the book written. Richard and Ethel
Morrison for their· help in making this book
a reality.

iii

PREFACE

This book is written with the average
software writer in mind. Most of the
software protection techniques presented
here can be used by anyone with even a
small amount of experience with Atari
computers. Some topics covered do require a
good amount of expertise to really
understand, so small programs are included
in the book. Some sample programs that
make the techniques easy to use are on the
optional software disk. Be sure to use the
glossary in the back of the book, since
some technical terms are needed to describe
the protection processes. Also, it is advised
that you read the chapters in order so that
you can gain a working knowledge before
reaching the difficult sections.

"

iv

u

u

u

v

u

u

u

u

u

u

u

u

u

u

u

u

u
/

U

u

v

TABLE OF CONTENTS

Foreward • • • • • . . i

Acknowledgements • iii

Preface i v

Chapter 1: INTRODUCTION TO SOFTWARE
PROTECTION • • • • • '. • .• • • • • • 1

What is Software Protection?
The Concentration of the Book.
Pros and Cons of Software Protection

Problems of Piracy
Need for Back-.Ups
The Responsibility of the Vendor

Totally Uncopyable Software?

Chapter 2: GENERAL PROTECTION OF
PROGRAMS WRITTEN IN BASIC

Disabling the Break Key
Disabling the System Reset Key -.
Preventing an Error Break
Preventing a LOAD and SAVE Combination
Protecting Against LIST
Special Cases

6

Chapter 3: CASSETTE PROTECTION . . • • • • . • 12

v

u

u

u
",

U Chapter 4: GENERAL DISK PROTECTION •.••••• 15

An AUTORUN.SYS File
Preventing DOS Copies

Disk Directories
VTOCs

Hiding Disk Directories and VTOCs

u

u

u

Chapter 5: BAD SECTORING • • ••••• 28 U

What is a Bad Sector?
How Bad Sectors Protect Software
Creating Bad Sectors
Conclusion

Chapter 6: HIDING PROTECTION CODE • • • • • • ., 38

Breaking Code by Hand
Hiding Protection Codes
Self Modifying Code

Layering Your Protection
Wild Goose Chases

Conclusion

u

u

U

u

u

u

Chapter 7: MISASSIGNED SECTORS. •••• 46 U

What are Misassigned Sectors?
How Misassigned Sectors Protect Software
Creating Mis.assigned Sectors
How Pirates CopY.Misassigned Sectors
Protecting Misassigned Sectors

vi

u

u

u

u

u

u

v

Chapter 8: ROM AND EPROM CARl'RIDGES ••••••• 56

ROM Copy Technique I
~ Protecting Against Technique I

ROM Copy Technique II
~ Preventing ROM Copy Technique II

~ Chapter 9: HARDWARE DATA-KEYS •••••••••• 61

~ How Data-~eys Protect Programs
Building Data-Keys

"~ Copying Data-Key Protected Software
Preventing the Data-Key Copy Techniques

~ Conclusions

~ Chapter 10: LEGAL PROTECTION TECHNIQUES • • • • 67

Patents
Copyrights
T"rade Secrets
Conclusion

Chapter 11: COERCIVE PROTECTION TECHNIQUES • • • 74

Serial Numbered Software
Protection Through Intimidation
Self-Destructing Code
Freeware
Selling Unprotected Software

Chapter 12: RECOMMENDED METHODS OF
PROTECTION • • • • • • • 81

ti Chapter 13: THE FUTURE OF SOFTWARE
PROTECTION AND PIRACY •••••••• 85

vii

~

u

u

u
Appendix A •• . 89 -,

U
Glossary • • • . • • • • • • • • .' . 92

U
"

U

U

U

u

G

u
-

V

U

u
-,

u
-
u
-
u
'-.

u

u
-
U

u

u
-u

viii V
,,~

V

CHAPTER 1

INTRODUCTION TO SOFTWARE PROTECTION

Talk about bootleg record albums. tapes
and movies has been increasing for several
years. Copyright infringements by people
who tape television programs has also been
a growing problem. One fast growing area
that hasn I t seen much media coverage is
software copying. It is estimated that there
are two illegal copies of Visicalc (a
popular spread sheet program) distributed
for each one legally purchased. With the
growing problem of software piracy. more
people are writing about ways to prevent
it. Sources that try to deal with the topic
seem to focus only on legal protection tech­
niques. They mention copyrighting or
patents. but usually neglect to. say that
these methods have not been effective in
stopping or even slowing down the problem.
The reason for the failure of legal
protection is the type of people who are
pirating software. While record piraters
may be big operators taking in millions.
most software pirating is done. by
individuals. Catching them is almost
impossible. let alone trying to legally
prosecute each one.

WHAT IS SOFfWARE PROTECTION?

Software protection refers to techniques
which discourage or prevent people from
making copies. The techniques used can

-1-

u

u

u

u
take many different forms. The software
producers can threaten legal prosecution of U
pirates; make a moral plea against
copying; give idle threats; make software U
physically difficult to copy; or attempt to
bypass the problem through the use of new U
marketing or distribution methods. The goal
of software protection should be to maximize U
the return on the investment of the
producers, not prevent piracy at any cost. U
If the protection method prevents the
product from being brought to the market at U
a reasonable price or makes the product too
difficult or tedious to use, then . the U
producers have overlooked this goal. There
are people so, obsessed with protecting their U
software that it prevents them from selling
their programs. Keep the goal of U
maximizing the return on your investment
in mind when considering any software U
protection method.

U
THE CONCENfRATION OF THE BOOK

U
This book is written to help software

producers deal with the problems of U
piracy. Legal protection and ways to
discourage copying are dealt with in a U
good amount of detail, but the primary
focus of the book is on methods that make U
copying physically more difficult. As
mentioned above, the majority of copying is U
done by individuals who make copies for a
few of their friends. Such people are not U
worried about the police coming to their
door with search warrants, and the scope U
of the problem shows that pleading with

U

-2- u

u

~ them not to copy, has little effect on the
vast majority of software pirates.

~ Protecting software should be like a bank
protecting its money. To be effective,

~ software protection must try to physically
prevent piraters from being able to steal

Ii the software. Legal and coersive techniques
may discourage some, but I feel the best

Ii protection makes copying so difficult that
only a few people have enough expertise to

Ii copy it, and is so time consuming and
tedious that those expert pirates give up

Ii before breaking the protection codes. The
majority of this book deals with methods to

Ii achieve these goals.

Ii THE PROS AND CONS OF
SOFfWARE PROTECfION

fhe problems of piracy. Every bootleg
~ program made deprives the produ<;:ers. of

some of their earnings. Some programs can
ti take months or years to write, so it is only

natural that the writer wishes to get
~ financial rewards for his efforts. The

problem of piracy is so bad that many
Ii times the person receives an illegal copy of

a program before he has even seen ads for
ti the product. Loosely knit national software

trading rings are making the bootleg
Ii software a vaila ble even in the most remote

areas. Obviously, something must be done
Ii about software copying, but for a moment,

consider the other side to the problem.

fhe need for backups. Unfortunately,
ti software is a fragile and volatile product.

-3-

Software can be destroyed by heat,
humidity, wear, magnetic fields, faulty
reading. devices or even dirt. Just touching
the exposed surface of a disk can destroy
it. Most computer owners have learned that
the only reasonably sure way to preserve
your software is to make backups. Many
people have come to rely on their software
for balancing checkbooks and keeping their
phone lists, etc., and would have serious
problems should their software fail to work.
In fact, many businesses have come to rely
so heavily on their software that they could
not function without it. Unfortuna tely, well
protected software is intentionally very
difficult to back up. On one hand we have
the need to protect manufacturers from
pirates and on the other, the need for the
user to be able to back up his software.

The responsibility of the vendor.
Although backing up game software is
obviously not as important as home filing
or business software, all software should
have provisions for backups. Some of the
techniques that will be discussed later are
well suited to deal with the back up
problem, but at the very least, it is the
res.ponsibility of the vendor to provide
quick and inexpensive back up service by
mail. This can be as simple as an offer to
replace malfunctioning software by mail for
a small handling charge. Keep in mind that
providing for backups removes one of the
reasons for people to spend their time
breaking software protection and may
produce good will toward your product and
company.

-4-

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

TO"fALLY UNCOPYABLE SOFTWARE?

Can any program be made totally
uncopyable? This question gets a qualified
no. For most practical purposes, any
software .can be pirated. No matter how
complex the protection technique, there are
people who can break it. Any protection
technique invented by man can be broken
by man. Let us say for a moment that truly
unduplicatable software is invented at some
point in the future. If it is truly
uncopyable, then even the manufacturer
cannot copy it for distribution purposes. As
you can see, truly uncopyable code is not
good unless you only wish to sell that one
copy. fhe trick to protecting software is

not to make it completely uncopyable, but
to make it difficult enough to discourage
all but the most advanced and persistent
would-be pirates.

I hate to qualify my original statement,
but I can think of one case where software
duplication is almost impossible. The case
that comes to mind is the software
available only on an information service
like fhe Source or Compuserve. This is
software which you never get possession of
because your responses are transmitted to
the computer which contains the software.
Chis may be fine for adventure type gClmes,
but for the real time arcade graphics type
games, it is virtually unusable. Presently
the cost is high and the response slow, but
maybe the future will show some hope for
this method.

-5-

CHAPTER 2

GENERAL PROfECTION OF PROGRAMS
WRITTEN IN BASIC

u

u

u

u

u

u

u
Protecting programs written· in BASIC

requires several protection techniques. In U
the following chapters, the specifics of
dealing with tape and disk software are U
covered, however, certain protection is
needed no matter how BASIC programs are U
stored. The real problem protecting BASIC
code is the SAVE command. Protecting U
against the SAVE is probably more difficult
than at first you would expect. This is U
because there are many different ways of
stopping a programs execution and then U
saving it via a SAVE"D :program" or
SAVE"C:" command. The topics that one must U
understand to stop this possibility are:

U
1. Disabling the break key
2. Disabling the system reset key U
3. Preventing an error break
4. Preventing LOAD and SAVE com- U

binations
5. Special cases where control must be U

given to the program user.

All these problems come up with BASIC
programs because once loaded ihto memory,
they are very simple to save to disk or
tape if the program user is given the
opportunity. The trick is not to give them
the chance. In other words, your program
must not lose control of the computer.

-6-

u

u

u

U
--
U

DISABLING THE BREAK KEY

Hitting the break key stops the
execution of a program without clearing
memory. fhis allows simple saving of the
program. To disable the break key ta kes
only two pokes.fhey are:

POKE 16,112
POKE 53774,112

Technically, you. are changing the POKEY
interrupt vector but suffice it to say that
these pokes will disable the break key. It
is important to note that these pokes must
be repeated after each GRAPHICS command.
fhis is because the GRAPHICS command
refreshes those memory locations. Other
commands can clear these locations also. To
be on the safe s ide, it is good to repeat
these pokes several times throughout the
program. Since the break key is sometimes
hit accidentally. these pokes are a good
idea even in unprotected BASIC programs.

DISABLING fHE SYSTEM RESET KEY

The system reset key is similar to the
~ break key in that it stops execution without

clearing the program from memory. There
~ are two simple ways to disable this key.

The first is:

POKE 580, 1

This POKE causes what is called a cold
~ start. In other words, if system reset is

pressed after this POKE, the system will
~ -~

restart itself in the same way it would if
you turned the computer off and then back
on again, and all program memory is
cleared. Another way to disable the system
reset key is:

POKE 9,255

This will cause the system to lock up (keys
won't work) if system reset is pressed.
Either of these two methods is acceptable
for disabling the system reset key,
however, the first is preferable for disk
based software because it will cause the
disk to reboot.

PREVENTING AN ERROR BREAK

As you probably know, when an error
is encountered in a BASIC program,
execution is stopped and an error message
is displayed. This provides anyone the
opportunity to save your program. Of
course, a well written program should not
have errors in it, but often unusual input
can cause them. For example, if the
program asks for a n umber but the person
enters a letter, it may cause an error.
Also, unusual circumstances may arise that
were not foreseen by the programmer. To
help prevent these types of breaks, the
BASIC command TRAP can be used. For those
not familiar with this, it causes the
program togo to a specifi~d line number if
an error is encountered. A complete explan-

-8-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

I~

ation is in your BASIC manual. It should
be noted that once a TRAP is used, another
TRAP statement must be issued if you want
to continue s topping errors.

PREVENTING A LOAD AND SAVE COMBINATION

If your program requires the user to
"LOAD" it or to "RUN" it, it is more
difficult to protect. This procedure gives
the user the opportunity to save it before it
is run. One good way to prevent this is by
having an automatically booting disk or
cassette. The details of this method will be
presented in the sections on disk and
cassette protection, but essentially an
autoboot system causes your program to run
automatically when the system is started.

