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Preface

Practice may or may not make perfect, but physics
without practice is sterile. The laws of physics tell us how
the universe works. To truly understand these laws we must
see them at work. We must see, for example, how the laws
of motion and the laws of universal gravitation combine to
generate the elliptical paths of the planets. Without this
confirmation, the laws of physics are just the laws of physics
and not the laws of nature.

The basic laws of physics are not particularly difficult
to understand. However, their application to anything but
the simplest situation is difficult. To determine the plane-
tary orbits, for example, we must solve a pair of coupled,
nonlinear, second-order differential equations. Although a
mathematical solution to these equations is difficult, a
numerical solution is straightforward. Furthermore, the ease
of obtaining a numerical solution is more or less indepen-
dent of the nature of the forces, or, for that matter, the
nature of the physical situation. We may apply the same
numerical methods to projectile motion, planetary motion,
space travel, harmonic oscillators, radioactive decay, foxes
eating rabbits eating grass, and many others.

xiii
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While numerical solutions are straightforward, they
present two problems: They are tedious and difficult to
interpret. Now the computer can surely remove the tedium.
Computers thrive on tedium. When the computer is pre-
sented with a long repetitious task in arithmetic you can
almost feel it quiver with excitement as it nervously awaits
your command to begin.

But once the computer has determined the numerical
solution, you find it has created a monster. You are deluged
with a mass of data and must cope with the second problem
generated by numerical solutions. How do you interpret all
those numbers? The most satisfying answer is graphics. If
it is a trajectory, then draw it. If not a trajectory, then find
some way to plot the results: Number of radioactive parti-
cles as a function of time, position as a function of time,
slope as a function of displacement, number of rabbits as
a function of the number of foxes, and so on. A thousand
pixels of graphics are worth a million numbers.

There are a variety of computer languages that are
capable of generating graphics. As of this writing, Logo is
the most flexible in this application and the easiest to learn.
It is the most flexible because of its extensive graphics vocab-
ulary. It is the easiest to learn because it allows one to com-
municate with the computer in much the same way people
communicate with each other. Logo is a procedural (or
modular) language. It permits one to define new words
which then have the same status as the fundamental com-
mands built into the language. These new words may be
executed by themselves or as part of another procedure.
“Words” are not bound irrevocably into “sentences” as in
BASIC.

Language has an important effect on our powers of
reason. Sometime when you are mulling over a problem,
stop for a moment and notice how your thought process is
carried by language. Try to think without using words. The
fact that the Logo language structure is close to conventional
language structure is a considerable asset.

It must be pointed out that this is neither a Logo man-
ual nor a physics text. Rather, some previous exposure to
Logo is presumed and, at the very least, a physics text shoud
be available for consultation. While an effort has been made
to include in each chapter a discussion of the relevant phys-



Preface

ics, there are wide gaps which can only be filled by a miore
comprehensive treatment.

The prerequisites for this book are minimal. Some trig-
onometry and a little algebra are necessary. However, the
chapters are graded in order of mathematical difficulty. The
earlier chapters assume less sophisticated programming skills
and mathematical background. In fact, much of this early
material was used in a pilot program with fifth- and sixth-
grade school children.

Since their invention, high-speed computers have been
used by scientists to solve problems that are too difficult to
solve by normal methods. The languages that have been
used to communicate with the computer were not easy to
learn or use. With the advent of Logo it is now possible for
anyone to speak with the computer. I would not like to
represent this book as a revolutionary approach to the study
of physics; it is quite traditional. In each chapter some phys-
ical principles are described and a problem is presented for
solution. A method for its solution is then demonstrated,
and, in conclusion, additional problems are posed to allow
the student to test and expand his or her grasp of the subject.
The only novelty in our presentation is the level at which
the student is introduced to the computer. Ten years ago,
only graduate students of physics were taught programming
techniques. Today, every engineering student is introduced
to computer programming. With the advent of simpler
computer languages, it is time to offer this capability at an
even earlier level. I recall when I was a lad in high school,
hearing of some very bright person who had studied “THE
CALCULUS” in college. Knowing “THE CALCULUS” was the
trademark of great intellect. Today we teach calculus in high
school.