PROTECfING AGAINSf LIST

fhere are several ways· to prevent
someone from being able to LIST your
program. The one I feel is best causes the
computer to lock up if a LIST (or any vther
command) is given with your program
loaded in memory. Be sure to have a bac k
up before using this procedure so you will
ha ve a listable version to work with should
you decide to update your program. To use
this procedure, just insert this line as the
last line in your program:

32500 POKE PEEK(l38)+256*PEEK039)+2,O:
SAVE "D: program": NEW

-9-

u

u

u
For disk usage, change where it says
"program" to the name you wish to save U
your program as. For cassettes, change ·the
SAVE to a SAVE "C:". Type GOTO 32500 to U
save the protected version to the disk. This
procedure changes the current statement v
pointer to 0 and will allow your program to
run normally even though it cannot be V
listed.

SPECIAL CASES

At times, it is necessary or desirable to
let the user have control of the computer
and LIST or MODIFY your program. Even in
these cases, it is still possible to protect
your programs from copying. The trick here
is to make your program need some
conditions preset before it will run. One
way to do this is to have your autoboot
procedure point to a small initialization
program that will then load your program.
An example would be to have this
initialization program rOKE a small
machine language subroutine into memory
and then run your main program. For those
not familiar with assembly language, here
is a simple example that can be used:

POKE 1680.104: POKE 1681,96

fhis assembly language rouline will ju~t
clear the s tack and return to your program
when called with a statement "like this:

-10-

u

u

u

u

u

u

u

u

\-...J

u

u

u

X=USR (1680)

This call can be put in various locations
throughout your main program. These are
used to make your computer lock up should
it try to run without having POKED the
subroutine into place. In other words, you
can let your program user copy and modify
your main program, but it will not work
without running your initialization program
which is protected. You may point out that
the. person can just remove these statements
and then the program will run correctly.
This is true, but hopefully they will think
the statement serves some purpose other
than just protection and not just remove it.
One way to prevent the program user from
being able to remove it. is to make the
subroutine perform some valid function
needed by your program. Then, the program
will not run (with or without statemenLs) if
your initialization program is not run

~ first.

-11-

CHAPTER 3

CASSETTE PROTECTION

fhere are major problems with tech­
niq ues used to protect cassettes. 1 n fact,
many companies have stopped releasing
cassette based software because of this.
Various methods are available that make
cassettes harder to copy, but none offer
protection against a copy system called
"Audio Duping".

Audio duping is a technique used by
large scale software producers to duplicate
their tapes. It is also used by software
pirates. Audio duping is done by directly
recording one cassette from the other using
two high quality cassette recorders. A cord
is run from the output (or earphone) jack
of one recorder to the input (usually aux
in) of the other, and the cassette is copied
with all filters and noise reduction systems
turned off. This yields a working copy of
the cassette.

This software protection problem arises
from the fact that standard cassettes are
used for software. With all· the high quality
stereo systems around, almost everyone can
get access to a cassette recorder good
enough to duplicate tapes used for
software. Although the use of this method
by pirates, stops the software manufacturer
from preventing copying altogether, certain
techniques are available which at least
help protect the program against simple
BASIC copies and tape to disk copies. They
can a Iso help prevent others from trying to

-12-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

market your programs with only minor
r) modifications and a different name.

First, the methods discussed in the
~ previous chapter on general BASIC

protection should be employed on cassettes
r) using BASIC. One simple way to protect a

program against the LOAD and SAVE
r) combination is to make your program

unlistable. The technique presented earlier
r) to prevent the list command (see chapter 2)

also protects against a simple save
(') command. In this case, you must instruct

the purchaser (in the documentation) to
(') type;

r) RUN "C:"

r) A load would not work because on\..e the
program is loaded, the protection would

r) prevent a run command from working. This
technique also helps prevent a pirate from

r) transferring the tape program to disk or
modifying the program for resale.

r) Machine language programs offer
different protection problems. Several

r) companies market programs which transfer
machine language programs from tape to

r) disk. Fortunately, these programs are not
effective a t copying multistage loads. A

r) multi-stage load program is one which
loads in several parts. The program uses

r) the standard boot procedure to load a
routine, which then loads the rest of the

r) pl"Ogram, or the program can be broken into
several segments that load each other in

r) turn. The use of these multi-stage loads is
very effective against standard tape to

-13-

tape and tape to disk utilities. Only the
first segment of a multi-stage program is
copied by these utilities because they use
the boot info from the beginning of the
tape.

As stated earlier, these techniques can
make copying or modifying cassette
programs harder, but they are ineffective
aga inst audio duplicating systems. Some
companies deal with this problem by
producing two versions of their programs.
One scaled down version on cassette, and a
higher quality version on disk. This
encourages disk owners to buy the disk
version rather than just copying the
cassette. The manufacturers also count on
the fact that cassette owners a re less likely
to be familiar with copy techniques.

Cassette based programs do offer a
wider market than disks and are much
easier to produce than cartridges. However,
from a software protection standpoint,
cassette based programs have serious
problems. The final decision on the use of
cassettes should be made only after
examining your objectives for your program
carefully.

-14-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

CHAPTER 4

GENERAL DISK PROTECTION

This chapter will cover disk protection
in general. If the programs you wish to
protect are in BASIC, then the techniques
presented here should be used in
combination with those presented in Chapter
2. The methods presented here are the first
step to disk protection. The chapters on
bad sectors, misassigned sectors, and
hiding protection code, deal with more
advanced forms of disk 'protection.

AurORUN. SYS File

If your program requires the user to
LOAD it before running (in BASIC or
assembled, it can usually be copied very
easily. A good way around this is with the
use of an AUfORUN.SYS file or an autoboot
disk. The name AUTORUN.SYS has special
meaning to DOS. When a file with that name
is on a disk, it will be loaded
automatically when the computer is turned
on (with the disk drive on, of course).

Using an AUTORUN .SYS file is very easy
for assembler programmers. Any machine
language program can be set up with a
"RUN AT ADDRESS" (DOS option K) and
renamed to AUTORUN.SYS. Then it will run
automatically when the disk is booted.
Another option for assembler programmers is
creating an autoboot disk. This is a disk
that carries the information to load your
program in the boot sectors (sectors 1 and

-15-

u

u

u
2). See Atari fechnical User's Notes for
complete details on this method. U

Creating an AUTORUN.SYS file is much
more difficult for a BASIC programmer, U
since the file has to be a machine language
program. Figure 4.1 shows a simple BASIC U
program that will create an AUTORUN.SYS
file for you. When the program is run, it U
will create a file called AUrORUN.SYS that
will automatically run your BASIC program U
for you. The BASIC program must be named
"FI RSTPGM" for it to work. Also, the disk U
must have DOS.SYS on it.

Besides helping to protect your V
program, an AUTORUN disk has another
advantage. It is much easier for beginners U
to use since it loads and runs your
program automatically. U

Preventing DOS Copies U

The protection methods presented up to U
now are sufficient to prevent copies from
BASIC. This section focuses on preventing U
DOS copies. From the Atari DOS menu, the
user ..:an duplicate a file (option 0), copy U
a file (option C) or duplicate a disk
(option J). Preventing these types of copies U
requires a knowledge of directories and
VTOC's. U

Disk Directories: The disk directory is U
probably the most heavily used part of the
disk. Whenever a file is accessed (loaded, U
deleted, read, copied, etc.) DOS uses the
directory. The directory contains the U
names, locations and lengths of all files on

U

-16- u

u

FIGURE 4.1

18 REM)1)1 THI S PROGRAM CREATES AN
AUTORUN.SYS FILE, WHICH WILL
AUTCI1ATICALLY

28 REM)1)1 RUN PROGRAM - D I F I RSTPGH-
WHEN DISK IS LOADED

38 OPEN .4,S,8,-D:AUTORUN.SYS-
48 FOR J=1 TO 153
58 READ A;PUT .4,A
68 NEXT J
78 CLOSE .4
S8 DATA 255,255,8,6,138,6,162,8,189,26
,3,281,69,248,5
98 DATA 232,232,232,288,244,232,142,18
5,6,189,26,3,133,285,169
188 DATA 187,157,26,3,232,189,26,3,133
,286,169,6,157,26,3
118 DATA 168,8,162,16,177,285,153~187,
6,288,282,288,247,169,67
128 DATA 141,111,6,169,6,141,112,6,169
,15,141,186,6,96,172
138 DATA 186,6,248,9,185,123,6,286,186
,6,168,1,96,138,72
148 DATA 174,185,6,165,285,157,26,3,23
2,165,286,157,26,3,184
158 DATA 178,169,155,168,1,96,8,8,8,8,
8,8,8,8,8
168 DATA 8,8,8,8,8,76,8,8,8,34,77,71,8
8,84,83
178 DATA 82,73,78,58,68,34,32,78,85,82
,255,255,226,2,227
188 DATA 2,8,6

-17-

u

u

u

u
the disk.

The directory is loaded in the ap- U
proximate center of the disk, in sectors 361
through 368, inclusive. It is created when U
the disk is formatted with DOS. A machine
language program can do away with the U
directory all together if it is autobootir:lg
and doesn't need to access files. In u
general though, the directory is a required
part of the disk. Figure 4.2 shows how the u
directory is stored on the disk. This
diagram is included for advanced users but U
its understanding is not required.

u
VTOC' s: VTOC stands for "volume table of
contents" and is used to keep track of U
which sectors on a disk are full and which
are free. Whenever a file is added or u
deleted from the directory, the VTOC is
updated to show which sectors are now used u
or free. The VTOC is stored on sector 360
and its layout is shown in diagram 4.3. u
Understanding this diagram is not required
but is included as an aid for advanced U
users.

u
Hiding Disk Directories and VTOC' s

u
Hiding disk directories is a very

effective technique for stopping novice U
copiers. It is very widely used and will
prevent simple DOS copies. To be most U
effective in BASIC, this technique should be
combined with stopping program breaks, u
system resets and other methods d"iscussed
in Chapter 2. This method is especially U
good for programs which automatically run

u

-18- u

u

o 1

FIGURE 4.2

A DIRECTORY SECTOR LAYOUT
Director Entry

3 5 13
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: F : CNT: SSN: FILE NAME : EXT :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-- Starting sector number
Two Bytes
Points to first sector

of a f i Ie

+------ Count - Two bytes
The number of sectors

in the file

+--------- Flag - One byte-
$81 -File opened for output
$82 -File created by DOS
$88 -Entry never used
$28 -File locV.ed
$48 -File in use
$88 -File deleted

FIGURE 4.3

VTOC SECTOR LAYOUT (Sector 369)
$168 Hex

BYTES
8

1-2
3-4

5
6-9

18- 99

Type Code (9=00S 2.9>
Total number of sectors
Number of unused sectors
Reserved
unused
Each bit in this area
represents a spacific
sector (8=used,l=unused)

-19-

other programs, and programs where the
user may need to access specific listings or
files. After it is used, a normal directory
listing will show 707 free sectors (or
whatever you want it to show), but your
programs can still use the hidden directory
as they please. Also, some files can be put
in the hidden directory and the real
directory, letting the user access certain
files but not others.

The optional program disk has a
program that will hide your directory
automdtically for you. If you did not
purchase this disk, but would like to, see
the back of the book for ordering
informa tion.

The routines to search for your file in
the directory are part of DOS and are
loaded when you turn on your computer. A
method I developed to hide your directory
involves altering part of DOS to point to a
new directory in a different location. A
warning should be given at this point:
BEFORE USING THIS (OR ANY OTHER
PROTECTION METHOD), BE SURE YOU HAVE
MADE A BACK-UP. The back-up serves two
purposes. First, the unprotected back-up
gives you the means to change your
program in the future (to modify it or just
fix bugs, etc.). Secondly, the back-up is
needed in case you accidentally damage or
destroy your disk during the protection
process. Hiding the directory involves five
steps. They are:
1. Back up your completed disk.
2. Copy the directory to a new location.
3. Alter DOS to point to your new directory.

-20-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

.~

4. Write the altered DOS files to your disk.
5. Destroy or change the old dir::!ctory,

VTOC and DUP.SYS file.

Step 1: Back up your completed disk. Before
you protect your disk, you should have it
finished and complete because once
protected, it will be hard to modify. Also,
be sure to keep an unprotected back-up for
the reasons mentioned above. One
requirement of this technique is that you
have the DOS files on the disk. If they are
not there now, use DOS option H to write
them.

Step 2: Copy the directory to a new
location. It was stated earlier that the
directory ri des a t sec tors 361-368.
Normally, DOS looks to these sectors to
access files. ['0 hide the directory, we will
copy the directory to a new location ~ then
later delete (or just alter) the old
directory to trick a normal DOS. In other
words, your program can use your hidden
directory as usual, even though the real
directory shows the disk to be different or
empty. ['0 move the directory requires a
sector mover. Figure 4.4 contains a basic
program that can move a sector of da ta
from one location on the disk to another. In
this case, we will move the eight sectors
(which make up the directory) to a new
location.

"fo keep this protection method simp Ie,
you must stay within certain restrictions.
In this case, you can move your directory
to anywhere between sector 255 and 510 (the

-21-

u

u

u
FIGURE 4_4

u

18 REM JOE ROUTINE TO MOVE A SECTOR U
FR(Jot ll'IE LOCAT I ~ TO ANOTHER

28 REM JOE SET UP C 10 CALL JOE U
38 FOR 1=1536 TO 1548:READ X:POKE I,X:
NEXT I U
48 DATA 184,32,83,228,96
58 DIM A$(128) ,B$(1) U
68 REM ~~ SET DRIVE ~~
78 DRIVE=I:POKE 769,DRIVE U
88 REM ~~ SET COMMANDS ~~
98 RREAD=82:WWRITE=87:POKE 778,RREAD ~
188 REM ~~ GET SECTOR NUMBERS ~~
118 ? " FR(Jot SECTORD;:INPUT FRHSEC U
126 ? :? " TO SECTOR";:INPUT TOSEC
138 POKE 778,FRHSEC-(INT(FRHSEC/256)~2 ~

56):POKE 779,INT(FRHSEC/256)
148 REM ~~ SET ADDRESS TO STORE READ ~ U
~
158 ADRA=ADR(A$) :POKE 772,ADRA-(INT(AD U
RA/256)~256):POKE 773,INT(ADRA/256)
168 REM U
178 REM ~~ EXECUTE CALL-CIO ROUTINE ~~
188 ? "HIT RETURN TO READ SECTOR .. ;FRM ~

SEC: INPUT 8$
198 Z=USR (1536) 0
288 REM ~~ SET WRITE SECTOR ~~
218 POKE 778,TOSEC-(INT(TOSEC/256)*256 U
) :POKE 779,INT(TOSEC/256)
228 ? "HIT RETURN TO WRITE SECTOR It ;TO U
SEC: INPUT 8$
238 POKE 778,WWRITE ~
248 Z=USR(1536)

~

U

u

-22- u

U

reason for this will be explained lated.
Where you move your directory in this
range is not important, but it must be to
unused sectors. Figure 4.5 contains a
program that will tell you if the sector is
free.

For the sake of simplicity, let's say
you decide to move your directory to sector
501 through 508. To do this, you would run
the sector mover (figure 4.4) and move
sector 361 to 501. Then, run again and
move 362 to 502, etc. until you reach 368 to
508. You are then ready for step 3.

Step 3: Alter DOS to point to your new
directory. Changing DOS is very easy if
you know what to do. In this case, we will
change DOS to point to our new ditectory
with just one POKE. Since DOS is stored in
memory, we can change it by changing
these memory locations. To cause DOS to
look a t our hidden directory. we will POK E
location 4226 with a new value. It normally
contains 105. and this tells DOS to look to
sector 361 for the directory. To compute the
new value to POKE into this location, just
use t hi s formu la :

New POKE value = 105 + (hidden directory
sector number - 361)

In our example we moved the directory to
start in sector 501, so our new value to
POKE would equal 245 (= 105 + (501 - 361)).

-23-

FIGURE 4.5

18 REM ~~ ROUTINE TO CHECK IF SECTOR
IS USED ~~

28 REM
38 REM ~ NOTE; TO CLEAR UNUSED SECTORS
48 REM ~ START WITH FORMATTED DISK
58 REM ~ AND COpy YOUR FILES TO IT
68 FOR 1=1536 TO 1548:READ X:POKE I,X:
NEXT I
78 DATA 184,32,83,228,96
88 DIM A$(128),9$(128)
98 REM ~~ CLEAR STRINGS ~~
188 A$(1, 1>=CHR$(8):A$(128, 128)=A$:A$(
2,128)=A$
118 8$(1,1)=- -:8$(128,128)=8$:8$(2,12
8)=9$
128 DRIVE=I:POKE 769,DRIVE
138 RREAD=82:POKE 778,RREAD
148 ? :? - WHAT SECTOR-;:INPUT SECN
158 POKE 778,SECN-(INT(SECNV256)~256) :
POKE 779,INT(SECNV256)
168 ADRA=ADR(8$):POKE 772,ADRA-(INT(AO
RA/256)~256):POKE 773,INT(ADRA/256)
178 Z=USR(1536)
188 IF A$=BS THEN? - SECTOR IS FREED:
GOTO 148
198 ? -SECTOR IS FULL-:GOTO 148

-24-

u

u

u

u

u

v

u

u

u

v

u

u

u

u

v

v

u

u

v

u

u

u

So you would use this statement to change
DOS to point to our hidden directory:

POK E 4226, 245

fhe reason why we can only move the
directory to a certain range of values, is
because of this POKE. rhe minimum value
you can POKE is 0 and the maximum is 255,
that is why our directory has to be hidden
within these 256 sectors.

Step 4: Write altered DOS files to disk. In
order to ma ke the modification to DOS
permanent, we must rewrite the DOS files.
To do this, just type DOS and press return.
if your direct.ory was moved properly, the
DOS menu should appear. if the menu does
not appear, go back to step 2 and try
aga in. For those who made it to DOS, type
H (write DOS files). fhis will write your
modified DOS to the disk, so your programs
can find the hidden directory.

Step 5: Destroy or change old directory,
vroc and DUP.SYS file. Now comes the time
to burn our bridges behind us. First turn·
your computer off and then back on iind
thoroughly test your programs. rhey now
use the hidden directory. Next, we will
delete or alter the old directory, v roc find
DUP.SYS files.

if you are not familiar with the
DU P. SYS file, this file is c rea ted when you
write DOS files, and must be deleted in
order to protect your programs. The
DU P .SYS is used to load t he DOS me nu. The

-25-

DOS menu could point a pirate directly to
your hidden directory. 'fo delete it, load
the DOS menu from another disk, then
return your disk to the drive. Use option D
to delete the DUP.SYS file .

. Next, let's get rid of the old (real)
dire:tory' so others won't be a ble to find
your programs. The easiest way to protect
it is to delete it. Once again, use the
sector mover (figure 4.4). This time, copy
sector 720 (or a ny blank sector> to sectors
361-368. This will delete the old directory.

Advanced users may wish to just delete
certain files and leave others intact so that
your users could list or copy them. To de
this', you would need to understand and
modify the old directory. Figure 4.2 should
be a big help in dcing thi.s. Keep in mind
that the directory is not used by your
programs, your programs use only the
hidden directory.

The final step is to change your vroc.
l'he V fOC is used when a DOS command J
(duplica te disk) is issued. This command
copies all sectors which the V'fOC shows to
be full. Fortunately, there is a very simp Ie
way to make the VTOC say 707 free sectors
(a blank disk). Again, we need our sector
mover (figure 4.4). fhe trick is to copy the
V'fOC from a blank, formatted disk onto our
disk's VTOC. The V'fOC is stored in sector
360, so just insert a blank formatted disk
in the drive and tell the sector mover to
move sector 360 to sector 360. fhen read
sector 360 from your blank disk, and switch
disks to write it to your- program disk.

Now your disk is comp lete. I recommend

-26-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

r-"\ that you thoroughly test it again. Now boot
up another disk in your drive and go to

r-"\ DOS. Then insert your protected disk into
the drive and type A (display disk

r-"\ directory). Surprise! Your disk says there
are no files and 707 free sectors. but it

fi still runs your programs perfectly.

-27-

CHAP fER 5

BAD SECTOR ING

WHAT IS A BAD SECTOR?

A bad sector is a term often used by
software producers trying to protect their
software and by pirates. A. bad sector is
basically a sector on a disk which cannot
be read accurately by the disk drive. This
can be an unformatted sector, a sector that
was written with a misaligned disk, a
sector that was partially overlaid (usually
caused by incorrect disk speed) or a sector
that was physically or magnetically
damaged. 1 will go into these further, but
first, let me deal with the most common
misconception about bad sectors and
creating bad sectors. The most often asked
question about bad sectors is, "Can't you
just store bad or random da ta in a sector
to create a bad sector?" The answer is,
"No", since the da ta on a disk is stored as
binary 0' s and l's, any pattern of them i3
valid and can be read by a disk as long
as they are properly placed. In other
'.'lTords, it makes no difference to the disk
drive what data is stored in a sector. If it
c an be read accura tely, it is considered to
be a good sector.

Another common misconception deals
with creating bad sectors. People under­
stand that an unformatted sector is bad
(this is correct), and say that they can
just format the sectors they want to be

-28-

u

u

u

U

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

good, and leave the others unformatted (to
be bad sectors). Unfortunately, this cannot
be done with the standard ATARI disk
drive. The standard ATARI disk drive
accepts only four commands. They are:
READ SECTOR, WRITE SECTOR, CHECK SfATUS
and FORMA f DISK. Because the drive has
its own 6507 microprocessor, it controls the
actual functions involved with the four
commands. The details of how to perform
these functions is· stored on a ROM chip in
the disk drive. When a format disk
command is sent to the drive, it takes over
arid formats the entire disk. Even turnin.~
off the computer will not affect the
forma Hi ng. About the on ly way not to
format the entire disk with an unmodified
drive is to turn off the disk droive during
the formatting process. l'his is difficult to
control, but is sometimes ~ffective in
creating bad sectors.

1I0W BAD SECrORS PROl'ECr SOFfWAI~E

Most ATARI users aloe aware that bad
sectors are used to prevent the copying of
disks, but wonder how they achieve this. A
little history of protection techniques w.ould
help clear this up. For a long time, hidden
directories and other disk protection
methods explained earlier were the only
methods available (and for that matter,
needed) to prevent disk piracy. As sector
copiers began to be readily available, it
became obv ious that some new method of
copy protection was needed. It was known
that the sector copier would duplicate all

-29-

readable data on a disk (at that time), so
the problem became how to stop a copy from
running. It was reasoned that the program
had to have some way of telling if it
resided on the original disk or a copy. The
original disk had to have some
characteristic that could distinguish it from
a copy. Bad sectors fit the bi 11 perfectly.
The original disk could have a bad sector
that could be checked by the program. In
other words, the program would be able to
tell if it resided on the original disk by
checking for the bad sector. The program
would run as usual if the bad sector was
found, but .if it didn't find the bad sector,
it would know that it was on a copy disk
and take some appropriate action (e. g. lock
up the computer, attempt to format the
dis k , e.tc.).

CREA·fING BAD SECfORS

For a medium to large scale software
producer, the best way to create bad
sectors is to purchase custom hardware or
special modifications for the 810 disk drive
(See appendix "A" for a list of companies).
For small scale software producers, there
are several ways to create bad sectors
without special hardware. Also, one should
know of the techniques presented below
because they are sometimes used by
software pirates to create bad sectors. Once
a bad sector is created on the original
disk. most disk duplicating companies can

-30-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

make batches of them easily (see appendix
"A") which saves the small software
company from having to recreate the bad
sectors on all their disks to be distributed.

As mentioned earlier, there is no way
to create bad sectors with the standard 810
disk drive from software alone, however,
there are some special techniques that can
be used. One very good method is to use
other small computers to write bad sectors
and tracks. Some computers like the APPLE
and I BM-PC allow you to format single
sectors and tracks. l'heir formats are not
compatible with AfAR [' s, thus resulting in
bad sectors. However, this technique is not
effective if precise control of the bad
sectQrs is needed, and you must have
access to and knowledge of the other
computers to use this method.

Another method is to physically damage
the disk. I have seen this technique used
successfully, but it has major drawbacks.
Basically, you map out the disk, and using
a pin or other sharp object, physically
damage the sectors that should be bad.
Needless to say, hitting the right sector is
very difficult. and permanent damage to
the disk must be done. A very similar
technique is to magnetically damage sectors
on the disk using a powerful magnet or a
picoelectric device. This saves the disk
from permanent damage. but it is even
harder to place the bad sectors precisely
where you want them.

-31-

Another technique sometimes used is to
alter the read/write head alignment on your
disk drive. This technique works but I
strongly' warn against using it because
readjusting your alignment properly
requires an oscilloscope, and a disk with
improper alignment is usually incompatible
with a properly aligned disk drive.

Finally, there are two techniques which
are effective and relatively easy to use to
create bad sectors. The first technique
involves attaching a piece of tape to your
disk jacket so that when the disk is
inserted in the drive, the tape sticks out
the door. Essentially, you shake the tape
(which is a ttached to your disk cover)
while a· program is continually writing and
reading the sector you wish to destroy.
This technique works but can take as long
as 10 minutes to write a single bad sector.
The other technique involves adjusting the
speed of your disk drive. This method is
fast and very precise. It enables you to
write as many bad sectors as you wish
without doin ermanent damage to

your disk. Your dnve must be slowed to
approximately 220 RPMs (so you can just
barely write a sector without an error).
Then, you have the disk write the sector
you wish to destroy. When your drive is
adjusted back to normal speed, those
sectors will be read as bad sectors.

The optional software disk (ordering

-32-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

information in back of book) that goes with
this book contains programs which makes
writing bad sectors by these methods
easier.