We do not want to replace analytical methods with
numerical methods. Analytical methods must remain the
primary goal in any scientific discipline. Certainly the sub-
ject of free fall in a gravitational field is easily dealt with by
algebraic means. If the student has the algebraic back-
ground, this should be the tool of choice. The purpose of
introducing free fall in this book is to allow students without
the necessary algebraic skills to solve such problems and to
use this simple problem as an illustration of the basic algo-
rithms for generating a solution in Logo. These same tech-

Xv
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niques will later apply to more complicated problems where
algebraic methods are inadequate.

The primary objective of this book is to demonstrate
that any person with a curiousity about the laws of nature
may solve a wide variety of problems using Logo to over-
come the mathematical hurdles. Logo can be for the novice
what FORTRAN is for the professional. The subjects dealt
with here only scratch the surface and we hope our readers
will be inspired to explore the laws of nature with the reas-
surance of having a turtle at their command.



Notes to the User

Not all versions of Logo were created equal. The Apple
and IBM Logos lack multiple turtles (sprites). Atari Logo
has multiple turtles but lacks a TOWARDS command.
Commodore and Sprite Logos have sprites and a TOWARDS
command but lack a WINIDOW. Terrapin and Krell Logos
lack both sprites and a WINDOW. The Radio Shack and TI
Logos are not suitable for our application because they employ
only integer arithmetic, or lack trigonometric functions, list
processing, or all three. No Logo can be all things to all
persons.

It is possible to write Logo procedures to supply some
of the missing primitives. We may write a TOWARDS pro-
cedure for the Atari Logo which works in precisely the same
way as the TOWARDS command in Apple or IBM Logo.

Simulating multiple turtles is not quite as straightfor-
ward. We have included an ASK procedure for the Apple
and IBM Logos which is similar to that for the Atari and
Commodore Logos.

The procedures TOWARDS and ASK are listed below.
It is not important that you understand the programs, only
how they are used. If your version of Logo lacks either, it

xvii
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will be essential to store the missing command on disk or
tape and load it into memory whenever the project requires.
These procedures are slower than their machine language
counterparts, but they will suffice. Generally speaking, speed
is not a problem with the projects included in this book.

The syntax used in this book is LCSI (Logo Computer
Systems Inc.). All major programs have been translated into
the MIT syntax and appear in Appendix B.

TOWARDS A

xviii

The following TOWARDS procedure is a modification
of a program written by Harold Abelson of the Massachu-
setts Institute of Technology. It will be a necessity for all
users of Atari Logo.

The effect of the command TOWARDS (position) is
to output the heading of the turtle when facing the input
position. For example:

SETHEADING. TOWARDS [30 401

will direct the turtle toward the point whose x and y coor-
dinates are 30 and 40 respectively.
As a second example, if the turtle is home and we call

PRINT TOWARDS [30 401

the heading of 38.87 is printed on the screen.
Incidentally, the TOWARDS procedure also gives you an
ARCTAN procedure as well.

TO TOWARDS :POS

OP TOWARDS1 ( ( FIRST :POS ) - XCOR ) ( ( LAST :POS
) - YCOR )

END

TO TOWARDS1 :DX :DY
OP TOWARDS3 :DX :DY TOWARDSZ ABS :DX ABS :DY
END

TO TOWARDS2 :DX :DY

IF :DX = 0 [OP 01

IF :DY = 0 [OP 901

OP ARCTAN ( :DX / :DY )
END

TO TOWARDS3 :DX :DY :ANG
IF :DY < 0 [MAKE "ANG 180 - :ANGI
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IF :DX < 0 [MAKE "ANG 360 - :ANG]
OP :ANG
END

TO ARCTAN.RAD :X

MAKE "X2 X * X

IF :X > 1 [OP 1.,5707963 - ARCTAN.RAD ( 1 / :X)1

IF :X < -1 [OP -1,5707983 - ARCTAN.RAD ( 1 / :X}1]

OP :X % ( 0.,999866 + :X2 % ( - 0.,3302085 + X2 *
0.180141 + :X2 % ( - 0.,085133 + :XZ % 0,0208351 )
Y ) )