CHECKING FOR BAD SECTORS

Obviously, to use bad sectors as a
protection techn iq ue, the program must
ha ve some way to check for them.
Fortunately, this is a simple process.
Figure 5.1 shows a simple BASlC program
that will help with this. All it does is read
a sector, check the status byte and display
a message saying if it got an error or not.

Figure 5.2 contains a modification to
the program that wi II cause the computer to
lock up if the sector is good, but continue
if reading the sector, returned an error
code. This routine can be used in your
pl"ogram to verify a bad sector. To use it,
just insert this routine at the beginning of
the program you wish to protect, then
create a bad sector on the disk al the
location checked in the program (currently
set to sector 710 but can be changed to
whatever sector you wish). Now the program
will run only on disks that get an error
trying to read the specified sector.

Note that this program will register any
error in the a ttempt to read the sector.
I'his means that if the disk drive is turned
off or the disk is removed before the read,
the program will continue to run as usual.

-33-

FIGURE 5.1

18 REM II ROUTINE TO CHECK BAD SECTORS
28 DIM A$(12B)
38 REM
48 R8H II SET DRIVE II
58 DRIVE=I:POKE 769,DRIVE
68 REM
78 REM II SET Cm+1AND TO READ I I
B8 RREAD=B2:POKE 778,RREAD
98 REM
188 REM II GET SECTOR NtJotBER II
118 ? -WHAT SECTOR -;:INPUT SECN
128 POKE 77B,SECN-(INT(SEONV256)1256):
POKE 779,INTCSEONV256)
138 REM
148 REM II SET ADDRESS TO STORE SECTOR
AT II

158 ADRA=ADRCAS):POKE 772,ADRA-(INTCAD
RA/256)1256):POKE 773,INTCADRA/256)
168 REM
178 REM II SET UP CALL-CIO ROUTINE II
lB8 FOR 1=1536 TO 1548:R~D X:POKE I,X
:NEXT I
198 DATA 184,32,B3,22B,96
288 REM
218 REM II EXECUTE CALL-CIO ROUTINE II
228 Z=USRC 153cS)
238 REM
248 REM II CHECK STATUS. CODE II
258 STTUS=PEEK(771):IF STTUS=1 THEN PR
I NT - SECTOR WAS GOOD-: END
268 PRINT ·SECTOR WAS BAP- : END

-34-

u

u

u

u

u

u

u

u

u

u

u

u

v

u

v

u

u

u

u

u

v

u

u

u

v

FIGURE 5.2

18 REM ~~ ROUTINE TO LOCK-UP COMPUTER
I F CHECKED SECTOR NOT BAD

28 DIM AS(128>
38 REM
48 REM ~~ SET DRIVE ~~
58 DRIVE=I:POKE 769,DRIVE
68 REM
78 REM ~~ SET CCH1AND TO READ ~~
88 RREAD=82:POKE 778,RREAD
98 REM
188 REM ~~ SET SECTOR NUMBER TO 718 ~~
118 SElN=718:POKE 778,SECN-(INT(SECN/2
56)~256) :POKE 779,INT(SECNV256)
128 REM
138 REM ~~ SET ADDRESS TO STORE SECTOR
AT ~~

148 ADRA=ADR(AS):POKE 772,ADRA-(INT(AD
RA/256)~256):POKE 773,INT(ADRA/256)
158 REM
168 REM ~~ SET UP CALL-CIO ROUTINE ~~

178 FOR 1=1536 TO 1548:READ X:POKE I,X
:NEXT I
189 DATA 184,32,83,228,96
199 REM
289 REM ~~ EXECUTE CALL-CIO ROUTINE ~3E
219 Z=USR(1536)
229 REM
238 REM ~3E CHECK STATUS CODE 3E~
248 STTUS=PEEK(771):lF STTUS=l TH~ ?
uCOpy DISK DETECTED-:X=USR(8)
258 PRINT -PROGRAM RLNS NORMALLY" : END

-35-

To prevent a pira te from using this
techniq ue to trick your program, it is a
good idea to read a good sector after
checking for the bad sector and bomb the
program if this sector is not good.
Essentially then, you first check the bad
sector and bom b if it is not a n error, then
check the good sector and bomb if it is an
error.

Now is a good time to mention hiding
the protection code. Hiding protection code
comprises a set of techniques which
disguise your protection functions to help
prevent a pirate from finding and removing
the protection code. These techniques are
discussed in detail in the next chapter.
fhe importance of these methods cannot be
overemphasized because if a software pirate
can find and disable the protection in the
program, this unprotected version can
quh:kly spread through pirate circles.

CONCLUS IONS

Although bad sectoring is the most
widely used protection technique, it has a
major drawback. The drawback is that bad
sectors can be created by anyone who
knows how with just a s tanda rd 810 disk
drive. This means that a pirate can copy
the original disk (with a sector copier) and
then create bad sectors on the copy
wherever they were on the original. This
would create a working copy, because all

36-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

the checks for bad sectors would yield the
same results as the original. Needless to
say, this technique is spreading fast
through the pirate community and will soon
make bad sectoring only effective against
novice pirates. However, keep in mind that
this protection technique can be applied by
even the smallest software producers with
the most limited resources, and when
combined with some of the other methods
discussed, is still effective against many
pirates.

-37-

u

u

u
CHAPTER 6

u
HIDING PROTECTION CODE

u
In order to adequately protect software

you must understand the techniques used by U
software pirates. One of the main
techniques is called "hand breaking of the U
protection code".

Breaking Code by Hand

Hand breaking of software is one of the
most powerful software copying techniques.
fhis technique can copy programs using
virtually any protection scheme and is
considered practically impossible to stop.
Breaking the code by hand is a Iso the most
difficult and time consuming copy technique
used, and requires advanced knowledge of
6502 assembler and software protection tech­
niques. The first step in using this
technique involves listing the BASIC code or
disassembling the machine language
program. A disassembler takes a program
(or section of a program) from disk, tape,
or memory and converts it into assembler
language. Convertin~ the machine language
into assembler language makes it much
easier to read and understand, but it is
sti 11 very difficult to find the protection
instructions.

Some disassembler and debugger
packages have advanced features which can
make the process easier. A string search
can be a great help in finding things like
disk reads or status checks. A string

-38-

U

U

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

r'i

r'i

search, searches memory (or disk, etc.) for
a selected number or string of numbers. A
sector editor lets you read a sector from a
disk and change the contents of it. A
tracer lets you follow the program step by
step. There are also many other utilities
and tools that aid the pirater in finding
and eliminating the protection techniques.

Once t he code is listed and the
protection steps found, the software pirate
makes a "fix" to the program to bypass the
protection. There are many ways to
eliminate the protection once the code is
found. Let' s say the program checks for a
bad sector in sector 700. One way to "fix"
this would be to make it read sector 1,000
(a sector that does not exist) instead. This
would return an error no matter what disk
it reads. Another way would be to jump
over the protection instructions, bypassing
the check altogether. Still another way is
to put a break in the code that would wait
for a keystroke before continuing. Then,
while running, the program would stop at
the break and pause until a key is hit.
This would give you time to turn off your
disk drive so that it would get a bad
sector status no matter what sector the
program reads.

Althol,lgh stopping an experienced and
determined software pirate who can break
programs by hand is extremely difficult. it
must be attempted because this kind of copy
is the most costly to sales. Once a program
is handbroken to eliminate the protection
techniques, anyone with a sector copier can
copy it. In other words, once broken, any

-39-

number of copies can be made very easily
and this unprotected pirated version can
spread through circles of pirates extremely
fast.

Hiding Protection Codes

Because haI:ld breaking of protection is
such a dangerous weapon in the pirate
arsenal, it warrants major measures to stop
it. The best way a software producer can
do this is by making it very difficult to
find and "fix" the protection code. This
section will cover ways of hiding the
protection code. This process disguises
portions of the program in order to lead the
would-be pirate astray and to make his job
much harder.

Protection code is best hidden in an
assembly language program, however, it is
possible to use some of these methods in
BASIC also. This section is geared mainly
to those who are familiar with assembly
language programming.

The first goal is to stop a simple string
search from finding your protection and to
prevent the disassembled program t s
protection methods from being obvious. A
good example to demonstrate this is in
checking for a bad sector. Normally, when
a program checks a bad sector, it would
call the CIO function of the operating
system. A simple assembly language
statement to do this is:

JSR $E453

-40-

u

u

u

u

u

u
u

u

U

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
,--

U

Chis instruction shows up as a series of
hexidecimal numbers in memory (which is
the machine language equivalent of the
instructions). A pirate searching for
instructions that check for bad sectors,
would see this instruction in the
disassembled code and immediately study it
to see if it is the protection code. The
techniques presented below show how to
hide this and other instructions so that
they don't show up in a disassembly or
string search. In general, these methods
create the instructions only after the
program begins executing. This process is
referred to as "self modifying code".

Self Modifying Code: There are many ways
to make programs self modifying. Perhaps
the simplest is by overlaying your
instructions. Using this method, the
program could have an innocent instruction
like STA $0000 that would be converted to a
disk read (a CIO call) after the program
begins executing. To do this, the program
could store the numbers representing the
disk access call (32,83,228 decimal) into
the memory locations where the STA $0000
currently resides. These store instructions
could be mixed in with other routines and
separated from each other to help hide what
they are doing. Only after the program
begins running would the innocent STA
instruction be transformed by the program
into the call CIO instruction. Using this
simple technique to disguise a few of the
protection instructions makes the pirate's
job a lot harder.

-41-

Another way to make your program's
protection harder to decipher is through
indirect addressing. Indirect addressing is
where the instructions point to an address
which in turn points to another address to
complete the instruction. Heavy use of
indirect addressing can help make the
program much more complex for the pirate.

A tricky method to have your program
create its own instructions is called
"adding instructions". As you know, all
instructions are stored in the computer as
binary numbers. There is nothing forcing
you to just move them to their locations.
The instructions can be created by adding
numbers together and st<;>ring them in their
proper locations. A variation of this would
be adding (or subtracting) numbers to
other instructions to transform them to new
instructions. In this way the code for a
particular instruction or address is not
even in the program until the instructions
which create it are executed.

Probably the trickiest and hardest to
decipher method of making self modifying
code is combining areas of memory or disk
sectors. This method uses two separate sets
of meaningless numbers and combines them
to create the program instructions. This
combination can be done by ORing, ANDing,
Exclusive ORing, etc. (these terms refer to
assembler language instructions). Let's say
for example, that two sectors on a disk
contain what appears to be meaningless
da tao The program could read them into
memory and then Exclusive OR (see glossary
for definition) them together to -create a

-42-

u

u

u

u

u

u

u

u

u

u

u

u

u

u··

u

u

u

u

u

u

u

~ , ,

whole sector of instructions atone time. To
use this method, the programmer must
carefully set the sectors up so that they
will combine to form. the proper
instructions. If you wish to get really
devious, you would disguise the
instructions that do the combining also.
Needless to say, these techniques make
finding the protection in a program much
harder for the pirate.

To the average reader it may seem that
the techniques presented above would
prevent anyone from deciphering and
removing the protection from a program. If
you believe this, you are underestimating
the skill and determination of advanced
software pirates. To discourage the true
diehards requires additional measures
'designed especially to wear, down and
antagonize your pirate adversary.

Layering Your Protection: This technique is
similar to methods used to keep prisoners
in jail. The bars on the cell represent only
the first layer of protection. The would-be
escaper must then get past the guards, get
out of the bu ildi ng and finally, past the
main wall. Software protection can use a
simila I' form of layering.

After the pirate breathes a sigh of
relief, convinced he has finally found and
disa bled the protection, it can be very
discouraging to find that the program still
won't run. Instead the pirate must deal
with layer 2 of protection. etc. A good way
to layer your protection is with
"checksums". Checksums refer to adding up

-43-

certain areas of memory and comparing
them to a stored value. To use this method,
you could add up the memory locations
which store your protection instructions and
store the number in your program. Then,
when the program runs, it could add these
locations and compare it to the number you
stored. If the pirate changes the protection
instructions, they would no longer add up
to the required number and the program
could bomb. In other words, this method
protects against someone changing your
protection code. Of course, the pirate could
then alter the checked value to reflect his
changes, but this would add a whole new
layer of protection which he would have to
disable. You should now be convinced that
hand breaking of your protection can be
made very difficult, but here is one last
technique to harass the pirate.

Wild Goose Chases: Different forms of this
technique have been used effectively for
centuries. It involves planting extra code
in your program to deliberately lead the
pirate on a wild goose chase. This could
also be used to disguise the program
furtJ-.er or just to lead the pirate astray.

Conclusion: All this probably seems like a
lot of work to protect your program, it is.
But, if it's any consolation, remember that
the pirate may have an even harder .time
deciphering your work than you had
creating it. Also, hiding the protection
code fights the most dangerous form of

-44-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

piracy. As stated earlier, if the protection
is removed from a program just once, that
copy can spread through the pirate
community at a very rapid pace. Again,
remember· that no matter how clever you are
in protecting your program, there will be
someone who c an break it.