END

TO ARCTAN :X
OP 57.2957795 % ARCTAN.RAD :X

END

TO ABS :X

0P IF :X < 0 [- :X] [:X]
END

A

If your Logo does not possess multiple turtles (sprites),
the following procedure will simulate the effect. It should
be saved, then loaded whenever the project requires. To
understand ASK, you should imagine that you have four
turtles (0, 1, 2, 3) that can be addressed independently.
Unless you specify otherwise, your instructions are addressed
to turtle 0. If, on the other hand, you type

ASK 1t [SETPOS [30 4011

turtle 1 goes to the coordinate position (30,40).
In general, when you type:

ASK (turtle number) (instruction list)

the specified turtle carries out the instructions contained in
the list. The program to accomplish this is given below:

TO ASK :N :CMD

MAKE “OLD.POS.HEADING LIST POS HEADING
PU SETPOS FIRST THING :N

SETHEADING LAST THING :N

PD

RUN :CMD

MAKE :N LIST POS HEADING
PU

xix
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SETPOS FIRST :0LD.POS.HEADING
SETH LAST :0LD.POS.HEADING

PD

END

TO HOME.ALL

LOCAL "N

MAKE "N 0

REPEAT 4 [MAKE :N [[0 01 0] MAKE "N :N +11
END

In the procedure ASK, notice the line:
MAKE :N LIST POS HEADING

If N were 1, the position (30,40), and the heading 90°, then
the variable 1 becomes the list [[30 40] 90]. The first list
within the list is the position and the second is the heading,.
To see how the process works, first initialize the turtle num-
bers by calling HOME.ALL. If you print out the names
(PONS) you will see:

0 is [[0 01 01
1 is [LO 01 01
2 is [LO 01 01
3 is [[0 0] 01

If you now type:
ASK 1 [RT 90 FD 100 LT 90 FD 50 RT 801 PONS

you will see a right angle drawn on the screen followed by:

0 is [[O0 01 Q1]
1 is [[100 501 8901
2 is [[0 01 01
3 is [[0 01 01

In this example, turtle 1 is at (100,50) with a heading of 90°
and the other turtles are at home.

If all turtles are addressed by the ASK procedure it is
not necessary to keep track of the old position and heading
of the “main” turtle. In such cases the ASK procedure may
be abbreviated as follows:

TO ASK :N :CMD
PU SETPOS FIRST THING :N
SETHEADING LAST THING :N

PD

RUN :CMD

MAKE :N LIST POS HEADING
END
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Remember: In all programs that employ ASK be sure
to initialize the variables by calling HOME.ALL first.

There is one unfortunate feature of this ASK com-
mand. It does not show the turtle. This may be remedied
with the following program. It runs much more slowly than
that above and should be used only when it is necessary to
see the turtle. Save it under a different name (for example,
ASK.SHOW).

TO ASK :N :CMD

MAKE "OLD.POS.,HEADING LIST POS HEADING
PU SETPOS FIRST THING :N
SETHEADING LAST THING :N
DRAW.TURTLE [PE]

PD

RUN :CMD

DRAW.TURTLE [PD1

MAKE :N LIST POS HEADING

PU

SCTPPOS FIRST :0LD.POS.HEADING
SETH LAST :0LD.POS.HEADING

PD

END

TO DRAW.TURTLE :CMD
RUN :CMD

LT 45

REPEAT 4 [FD S RT 901
RT 45

END

TO HOME.ALL

LOCAL "N

MAKE "N O

REPEAT 4 [MAKE :N [[0 01 01 MAKE "N :N +11
END

Logos of the Future A

The Logo language is evolving rapidly. New versions of
Logo or upgraded versions of older Logos are appearing
regularly. Some of the comments about the limitations of
existing Logos may be outdated by the time you read this.
The following list is both a collection of things to look for
when you select a version of Logo and a wish list. I have not

xxi
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included those features common to Apple, Atari, Commo-
dore, Krell, and Terrapin Logos. The most important fea-
tures are listed first and less important features last.

1. ASK or TELL (The ability to address more than one
turtle. The turtle need not be dynamic.)

2. WINDOW (The ability of the turtle to leave the screen
without wrapping or giving an error message.)

3. TOWARDS (The ability to direct the turtle toward any
position.)

4. SETSCALE (The ability to choose the representative size
of the screen. If one is to do physics problems ranging
from atomic orbitals to planetary motion it is helpful to
choose a scale that suits your needs. In many cases it is
necessary to set independent scales for the x and y axes.)