-45-

u

u

u
CHAPTER 7

MISASSIGNED SECTORS

WHAT ARE MISASSIGNED SECTORS?

Misassigned sectoring is one of the most
powerful disk copy protection techniques \...J
a vailable today. There are very few people
and almost no utilities (short of major disk U
drive modifications) that can successfully
copy software protected by this method. U
Misassigned sectors (also known as custom
formatting or duplicate sectors) are sectors \...J
with incorrect sector I D da ta assigned to
them. This is a difficult concept, so I will U
start by explaining the normal disk format.

Each normally formatted disk has 40 U
tracks which are concentric circles or
bands of data (see diagram 7.1). Each u
track has 18 sectors on it arranged in
various orders, depending on the disk ~
drive. A track also contains a 19th slice
that serves as an index to define the start U
of each of the 40 tracks. (see diagram 7.2)
Each sector contains 128 bytes of user data U
that can be read and written through the
normal programming methods. U

In addition, each sector contains 44
bytes of ID data that can only be' used U
internally by the disk drive. This 10 data
is written and maintained by the drive's U
Floppy Disk Controller or FDC (the disk
drive's internal controller> and is the key U
to misassigned sectors. The 44 bytes
contain the following information: U

1. a sector number

-46- u

u

I'i

(j

()

~

~

~

(j

Ii

I'i

(j

(j

I'i

I'i

I'i

I'i

(j

I'i

I'i

I'i

I'i

Ii

(j

I'i

Ii

~

FIIURE z.a

fllURE 7.2

-47-

2. a track number
3. CRC's (cyclic redundancy checks)
4. a data mark
5. filler data
Misassigned sectors work by altering

the sector ID data in ways that cannot be
done on a standard 810 disk drive.
Normally, the sector and track numbers are
written when the disk is formatted and
cannot be changed. The CRCs are
automatically generated by the controller
during every write operation and are used
to verify the data when the sector is read
(it works much like a checksum). Similarly,
the data mark (normally a hex $FB) which
is used to mark the start of the user data
(the 128 bytes you are familiar with) is
created automatically by the controller.

There are three basic types of mis­
assigned sectors and all can be created by
changing selected parts of the sector ID
data. The types of misassigned sectors are:
forced CRC errors, bad data marks and
duplicate sectors. As their name suggests,
forced CRC errors are sectors in which the
CRC bytes do not match the data. ,Normally,
this would signal what is called a soft
error. When a soft error occurs, the system
reads the data again to see if it can get a
matching CRC. The disk drive does not
grind (as with bad sectors) but will
usually read the sector four times and seem
to s low down. A bad da ta mark is a data
mark other than the standard $FB and also
causes a soft error. Duplicate sectors are
the trickiest to use and detect. Normally,
the sectors on a track are numbered 1

-48-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

through 18, however, a disk using
duplica te sectors might have 2 sector 17' s
for example. When a track has more than
one sector with the same sector number, it
is referred to as a duplicate sector.

HOW MISASSIGNED SECTORS
PROTECT SOFTWARE

As with bad sectors, misassigned
sectors allow the program to identify the
original disk vs. a normally formatted copy
disk. But the misassigned sector can also
go further by causing copies to be missing
whole sectors of da tao

The program can check for the presence
of a CRC or bad da ta mark error in a
specific sector. If the error is not found,
the program would bomb because it knows it
resides on a copied disk (just like with
bad 'sectors). However, with both CRC and
da ta mark errors the data of the sector can
remain intact. This means that the program
can check the error and check (or make use
of) the data on the sector as well. Even the
most creative software pirate can't create a
sector with a bad data mark or CRC which
also has good data using a standard 810
disk drive. Figure 7.3 shows one way a
program can check the data on a sector as
well as its status.

Duplicate sectors are a bit harder to
understand, so here is a simple example of
how they might be used to protect a disk.
Say the original. disk is custom forinatted to
contain two sector 17' s. One of them has
data and one is all zeros. A simple way for

-49-

FIGURE 7'.3

18 REM 3UE ROUTINE TO CHECK DATA AND
STATUS OF A SECTOR ~~

28 REM
38 REM ~~ SET UP CALL-CIO ROUTINE ~~
48 FOR 1=1536 TO 1548:READ X:POKE I,X:
NEXT I
58 DATA 184,32,S3,22S,96
68 DIM A$(12S),B$(12S)
78 A$:- -:A$(12S)=- -:A$(2)=A$
S8 REM
98 REM ~~ SET DRIVE ~~
188 DRIVE=I:POKE 769,DRIVE
118 REM
128 REM ~~ SET CCH1AND TO READ ~~
138 RREAD=S2:POKE 778,RREAD
148 REM
1"58 REM ~ ~ SET SECTOR NlI1BER ~ ~
168 ? - WHAT SECTOR-;:INPUT SECN
178 POKE 77S,SECN-(INT(SEONV256)~256):
POKE 779,INT(SEONV256)
lS8 REM
198 RE11 ~~ SET ADDRESS TO READ ~~
288 ADRA=ADR(A$) :POKE 772,ADRA-(INT(AD
RA/256)~256):POKE 773,INT(ADRA/256)
218 REM
228 REM ~~ EXECUTE CALL -CI 0 ROUTINE ~~
238 Z=USR (1536)
248 IF PEEK(771)=1 THEN 278
258 IF A$(l,27)(>-SECTOR MUST HATCH TH
IS DATA- THEN 278
268 ? -PROGRAM RUNS BECAUSE SECTOR

I S BAD BUT DATA I S GOOD-: END
278 ? -PROGRAM COULD BOMB BECAUSE

SECTOR IS NOT RIGHT-:END

-50-

i

Ul
u

u

v·

u

u

u

u

u

u

u

u

u

u

u

u

v

u

u

u

u

u

the program to be sure it resides on the
orignal disk is to read sector 17 twice in a
row and compare the results. On the
original custom formatted disk, the first
read would get one sector 17 and the second
read would continue on the disk and get
the other. Comparing them would show they
are not the same, and the program would
proceed as normal. On a normally formatted
disk (with the program copied on it),
however, there is on ly one sector 17, so
reading it twice would get the same sector
both times. If the program finds the two
reads are the same, it could end or lock up
the keyboard, because it would know tl:1at
it resides on a copied disk. Figure 7.4
contains a simple BASIC program that can
check for a duplicate sector.

CREATING MISASSlGNED SEC rORS

Misassigned sectors. cannot be created
using a standard, unmodified 810 disk
drive. Although this makes the technique
harder for a small software writer to use,
it also means that this technique is very
difficult to break. Special hardware or
major modifications to an 810 disk drive
are needed to create misassigned sectors.
There are several advanced programming
systems costing anywhere from $225.00 to
$5,000.00 for the ATARI that have the
capability to create, or at least copy the
misassigned sectors. There are a few
companies that make inexpensive 810
modifications that allow this. See appendix
"A" for a partial list of companies that sell

-51-

FIGURE 7_4

18 REM ~~ ROUTINE TO CHECK MISSASIGNED
SECTORS ~*

28 DIM A$(128) ,9$(128)
38 A$(I,I)=-X-:A$(128, 128)=A$
489$(I,I)=-X-:9$(128,128)=B$
58 DRIVE=I:POKE 769,DRIVE
68 RREAD=82:POKE 778,RREAD
78 ? - WHAT SECTOR-;:INPUT SEeN
88 POKE 778,SECN-(INT(SECN/256)~256):P
OKE 779,INT(SECNV256)
98 REM
188 REM ~~ SET ADDRESS TO STORE FIRST

READ ~~
118 ADRA=ADR(A$) :ADRAL=ADRA-(INT(ADRA/
256)~256):ADRAH=INT(ADRA/256)

128 POKE 772,ADRAL:POKE 773,ADRAH
138 REM
148 REM ~~ CALC POKES FOR 2ED READ ~~
158 ADRB=ADR(B$):ADRBL=ADRB-(INT(ADRB/
256)~256):ADRBH=INT(ADRB/256)
168 POKE 772,ADRAL:POKE 773,ADRAH
178 REM ~~ SET UP CALL-CIO ROUTINE ~~
188 FOR 1=1536 TO 1548:READ X:POKE I,X
:NEXT I
198 DATA 184,32,83,228,96
288 REM ~~ EXECUTE CALL-CIO ROUTINE ~~
218 Z=USR(1536)
228 POKE 772,ADRBL:POKE 773,ADRBH
238 Z=USR(1536)
248 IF A$()8$ THEN 288
258 Z=USR (1536)
268 REM ~~ CHECK IF READS ARE EQUAL ~~
278 IF A$=9$ THEN PRINT -SECTOR WAS GO
OD-:END
288 PRINT ·SECTOR WAS MISSASIGNED-:END

-52-

u

u

v

u

v

u

u

u

v

v

u

u

u

u

v

u

u

u

v

u

v

v

hardware, services, or modifications that
can be used for rilisassigned or bad sectors.
One note to large scale software producers,
although misassigned sectors are tricky to
create in itially, most disl(duplicating
companies can copy them for you with no
problems. So this technique doesn I t slow
down large scale production.

HOW P I RATES COPY MISASSIGNED SECTORS

Since special hardware is needed to
create misassigned sectors, software
protected by this method is usually broken
by hand. In other words, manually
breaking the protection codes (see breaking
codes by hand in Ch apter 6). There a r.e
several special techniques that help in
hand breaking misassigned sectors. First,
the would-be pirate determines the location
of the misassigned and bad sectors. rhe
duplicate sectors can be found by writing a
program that reads all the sectors on a
track in different orders, and compares the
results. In other words, fir.st they may
read sector 1 and store it. Then read sector
1 again and compare it to what was just
stored. If they are different, this sector is
flagged as a duplicate sector.· Sometimes
the duplicate sectors are right next to each
other and ca n be mi ssed, so t he sectors
must be read in different orders to be sure
all the misassigned sectors are found. Also,
the program does a status check on bad
sectors to see if they have data mark or
CRC errors. Once all the misassigned
sectors are found, the program is disas-

-53-

sembled and debugged with the basic hand­
breaking methods discussed in Chapter 6.
Once again, note that breaking by hand
yields a program that is unprotected and
can be copied by anyone as many times as
they wish.

Another technique used to copy
programs protected with misassigned sectors
is by using special hardware or major disk
drive modifications. In this case, the
hardware enables the user to make an exact
duplicate of the original disk (misassigned
and bad sectors included). This technique
requires no special expertise by the user,
but yields an uncopya ble copy. fhis
technique makes an exact copy of the
original, so the copy itself is protected
from being copied. As mentioned earlier,
the special hardware can cost anywhere
from $225.00 to $5,000.00.

l'here is a Iso a techniq ue which is not
currently used but may be a vailable in the
future. A company whose name 1 won 't
mention, advertised that their utility will
copy all ATARl software available before it

specified date. They have not yet delivered
on their promise, but basically, their
technique is this. After someone laboriously
breaks each program by hand, the program
fixes are saved on disk. Next, a program
is written which identifies the program to
be copied by the location of bad and
misassigned sectors. So, when a copy is
made, the fixes are put in to make the copy
work. Essentially, they are selling the way
to break the protection techniques on
specific programs. fhis is close to selling

-54-

u

u

u

u

u

u

u

u

u

v

v

u

u

u

u

u

u

u

v

u

u

v

u

v

the program itself, but is a difficult thing
to prove in court. As stated earlier, the
company has not delivered on their promise
(and has essentially ripped off many
purchasers) but it will be interesting to
see what the legal consequences are if they
do.

PRO rECT I NG MISASSIGNED SECTOI~S

Protecting mi sa ssigned sectors is much
like protecting bad sector code. The major
threat here is that someone will break your
protection scheme by hand and distribute
unprotected copies which wi 11 spread
quickly through the pirate community. The
best way to prevent hand breaking of codes
is by using the techniques presented in the
previous chapter, Hiding Your Protection
Code. Hopefully, this will make it as
difficult as possible to break the code by
hand so that you will discourage all but
the most talented and diehard pirates.

-55-

CHAPTER 8

ROM AND EPROM CARTRIDGES

ROMs are Read OnLy Memories. As you
know. the ATARl operating system is on a
10K ROM board, and cartridge games are on
ROM chips varying from 4K to 16K. There
are two cartridge slots on the ATARl 800
and one on the ATAR 1 400 and 1200XL. The
right hand cartridge slot on the 800 uses
memory locations $8000 through $9FFF
(HEX). The left cartridge slot uses memory
locations $AOOO through $BFFF for 4K and
8K cartridges and $8000 through $BFFF for
16K cartridges. When a cartridge is
present, it will disable the I~AM (on a 48K
system) that uses the same addresses a s the
cartridge. At first glance, ROM cartridge
software is a na tural at being difficult to
copy since no simple duplicate tape or
sector copier would work here. However,
reading ATARI's technical user notes will
tell you most of what you need to know to
save the cartridge data to disk or tape.
There are also several programs floating
around that do most of the work for you.
Another way is by using an EPI~OM burner
tmore details on this later}.

ROM COpy fECHNIQUE

Essentially, to save a cartridge to disk or
tape, a program dumps the memory
locationf (where the cartridge is stored) to
the disk or ta pe. This da ta is then usually
converted into a binary load file (some

-56-

u

u

'0 1

I

v

v

u

u

'0

u

u

u

u

u

u

u

u

v

u

u

v

u

cartridge copy programs create these
automatically) and loaded using the binary
load option of DOS. Some programs also
need a special routine to clear out screen
memory before running. Although this
sounds complicated, keep in mind that once
properly saved to disk or tape, an
unlimited number of copies can be made,
just by using DOS, and these spread around
very fast.

PROTECTING AGAINST TECHNIQUE 1

The copy technique mentioned above was
effective on all cartridges up until about
the time AfARI came out with Asteroids and
Missile Command. Fortunately for cartridge
makers, a good technique to thwart this
copy method was found. This technique
works by storing numbers into the memory
locations where the program resides, which
make the program bomb (or cause some
error like a background with no player,
etc.). As you know,· you cannot store
numbers into a ROM (Read Only Memory) so
this process has no effect on the original
cartridge. However, since the copy is
loaded in from tape ()r disk and stored in
RAM, this technique will stop it from
running. Here is an example of how this
technique might be used. Note that this
example requires knowledge of assembly
language and so is geared toward the more
technically advanced user. Suppose that in
memory location $AOOS a]SR $CD (assembly
language statement meaning jump to
subroutine) is stored. Remember that $

-57-

means the number is in hexadecimal. This
command would be represented by a $20 in
location $A005, a $00 in location $A006 and
a $CD in location $A007. With this
instruction, the program would run
correctly. fo protect this program, one of
the instructions in the pr:ogram might store
zeros in location $A007, so that when it
reached this instruction, the program would
jump there and bomb. So if the program is
on a ROM cartridge, the instruction to store
zeros in location $A007 would be ignored
because you can I t store the numbers in
ROM, and the program would execute
normally. If, however, the program was
loaded into RAM from a disk or tape, this
store instruction would alter the program in
RAM and when it hit the j5R (jump to
subroutine) it would born b because there
would be no subroutine there.

Using this protection technique makes
copying the ROM cartridge much more
difficult because you would need a good
assembly programmer to find the instruction
causing the error. Of course, this methoc
can be made even more effective by hiding
the protection instructions. fhe techniques
to hide the instructions are very similar to
those used to hide disk protection ins­
tructions, and as always, the more
complicated and convoluted they become.
the better your chances are of them not
being broken.

ROM COPY TECHNIQUE 11

This copy method has some drawbacks

-58-

u

v

v

v

v

v

u

u

u

v

v

v

u

v

v

v

u

u

u

v

v

v

u

but, all in all, is the simplest and most
effective ROM copy technique being used by
software pirates today. fo explain this
technique, I will introduce a new term -
EPROM chip. An EPROM chip is an Erasable,
Programmable, Read Only Memory (also
PROM, Programma ble Read Only Memory
chips can be used but cannot later be
erased and revised). EPROMs are just like
ROMs except that the instructions can be
altered using a device called an EPROM
burner. [his, figuratively speaking, burns
instructions into the chip and makes it
operate just like a ROM. To erase an
EPROM, just put it under an ultraviolet
light and it is ready for reprogramming.
An EPROM burner with the proper software
can also read the contents of a ROM (or
EPROM, etc.) and store those instructions to
disk or tape. This permits one to strip off
the contents of a ROM cartridge and then
reproduce a duplicate EPROM or PROM
cartridge. This EPROM' will operate exactly
like the original. Even the protection
techniq ue mentioned above is totally
ineffecti ve against the EPROM copy. EPROM
burners range in price from $20.00 (in kit
form without. software) to several thousand
dollars, but one that would adequately do
the job for AT AR I cartridges would cost
about $120.00 to $200.00. That puts an
EPROM burner within the grasp of most
serious computer owners.

PREVENTING ROM COpy TECHNIQUE II

This is a good news/bad news situ-
~ ation. fhe good news is that to use an

EPROM burner takes a certain amount of

-59-

expertise not everyone has, and the cost
per copy can be quite high. For example,
for a two chip, BK cartridge, chips
themselves can cost between $3.00 and $9.00
and the board to mount them on can cost
$10.00 to $20.00, not to mention the cost of
the EPROM burner itself. fhe bad news,
however, is that for those with the time,
money, and expertise to make EPROM
cartridges, ther'e is no effective technique
to stop them currently available. Note
though that the cartridges made by this
method are exact copies, and so offer the
same level of protection as the original. In
conclusion, ROM cartridges remain one of
the best ways to di stribute your program
from a protection viewpoi.nt.

-60-

u

v

u

u

u

u

u

u

v

v

v

u

v

u

u

u

u

u

u

u

u

u

u

CHAPTER 9

HARDWARE DATA-KEYS

As its name implies, a hardware
da ta-key is a hardware device. It usually
plugs into the joystick port and can be
"read" by the computer like a joystick or
paddle. A hardware data-key accompanies a
program and must be plugged in for the
program to operate properly. Its sole
purpose. is to protect the program from
bei ng copied by software pirates. An added
function of the data-key could be toa llow
the purchaser protection of his files from
others. Fer example, if a data base
program is protected by such a I(ey, the
user can use the key to help prevent
unauthorized access to his files. Hardware
da ta-keys have the lJotential to be one of
the safest and best protection techniques
used. The purchaser can be allowed to back
up the program as many times as is
needed, but without the data key, copies
are worthless. This means that da ta-keys
potentially solve one of the biggest
problems with software protection because
they prevent copies from functioning for
pirates, but they allow the purchaser to
have functional backups.

Hew Data-Keys Protect Programs

The simplest way for hardware
da ta-keys to work is by having the
program check the value passed from the
key and compare it to a value stored in the

-61-

u

u

u

program. If the values passed from the key U
are incorrect (meaning no key or a
counterfeit key is present) the program U
bombs or self-destructs. A more complex
system might have the key pass several U
values or even use a few separate keys
p lugged into joystick ports or the serial U
interface port.

To have the program checked for the U
presence of the key is very simp Ie. Here is
an examt>le of a basic statement that will U
check for a simp Ie data-key:

IF PADDLE (1) NOT = 100 THEN NEW

If paddle (1) or a da ta-key pal:;sing in
equal value is not set to 100, then the
program will erase itself from memory. A
more complex key might require statements
like this:

10 IF PADDLE (0) 210 AND PADDLE (1) =
80 AND STRIG (0) = 1 THEN XX = 1

20 IF XX<) 1 THEN NEW

fhese statements would check a data key
for three separate values before allowing
the program to proceed. As you see,
...:hecking a da ta-key (in a joystick port) is
just like reading values from paddles and
joysticks, but a data-key can pass several
valucs a t once t ha t would be impossible to
duplicate with the standard controllers.

Bu i Iding Data-Keys

U

U

u

U

v

U

u

U

u

u

U

v

Construction of a da ta-key varies U

-62- U

depending on the desired functions. To
understand data-key construction, you must
understand how values are read from the
controller jack. Diagram 9.1 shows the pin
arrangement of a controller jack. As you
can see, the different pins can be used to
read separate values from whatever is
plugged into the jack. The joystick and
trigger pins can only be used for· a simple
on or off input, but potentiometer A or B
(the paddle inputs) can read a resistance
value between 0 and 228. Using all joystick
and paddle inputs together give a total of
1,611,504 possible combinations from each
controller jack. A typical data-key might
be two resistors encased in plastic and
attached to a standard joystick or paddle
plug (see diagram 9.2). These resistors
would act like a pair of paddles
permanently set to certain values. Wires
could be run to the joystick pins if you
wish to check for additional values from
the data-key. As diagram 9.1 shows, a
single joystick port can check many
separate values at the same time. For
added protection, the software could
require two or more data-keys plugged into
separate ports simultaneously. The key
should be constructed in such a way that it
is difficult to take apart and study.
Encasing the parts in plastic or a
permanently sealed casing is very good for
this. If mass produced, these keys should
cost under SOt to make. Keeping the cost
low is important, since these costs wind up
being passed on to the consumer.

-63-

FIGURE 9,1

Controller Jack Pin Functions

2 3 4

6 7 8 9

1) Joystick Forward 6) Trigger Input
2) Joystick Back 7) +5 Volts
3) Joystick Le+t B) Ground
4) Joystick Hi ght 9) Pot A Input
5) Potentiometer B Input

FIGURE 9.2

-64-

u

u

u

--
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

Copying Data-Key Protected Software

A single da ta-key is like a lock with
1,611,504 possible combinations. For a
pirate to determine the correct one by trial
and error would take years. fhis fact has
lead many to believe that the da ta-key is
an ideal solution to prevent piracy.
However, this logic has a serious flaw. It
is true that trial and error methods would
be futile, but a software pirate has an
easier way to break the code.

All the pirate has to do to determine
the proper combination of values on a
da ta-key is run a simple BASIC program
with the data-key plugged into a joystick
port. fhe program could easily read the
joystick and paddle values and display
them on the screen. This technique would
immediately give away the key's
combination. Fortunately, knowing the
combination alone is not sufficient to
produce working copies of the pwgram
because something is needed to pass these
values to the computer for each copy. The
pirate would either have to build his own
da ta-key or modify his paddle controllers
to also pass joystick values. Keep in mind
that a pirate could build one key with
switches on it that could be used on any
program requiring a da ta-key key of this
type.

Another possible way to copy a program
protected by a data key is by breaking the
code by hand (see chapter 6). Once again,
this menacing technique used by pirates
could yield a completely unprotected

-65-

program that could be copied with no need
for duplicate data-keys. The pirate would
find and remove the portions of the program
which check for the presence of the
da ta-key, then the program would run as
usual.

Preventing the Data-Key Copy Techniques

As mentioned earlier, most data-keys
can be simply decoded by a software
pirate, but he still must somehow reproduce
that key or change the software to bypass
the protection. Once again, hiding the
protection code is the best way to
discourage pirates from r.ernoving the
protection. In this case, well hidden
protection code is made more valuable by
the lack of easy alternatives available to
the pirate. No special hardware or software
is available which makes it easy to copy
software protected by data-keys. So,
anyone a ttempting to copy the software,
must have a good amount of technical
knowledge.

Hardware data-keys also have good
potential for improvement. If a simple and
inexpensive key is built that can accept a
signal from the computet' and respond only
after a certain time interval, it would make
the key much more difficult to copy.
Attempts by pirates to read the key' s
combination with a program would not work
because the key would not respond until it
got the proper input. An even more
promising techniq ue would be the use of a
microprocessor in the key. This would

-66-

u

u

u

u

u

u

u

u

u

u

v

u

v

u

u

u

u

v

u

enable the key to perform a complex
"handshake" type of communication with the
computer, and this could stop all but a
very few advanced software pirates.

Conclusions

The use of hardware da ta-keys for
software protection involves some
trade-offs. It does offer a relatively high
level of copy protection, but it adds cost to
the program and is disliked and
inconvenient for the purchaser. Your
decision on these trade-offs depends on the
particular product and market being
considered, but da ta-keys should not be
overlooked as a possible protection method.

-67-

u

u

u

u

CHAPTER 10 U

LEGAL PROTECTION TECHNIQUES U

There are three methods available to U
legally protect your program. Of course.
they do not s top someone from copying your U
programs. but they do give you legal
recourse should you find a company copying U
your ideas or bootleggers selling your
programs. The three methods are patents, U
copyrights and trade secrets.. Each has
various requirements and gives different U
a mounts of protection.

Patents. As of March, 1981, in the U.S.
Supreme Court decision of Diamond v.
Diehl', the U.S. Patent Office J:>egan issu ing
patents for software program inventions.
Before that time, the Office said that
software inventions were unpatentable. but
since then, several software patents have
been issued. These are the first patents
issued in the United States for software and
offer the opportunity for software writers to
license their software for income and get
the tax benefits of long term capital gains.

Basically, a patent is a contract
between the government and the inventor. A
patent gives the inventor the right to
exclude other members of the publ ic from
making, using or selling the invention. In
general, this right lasts for 17 years. After
this period the inventor is powerless to
exclude the public from using or selling the
invention.

fhe patentor must make public (in the

-68-

U

U

u

U

u

u

U

U

U

u

u

U

patent) enough information to enable one
with "ordinary skill in the art of
invention" to make and use the patented
invention. This is called the "enabling
disclosure", and its purpose is to enhance
the public's awareness of new inventions.

The patent for a software program
invention has three parts. The speci­
fication; a set of drawing figures, and one
or many claims.