5. CARTESIAN (The ability to measure angles according
to the more traditional methods of Cartesian geometry.
It is difficult to explain to students why Logo formulas
appear differently from those in their mathematics and
physics texts. It would be helpful to be able to toggle
between CLOCK, in which angles are measured clock-
wise from the y axis, and CARTESIAN, in which angles
are measured counterclockwise from the x axis.)

6. Logarithms and exponentials.

7. Implementation of arrays and iteration. (Although lists
and recursion are more generally applicable, arrays and
iteration are usually easier to work with and more cus-
tomary in mathematics applications.)

With the exception of WINDOW and SETSCALE,
all of the above features can be written in Logo with varying
degrees of success. (Arrays and iteration already exist in the
parent language LISP.) However, as the Logo language
matures it will begin to incorporate more and more features
at the machine language level, and this will ease the task of
communication with the computer in a manner which is
both logical and literate. It is truly remarkable that Logo,
as it exists today, is capable of filling such a wide variety of
needs. This is due in part to the care that went into its design
and in part to the extensible nature of Logo itself.
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Vectors

Introduction A

We are all accustomed to making calculations with
numbers. Two plus two is four. Numbers are useful to describe
many things in physics. The temperature of boiling water
is 100° Celsius. The weight of a bag of sugar is 10 pounds.
The atmospheric pressure is 14 Ib/in®>. Numbers are old
friends.

However, there are many things in physics which are
not conveniently described by simple numbers. You cannot
describe the wind velocity by a simple number. It is not
sufficient to say that the velocity is 10 mph since this tells
us nothing about the direction of the wind. We might say
however, that the wind velocity is 30° east of north with a
magnitude of 10 mph. To give a complete description of the
wind velocity, we must specify both its magnitude and direc-
tion. We cannot do this with a single number.

There are many things that fit into this category. Such
things as displacement, velocity, acceleration, and force are
all quantities that are specified by both a magnitude and a
direction. There is a mathematical object ideally suited to
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Figure 1.1 Three Vectors

describe such physical quantities. A vector in mathematics
is defined as a directed line segment. It possesses both a
magnitude (the length of the line) and a direction (the direc-
tion of the line segment). In Figure 1.1 we see an illustration
of three vectors. Each has a different magnitude (length)
and direction.

By contrast, a physical quantity that is determined by
a single number is called a scalar. Examples of scalars are
mass, temperature, density, and pressure. These quantities
have only a magnitude—not a direction. We will use bold-
face type (A) to distinguish vectors from scalars.

We will illustrate the need for vectors by looking at the
motion of a projectile. A ball is thrown into the air and
follows the trajectory of the dotted line in Figure 1.2. The
ball has a net displacement D, a velocity v (tangent to the
path), an acceleration a (directed downward) in the direc-
tion of the gravitational force F acting on the ball.

The ball also has a number of physical attributes
described by scalar quantities as illustrated in Figure 1.3.
The weight of the ball is 3 Ib, its volume is 20 in®. Its tem-
perature is 80° F and it strongly reflects light which has a
wavelength of 7 X 10™° m (a fancy way of saying that the
ball is red).

Figure 1.2 Vector Quantities of a Ball in Flight
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A=7 X 10°m

T=80°F
w=3"
Figure 1.3 Scalar Quantities of a Ball

Addition of Vectors A

We know how to do mathematical operations with sca-
lars. We can add, subtract, multiply, divide, and square
scalars. How do we perform mathematical operations with
vectors? Well, what kind of mathematical operation do we
wish to perform? Certainly, we must be able to add vectors.
To see how this vector addition is done, let us consider a
physical problem for which the appropriate definition is
clear.

We have observed that displacements are vectors. A
displacement from New York to Chicago is a vector (roughly
1000 mi due west). A displacement from Chicago to Indi-
anapolis is a vector (roughly 200 mi due south). The net
effect of two such displacements is a vector from New York
to Indianapolis. The addition of these displacements is rep-
resented in Figure 1.4.

Polygon Method of Vector Addition A

We see that the two displacement vectors are added by
placing the vectors tail to tip and the sum is the vector from
the tail of the first to the tip of the second. We may also

Chicago

New York

Indianapolis

Figure 1.4 Displacement Vectors
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D,

D,
Figure 1.5 Polygon Method of Vector Addition

express this sum symbolically by the vector equation:
D=D, +D,

This rule may be generalized to addition of any number of
vectors. In Figure 1.5 the sum of the three vectors D, + D,
+ D; is the vector D obtained by the above tail-to-tip rule.
You will notice that the figure forms a closed polygon, hence
the name “polygon method of vector addition”

To give you some examples of vector addition by the
polygon method we have constructed a VECTOR.
ADDING.MACHINE program. There are few calcula-
tions that Logo is better suited for than the addition of vectors.

TO VECTOR.ADDING.MACHINE

HOME

WINDOW

CS HT PD

DRAMW.VECTORS

FIND.RESULTANT

PRINT L[DO YOU WISH ANOTHER EXAMPLE? ( Y OR N )1
MAKE "ANSWER RC

IF :ANSWER = "Y [VECTOR.ADDING.MACHINE]

END

TO DRAW,VECTORS

PRINT CENTER MAGNITUDE ( SPACE ) DIRECTION.]
MAKE "VEC RL

IF:VEC = [1 [STOP]

SETH LAST :VEC

FORWARD FIRST :VEC

DRAW.TIP

DRAW.VECTORS

END

TO FIND.RESULTANT
SETH TOWARDS [0 01
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RIGHT 180

PRINT [RESULTANT VECTORI

(PRINT [MAGNITUDE =] DISTANCE.FROM,HOME [HEADING =1
HEADING)

MAKE "TIP POS

PU HOME

SETH TOWARDS :TIP PD

SETPOS :TIP

DRAW.TIP

END

TO DRAW.TIP

RIGHT 25

BACK 15 FORWARD 15
LEFT 50

BACK 15 FORMWARD 13
END

TO DISTANCE.FROM.HOME
OP SORT (SQ XCOR) + S0 YCOR
END

T0 5@ :N
OP :N % :N
END

In VECTOR.ADDING.MACHINE the screen is cleared
and the turtle sent HOME and DRAW.VECTOR is called
where a list containing the magnitude and direction of the
vector is input. For example, to characterize a vector whose
magnitude is 100 units and whose direction is 45°, we would
in effect MAKE “VEC [100 45]. (To check this, stop the
program after entering a vector and enter the names editor

ENTER MANITUDE ¢ SPACE ) DIRECTION.
100 70

ENTER MAGNITUDE ¢ SPACE ) DIRECTION,
50 300

RESULTANT VECTOR

MAGNITUDE = 77.9238 HEADING = 40.55%1

Figure 1.6 VECTOR.ADDING.MACHINE
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(EDNS). You should see MAKE “VEC [100 45]. The abil-
ity to put any kind of information into lists is one of the
more powerful features of Logo.) The heading of the new
vector is set and the turtle moves forward a distance equal
to the magnitude of the vector. An arrow head is added to
the vector and the procedure calls itself to repeat the process
for the next vector. When all vectors have been entered, the
resultant is obtained by entering an empty list. The IF state-
ment then stops DRAW.WECTORS and we return to
VECTOR.ADDINGMACHINE where we FIND the
RESULTANT by setting the heading away from the origin
to obtain the heading of the resultant. The length of the
resultant is just the DISTANCE.FROM.HOME.

To run this program, type VECTOR.
ADDING.MACHINE. Enter the magnitude and heading
of the vectors you wish to add. When you want the sum,
enter an empty list (simply press RETURN without entering
any data) and the sum will be printed and then drawn.

Component Method of Vector Addition A

Although the polygon method is easy to visualize, it is
difficult to execute in practice (unless you have a turtle to
do your work) because of the complexity of the polygon. A
simpler method is to “resolve the vectors into components”
and then add the components. Components are easy to add.
They add the same way as scalars.

The components (D, and D) of a vector I are obtained
by projecting D on the x and y coordinate axes. We see from

(<

—'X
Dy

Figure 1.7 Component Method of Vector Addition



Vectors

Figure 1.7 that

I

D, = D sin(heading)

and

D, = D cos(heading)

So if we know the magnitude and heading of any vector we
can find its x and y components.