The specification is the main body of
the text and explains what field the
invention is in and what problems it
solves. The specification usually emph­
asizes the advantage of using the invention
such as reduced costs, greater accuracy,
increased speed, or enhanced productivity.
It also describes how the invention
achieves these things and should teach the
readers a bout its use.

The drawing figure section has
drawings and charts which help the
specifications explain the invention's
importance. For software patents, this
section usually includes a listing of the
program and flow charts explaining it. It·
also contains other charts and diagrams
which help explain the originality or use of
the invention.

The claims section defines exactly what
it is the public is excluded from making,
using or selling. The claims should be a
clear and concise explanation that defines
the invention. The claims are what allow
the inventor to license others to make, use
or sell his invention. Also, they permit the
inventor to obtain licensing fees (royalties)

-69-

that are recorded as long term capital
gains and taxed at a lower rate than
ordinary income.

Almost anyone who writes software,
either independently or for a corporation,
could ~enefit from the new patent rules.
Keep in mind that only features of programs
and not the programs themselves are
patentable. Also, the feature must be new
and achieve advantages over currently
existing systems. fhe U.s. Patent Code
contains the exact criteria that determine
newness. Besides being new, the Patent
Cude states that it must be "non-obvious".
[f your idea has significant advantages
over current systems, it can be argued that
It is non-obvious.

Records showing when the idea was
conceived and when it was put into practice

. ,if it was put in to practice) must be kept.
All records should be properly witnessed
and kept safely. For more details on
patents, see the book, How to Protect and
Benefit from your Ideas which can be
ordered from the American Patent Law
Association, 2001 Jefferson Davis Highway,
.,\riingt<)n, Virginia. n002.

Copyrights. Sut'tware copyrighting is
anothel area that has become much more
effective in the past few years. The
boundacies and inlerpretatiun of the law
have been changing very fast. Basically,
software copywriting is very similar to
copywn ting books or songs. If you can
prove that someone is copying your

-70-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

copywrited program, you can stop them from
copying and recover damages. You are
eligible to receive statutory damages and
attorneys fees, even if you cannot prove
actual damages. If your program is
properly registered and your copyright is
in order, you can collect up to $50,000.00
in statutory damages. A copyright covers
anyone who sees the work and receives
proper notice. To give notice, just clearly
display the copyright in the program and
documentation. Under old copyright laws,
the work had to be published before it can
receive copyright protection, but now
copyright protection begins when the work
is fixed or completed. To apply for a
copyright, the work must be registered with
the copyrigh t office. You must send them a
copy of the source code and documentation.
I t is a Iso a good idea to send a copy to
yourself and a lawyer or friend by
registered mail. Leave these sealed so that
the date you did the work can be verified.

Copyrights have . proven themselves
effecti ve recently when MicroPro 1 nter­
national won a $250,000.00 suit against
Data Equipment Corporation. They claimed
that Data Equipment violated their
copyright by distributing unauthorized
copies of their programs to customers. In·
another case, ATARl was able to show a
copyright violation, even though the
program had been completely rewritten. The
court decided that K.C. Munchkin (North
American Phillips Company) was close
enough to Pac-Man to be a copyright
violation, even though it was by no means

-71-

an exact copy.

Trade Secrets. A trade secret is defined
as something of value that gives the owner
an edge over the competition. It is
generally something not known to the
public. A trade secret can be ideas,
know-how, software or even just information
that the owners can benefit from. The
formul" for Coca Cola or McDonald I s recipe
for french fries are examples of trade
secrets. Trade secrets are usually state

protected as opposed to patents and
copyrights which are protected Federally.
This means that laws pertaining to trade
secrets can vary from state to state.
Fortunately, all states afford some
protection to software under the laws that
govern unfair competition or breach of a
confidential relationship.

To claim someone violated your trade
secret, you must show that they disclosed
or used the information which they agreed
to keep confidential. If a third party gains
knowledge of your· information and the
information is not part of a confidential
agreement, you cannot stop or seek damages
from the third party. In other words, trade
secret protection can be used against
another party provided they agree to keep
your information confidential.

Conclusions. The legal protection
techniq ues c an offer you compensation
should you find your program being pirated
or copied. One great problem, however, is
finding the bootleg copies. Someone

-72-

u

u

u

u

u

u

u

u

v

u

v

u

u

u

u

u

u

u

u

v

advertising your software in a national
magazine may be an easy target, but try
finding the 14 year old kid who makes a
copy for a friend. Even if you could find
him, would you want to prosecute a J4 year
old? If so, how much do you think you can
col1ect? In conclusion, legal protection
techniques are good protection against
another company attempting to profit from
your programs. For this, I highly
recommend their use, but keep in mind that
they do little to stop the vast majority of
small-time software pirates.

-73-

CHAPTER 11

COERCIVE PROTECTION TECHNIQUES

In this day and age, most would agree
that the best protection methods are ones
that physically prevent copying. The
majority of this book deals with these
methods, however, another major area of
software protection exists. This
miscellaneous group of techniques hope to
prevent illegal copying in a number of
ways. I refer to these as coercive
protection methods since most try to prevent
piracy through psychological means. Some
have had a good deal of success and are
certainly worth using in addition to the
"real" protection methods.

Serial Numbered Software

Serial numbered software is software
that has serial numbers in the code. The
serial numbers are registered to the
purchaser either at the time of sale or
when the purchaser sends in his warranty
or registration card. The numbers are used
to identify the source of bootleg copies of
the program. If a pirated copy of the
program is discovered, the serial numbers
should lead you back to the original
purchaser. By telling the purchaser (in the
documentation or program) that he will be
responSible for pirated copies found with
his serial numbers, he is hopefully
discouraged from allOWing the program to
be copied. The use of this' technique to

-74-

u

u

u

u

u

u

v
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

discourage software piracy has met with
some success. I know of cases where even a
hard-core pirate would not let some of his
serial n umbered software be copied.

The serial numbers should be displayed
and also hidden in the software to be
effective. It is relatively easy for a pirate
to delete the displayed numbers, but the
hidden and/or encoded serial numbers
would be difficult to find. Probably the
biggest problem with this method is
registering the purchasers to the software.
You can be sure that a pirate intent on
spreading copies of the software won't send
in a registration card. The manufacturer
can keep track of those copies shipped
directly to the purchasers, but it is nearly
impossible to keep track of all copies sold
retail or through large distributors. You
may try to induce the purchaser into
registering by offering future updates or
enhancements, but even honest purchasers
frequently neglect warranty and
reg istra Hon cards.

Protection Through Intimidation

In this technique, the program and
documentation contain warnings to the user
usually saying that this program is
copywritten and that unauthorized copiers
will be prosecuted. The documentation can
remind the purchaser that pirating is
punishable by up to $50,000.00 in fines and
5 years in prison. Sometimes software
manufacturers go as far as to say that
a ttempts to copy their programs may cause

-75-

damage to the program or the copier's
computer. This can backfire though because
if the purchaser's computer does break, he
may believe that your software is to blame
and cause problems for your company. In
general, pirates draw the line at selling
bootleg programs, but don't fear the
consequences of making free copies for their
friends.

Self-Destructing Code

Self-destructing code is used mainly for
business software when the seller wants to
allow the potential purchaser to try the
program before buying it. The program is
set up to run only a given number of times
and then it automatically self-destructs
(erases or formats itself). The idea is that
the user will try the program and like it
enough to buy it, but if he tries to keep
the sample without paying, the program
will self-destruct. Another use of
self-destructing code is to make copies that
a ppear to work, but after several uses, the
copy self-destructs.

This method is best suited for disk
software and is relatively simple to
implement. Essentially, the program
updates a counter on the disk each time it
is used, and formats itself when t he limit
is reached. Of course, the program must
check to be sure that the disk is not write
protected, as this would stop it from being
able to format or update itself. Writing a
sector then checking the status is all that
is needed to check for write protection.

-76-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

v
v
,

U
,

U

U

u

u

Then, if the status is bad, the program
should end and display a message telling
the user to remove the write protect tab
before running.

Unfortunately, there are loopholes in
this method. If the user can copy the
program, he could save one with several
uses left (before self destruction). Then
only run copies of this disk, and when they
near self destruction, he could just recopy
his saved disk again, ad infinitum. I don't
recommend this method because even a
legitimate purchaser can inadvertently
destroy his non-write protected disk.

Freeware

Freeware is a unique marketing concept
invented by Andrew Fluegelman of Tiburn,
California. Essentially, he gives his
products away free and actively encourages
you to make copies for all your friends.
The catch is that the first thing you see
when you run the programs is a notice
asking for a $25.00 contribution if you like
the program. Since you are under no obli­
gation to make a contribution, he relies on
the good faith he has created by giving
away the program and on the guilt feelings
he can inspire with the notice at the start
of the program.

Fluegelman has three basic principles
of freeware, they are:

1. The value and utility of software is
best assessed by the user on his/her
own system. Only after using a
program can one really determine

-77-

whether it serves personal
applications, needs and techniques.

2. The creation of independent personal
computer software can and should be
supported by the computing
community.

3. Copying and networking programs
should be encouraged, rather than
restricted. The ease with which
software can be distributed outside
traditional commercial channels
reflects the strength, rather than
the weakness of electronic
i nforma tion.

If the freeware concept is to be used,
certain legal precautions should still be
taken. The program should still be
copyrighted to prevent others from selling
it, but you should probably issue a limited
license in it that allows the reCipient to
use and copy the program for others,
provided that they do not change the notice
asking for contributions. The legal
conseq uences are not certain, so caution
should be taken in this form of marketing.

The real question regarding the
viability of the freeware concept pertains
to its profitability. Fluegelman claims that
about 2/3 of the people sending him a
blank disk and requesting his program,
end up sending the contribution and he
estimates a bout 15% of the people who
recei ve the program second hand do the
same. Depending on the size of the market,

-78-

u

u

u

u

u

u

u

v

u

u

u

u

u

u
u

u

u

u

this could be a significant income and
would easily ri val that of protected
programs after pirated versions have
spread. However, many experienced
software producers are skeptical of
Fluegelman's claims a nd believe the concept
has no future. Undeterred, Fluegelman
plans on continuing and expanding his .line
of freeware products. Anyone wishing more
information on freeware can communicate
with Andrew Fluegelman and can reach him
c/o The Headlands Press, Inc., P.O. 862,
Tiburon, California, 94920. His compuserve
ID is #71435,1235.

Selling Unprotected Software

Several companies (mainly supplying
Apple software) advertise their software as
being unprotected, and/or modifiable by the
user. Some take the view that pirates
cannot be stopped, so why waste time
protecting your programs. Others use this
as a marketing technique to encourage
sales. Some just wish to allow users to
make back-ups of their programs. There are
also several variations of selling
unprotected software. Infocomm sells
minimally protected software but sells some
of their programs with extensive and well
done documentation packages that some
people buy even if they can get a copy of
the software free. Other companies just
plead with the purchasers not to copy their
software by explaining the amount of work
that went into· making it, etc.

The success of selling unprotected

-79-

software is difficult to gauge. but some
companies claim that they increased sales
by advertising that their software is
unprotected. This also offers a marketing
opportunity for those who a re not willing or
capable of protecting their software.

One sure way to make your profit even
writing completely unprotected software is
to write for magazines. You get paid for
the article and program and do not have to
worry about copying. This is also good for
programs without the market potential to
warrant spending money on a sales
promotion, and it can help build a
programmer I s reputation. Computer
magazines currently pay about $50.00 -
$120.00 per page for articles and programs.
and offer a software writer aO good way to
get started without the worries of
production and marketing.

-80-

u

u

u

u

u

u

u

v

u

u

u

u

u

u

u

u

u

u

u

u

u

u

,-"

CHAPTER 12

RECOMMENDED METHODS OF PROTECTION

The protection methods you choose are
dependent on many factors. These factors
include your intended market, the price of
your product, expected sales volume, your
methods of marketing your product, and
your personal tastes and preferences.
However, certain techniques stand out as
being more secure and have advantages if
they meet your particular needs. Most often
a combination of techniques is best. Legal
methods such as copyrights and cohersive
methods like serial numbered software can
be combined with physical protection
methods like bad sectoring and hidden
directories. This section will discuss the
best of these physical protection methods.

Currently, one of the most secure
methods to sell your software is on ROM
cartridges. Although they can be copied by
EPROM burners, this copy technique is
expensive and creates copies that are as
protected as the originals. Also, if the ROM
cartridge protection techniques (explained
earlier> are employed, then about the only
way to make copies (without an EPROM
burner> is to break the protection code by
hand. Using this ,method also reduces the
problem of having to provide back-ups
because of the high reliability of the
ROM's, and don't forget that the market for
the cartridges is potentially larger than
that for disks. Keep in mind, however, that
ROM cartridges pose certain restrictions.

-81-

The program must fit in 16K of memory and
your expected sales volume must be quite
large, to offset the high production costs.
If you can handle these restrictions without
significantly downgrading your product, I
believe that ROMs are an excellent
distribution method from the standpoint of
protection.

If you do not wish to fit your programs
on 16K or do not like ROMs for other
reasons, I believe misassigned sectors is
the next best alternative. Although the cost
of special hardware to pirate software
protected with misassigned sectors is
coming down, and its availability is going
up, it is still better than most other
alternatives. Keep in mind that people who
pirate programs using special hardware,
create copies that are still protected.

Next down the line I would place bad
sectoring. There are many people who can
copy programs protected by bad sectoring,
but it is better than nothing and relatively
easy for the software producer to use. If
this method is employed, the bad sectors
should be scattered. around the disk to help
discourage people from copying it. Also, be
sure the program only checks for one or two
bad sectors, because any more, and the
disk will load very slow and can really
bother the purchasers.

Probably the easiest to use protection
method is to hide the disk directory and
wipe out the VTOC. Although this only stops
the very novice copiers, it is the easiest
way to create and reproduce disks for a
small software maker since no special

-82-

01
u

u

u

u

u

u

u

u

v

u

v

u

u

u

u

u

v

u

u

u

u

hardware or hardware adjustments are
needed. Also, this technique at least helps
prevent others from selling your program
with just minor modifications.

The hardware data-key can be somewhat
effective if used with a combination of
other methods, but they add cost to your
program and create an inconvenience for
the purchaser. If your program is so good
that you feel your purchasers will not mind
the extra cost and inconvenience, then
hardware da ta-keys offer a relatively good
degree of protection for your software.

As stated earlier, a combination of
legal, cohersive and physical protection
techniques is probably your best solution,
but there are certainly cases where it is
very desirable to allow the purchasers to
copy, list and even modify your code. Don't
forget a bout the possibility that by
modifying your program, others may market
it under their own name with minor
modifications.

There is a major warning that should
be given at this point. Some of the most
well protected programs created are in
widespread circulation among the pirate
community because of internal company
leaks and unprotected copies given to
dealers as demos, etc. By giving a dealer
an un protec ted copy a sad emo , software
producers are defeating their own
protection schemes. These copies inevitably
wind up in the hands of a software pirate
who distributes them. Many of the best
protected programs become available to
pirates from this source.

-83-

Another way for a company to defeat its
own protection methods is by software
leaks. Many companies (most notably Atari)
have inadvertently allowed unprotected
programs (some still under development) to
leak out through their employees or
visitors. One well known case was Atari I s
Centipede which was easily available to
many pirates on unprotected disks almost a
year before Atari I s official release of the
cartridge. The point is - don I t make it
easy on pirates by releasing unprotected
versions to anyone, and be very careful
about internal leaks.

-84-

u
,-

U

u

v

/

U

u

u

u

v

u

u

u

v

u

u

u

v
--

U

CHAPTER 13

THE FUTURE OF SOFTWARE PROTECTION
AND PIRACY

Predicting the future is always hard,
but given the size and scope of the piracy
problem, you can be sure that many new
protection schemes will be developed and
used.

One area which has future potential is
hardware data-keys. Although the current
ones are not very effective, with the cost of
chips falling, you will eventually see
cheap mass-produced data-keys which can
give a high amount of protection. The
da ta-keys of the future may be
microprocessors that have a complex
handshake signal with the computer that
can be very hard to break. Data-keys or a
new generation of ROM cartridges could
contain memory and even their own
microprocessors that would perform some of
the work needed by the program. These
steps would make the programs extremely
difficult to copy.

Some of the new micro and mini
computers (like Apple's LISA) contain
serial numbers built into the hardware,
which can be checked by the software. Thi s
means that programs could be set to run
only on a specific machine. Serial numbers
are widely used in large main frame
computer systems and will probably become
a vailable in smaller machines. Although
tm.s technique seems to have great promise,
there are problems with it. First, it is not

-85-

necessarily in the interest of micro
manufacturers to use this method since they
benefit from having a lot of cheap software
available for their computers. Secondly, the
software still can be hand broken to ignore
the serial number, and lastly, this method
is not very good for mass marketing items
like games because each piece of software
must be coded with the purchaser's serial
number at the time of the sale.

The future will also see new directions
in dealing with the piracy problem. We may
see such a large market for software that it
could be distributed so cheaply (much like
paperback books) that it pays to buy
originals just for the convenience. The
software could be broadcast over radio or
cable rv channels for a low enough price
that it would be bought rather than copied
(most people purchase cable TV service
even though they can have friends record
the shows for them). Another area that may
grow is data base software. This is
software that is a vaila ble only on an info
service (like Source or Compuserve). The
future may see fiber optic links giving
such fast response that even certain arcade
type games are possible on these systems.

Other changes may come in the legal
area. There may be a significant
strengthening of the laws dealing with
software, and possibly a crack-down on
pirates. The whole field of software
production on micros will see significant
changes along with the changing computer
environment. The best a software producer
can do is stay up with the most current

-86-

u

u

u

u

u

u

v

v

u

u

v

u

u

v

u

u

u

v

copy and protection techniques and hope to
stay ahead of the game.

Although the information above points
to a brighter future for software producers,
keep in mind that pirates are not standing
still either. Falling· hardware prices have
put sophisticated equipment to duplicate
tapes, disks or cartridges within the reach
of the slightly well-to-do pirate. In fact, a
few hundred dollars can buy pirates the
eq uipment to make exact copies of any
tape, disk or cartridge currently
available. Also, the ranks of the pirate
groups are growing fast. Many loosly knit
pirate clubs have contacts all over the
country, meaning that bootleg software can
spread even faster than most producers can
make it. Even people with no connections
can pick up any computer magazine and
find ads for utilities that can copy most
currently used tape and disk protection
schemes (except misassigned sectoring and
a few others).

Other specters will emerge in the near
future also. The AfARl 1200XL allows users
to change the operating system, meaning
that advanced programmers may come up
with a way to dump memory to tape or
disk, after a program has been loaded, and
the protection checks are done. This also
offers the opportunity to copy ROM
cartridges and alter the operating system
to make them run properly from RAM.
Although the 1200XL makes these .methods
easier, they can be done on an ATARl 800
with hardware modifications.

And so the battle goes on. Software

-87-

producers and pirates will continue to
advance their arts with neither being the
clear victor. Only by actively using state
of the art protection methods can software
producers hope to stay ahead. I am
confident this book can help you achieve
that goal.

-88-

u

u

u

u
/

U

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

v

~ APPENDIX A

~ Companies selling hardware and/or services
to create or duplicate protected disks,

~ cassette, EPROM and ROM

Ii ALF COPY SERVICE
1448 Estes

Ii Denver, Colorado 80215
(303) 234-0871

Ii Disk duplication or service for Atari, Apple
and TRS 80

ALPHA SOFTWARE PROTECTION CONSULTING
Ii 4435 Maplepark Road

Stow, Ohio 44224
Ii Service specializes in protection techniques

including bad sectoring and misassigned
Ii sectoring. Also disk duplication service.

Ii CAMELON COMPUTING
Department of Physics & Astronomy

Ii Box 119A
Dickenson College

~ Carlisle, Pennsylvania 17013
(717) 245-1717

~ ROM and EPROM cartridge boards

Ii EASTERN HOUSE
3239 Linda Drive

~ Winston-Salem, North Carolina 27106
(919) 924-2889

Ii EPROM burners, software, cartridge boards
and cases.

-89-

ELCOMP PUBLISHING, INC.
53 Redrock Lane
P amona, California 91766
(714) 623-8314
EPROM burners and boards for cartrige
production.

EXPANSION PRODUCTS CO.
P.O. Box .+217
Mountain View, California 94040
Tape duplication, disk duplication service.

HAPPY COMPUTING
P.O. Box 32331
San Jose, California 95152
(408)251-6603
Sell~ inexpensive disk drive modification
packages "and software capable of creation
and duplication of disks with bad and/or
misassigned sectors.

HONEYBEAR SOFTWARE

u

u

u

u

u

u

u

u

u

u

u

v

Ed Stewart, Programmer/Consultant U
1840 Orchard Lane
Akron, Ohio 44312 U
(216) 877-4166
Consultant for creation' and distribution of U
software.

L. E. SYSTEMS, INC.
8642A Spicewood Springs Road #532 U
Austin, Texas 78759
(512) 258-3828 or 258-0867 V
Hardware supplies for professional Atari
custom disk production, including U
misassigned and bad sectoring, etc. Also
hardware for large scale duplication of U
custom disks in quanity.

U
-90-

v

~ MICROSETTE COMPANY
475 Ellis Street

~ Mt. View, California 94043
(415) 962-0220
Cassette duplication service

MPC PERIPHERALS CORPORATION
9424 Chesapeake Drive
San Diego, California 92123
(714) 278-0630
Cartridge EPROM burners/software

RECORDED PUBLICATION LABORATORIES
1100 State Street
Camden, New Jersey 08105
(609) 963-3000
Disk copy service

-91-

GLOSSARY

Back-Ups: A copy of a program kept for
safekeeping In case the original is
aCcidentally damaged, lost or destroyed.

Bad Sector: A sector on a disk that cannot
be read without errors.

Bomb: When a program stops functioning
TillIS can result in a locked .keyboard,
etc.). Other similar terms include: crashed,
blow-up, abended, died, blew.

Breaking by Hand: Refers to copying
protected software by manually determining
the protection scheme and changing the
program to remove it or bypass it. This
usually involves LISTING or disassembling
the program.

Breaking Software: The act of duplicating
protected software. You figuratively break
the protection code.

Code: Refers to the program, commands or
instructions (in any programming
language). Writing a program is often
referred to as coding.

Coercive Protection Techniques: Protecting
programs by trying to convince people not
to copy them.

Controller Jack: The socket where the
joystick or paddle is plugged in.

-92-

Copy Protection Method or Technique: A
method used to help prevent people from
duplicating software.

Data-Key: See Hardware data-key

Disassembler: A program that reads machine
language data and converts it to assembler
code that can be more easily understood.

EPROM: Erasable programable read-only
memory. Can be used to make or duplicate
cartridges.

Exclusive OR's: Comparing
numbers and putting out a 1
the numbers compared is a 1
is a o.

two binary
only if one of
and the other

Freeware: A unique marketing concept
where programs are given away but a
contribution is asked for.

Han"d Breaking Software: See breaking by
hand.

Hardware-Data-Ke~: A device used to
prevent a copie program from running.
Usually small and fits into a joystick port.
Usually must be plugged in for the program
to run properly.

Joystick Port: See controller jack.

Legal Protection Techniques: Using the law
to protect your programs.

-93-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

Pirate: Someone who tries to illegally copy
software.

Pirating: The" act of duplicating software
for illegal use or distribution.

Producers: See software producers.

RAM: Random access memory.

ROM: Read only memory.

RPM: Revolutions per minute. An Atari
disk' s normal speed is 288 RPM.

Sector: A 128 byte area of a disk. There
are 18 sectors on a track and 720 sectors
on a disk.

Software Pirate: See pirate.

Software Producers: People who write,
manufacture or finance software.

Track: A complete circle on a disk. There
are 40 tracks on a disk and 18 sectors in a
track.

User: Anyone who uses the program or
computer service.

Write-Protect: A m~thod to prevent accident­
ally writing on a disk or tape. If the notch
on the right side of a disk is covered, the
disk drive will not write to the disk.

-94-

NEW RELEASE
ATARI SOFTWARE PROTECTION TECHNIQUES

BOOK " + DISK " - Advanced Software Protection

Also written by George Morrison

For those who have this book and wish to continue and learn more
about Software protection and back-up methods, this ALL NEW sequel
brings you the latest innovations in this fast moving field. It
explains the new protection methods used by such companies as
Synapse* and Electronic Arts*. It also includes complete reviews and
explanations of products such as;

The Happy Enhancement*
The Impossible*
The Scanalyzer

The Chip*
The Pill + Super Pill*
many others

Explaining specifically what they copy, what they won't, how they
are used, and the details of how they work. Book /I also includes
such topics as;

transmitting protected programs
copying disks with more than 19

sectors/track
data encrypt ion

phreaking methods
Program worms

logic bombs
bank-select cartridges
Random Access codes
new trends in software law

sample BASIC + Assembler programs
on-line security

The Advanced software protection disk (included with Book II)
contains more do-it-yourself protection and analysis programs
including;

automat ic program protector
custom format detector
newest protection demos

forced password appender
data encrypter

and more

Check your local computer store or order directly from Alpha
Systems

* denotes products and companies not related to Alpha Systems.

ALPHA SYSTEMS
4435 Maplepark Road

Slow. Ohio 44224

	Cover

	Contents
	Introduction

	General Protection of BASIC programs

	Cassette Protection

	General Disk Protection

	Bad Sectoring

	Hiding Protection Code

	Misassigned Sectors

	ROM and EPROM Cartriges

	Hardware Data-Keys

	Legal Protection Techniques

	Coercive Protection Techniques

	Recommended Methods of Protection

	The Future of Software Protection and Piracy

	Appendix: Companies selling harware/services for protection
	Gloassary