Consider now the sum of three vectors: D,, D,, and
D;. It should be clear from Figure 1.8 that

D, = Dyx + Dy + Ds,
and

Dy = Dly + DZy + D3y

So the x and y components of the resultant is just the sum
of the x and y components of the three vectors D, D,, and
;. The reason this method is simple is that the x and y
components add just like scalars. We do not have to do any
fancy vector addition to determine D;, + D,, + Dg, or Dy,
+ Dy, + Da,.

We will use this method in many of the dynamics prob-
lems in upcoming chapters.

|
D I
3y D 03 :
Dy
________ —_—— 1
Da, D, i :
|
T T T == |
+ D1y D, : : |
X
D1x sz sz ’
| D« >

Figure 1.8 The Components of a Vector
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Projects

Problems

1. Write a procedure which generates the x and y compo-

nents of any vector. Here is a sample of how the program
might start:

TO COMPONENTS :MAGNITUDE :HEADING
(PRINT [X COMPONENT =1 . . .

+

LY

END

All you will need is a four- or five-line program. To obtain
the components of a vector of magnitude 50 and heading
70 you should be able to type COMPONENTS 30 70,
and the computer will print X COMPONENT = 47, Y
COMPONENT = 17.1.

Use your procedure to find the components of the
following vectors:
a. 100 at 45°
b. 100 at 135°
c. 100 at 225°
d. 100 at 315°

You do not need to use any graphics for this project; text
alone will do.

- Can you write a procedure that will reverse the process

carried out in Project 1? You input the x and y components
and the computer generates the magnitude and direction
of the vector.

- Use the VECTOR.ADDING.MACHINE program to find

the sum of the following vectors:

a. 100 at 30°,150 at 180°, and 160 at 290°. (Answer: 100.7
at 265°)

b. 100 at 0° 100 at 90°, 200 at 280°', and 200 at 270°.
(Answer: 141.4 at 135°)

c. 30 at 90° and 40 at 0°. (Answer: 50 at 36.9°)

. Suppose all roads in your neighborhood run E-W or N-

S. To get to town you have to travel 30 mi due east and
then 40 mi due north. How much shorter would your trip
be if you could travel as the crow flies? (Answer: 20 mi)

. We have seen how to add vectors. How do we subtract

vectors? What is A — B? Let us try some traditional arith-
metic. Suppose we write A — B = A + (—B). We have
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converted the difference of A and B into a sum of A and
—B. Now we know how to do sums. But what is the
vector —B? We will define —B to be a vector equal in
magnitude to B but opposite in direction. There are two
ways you can use the VECTOR.ADDING.MACHINE
program to subtract vectors. One is to determine the
direction opposite to B and the other is to use the same
direction as B but go FORWARD the negative of the
magnitude of B.

Let A be 50 units at 60° and B 70 units at 30°. What is A
— B? (Answer: 36.6 at 166.9°)

. We have noted that velocities are vectors. As an example
of velocity addition and relative velocities, consider the
following. A car is moving down a straight road at 60
mph. It is raining but windless so the rain is falling ver-
tically. The average speed of the rain drops is 15 mph.
What is the direction of the track left by the raindrops on
the side window of the car?

To solve such problems we must know how to add veloc-
ities. Let V(c) (read “v of c¢”) be the velocity of the car
and V(r) the velocity of the rain. We denote the velocity
of the rain relative to the car by V(r/c) (read “V of r
relative to ¢”). Now the velocity of the raindrops is equal
to the velocity of the raindrops relative to the car plus the
velocity of the car, so that

V(r) = V(r/c) + V(c)

(The virtue of this notation is that the terms in the paren-
theses form an equality under multiplication; that is, r
= (r/c)c.)

a. Determine the direction of the track of the raindrops
on the car; that is, the direction of V(r/c). (Answer:
76° measured from the vertical)

b. A police officer is stationed in the turnpike toll booth
giving tickets to cars on which the rain track angle
exceeds a certain value. If the speed limit is 55 mph,
what is this angle?
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Equilibrium of
Forces

Introduction A

If a body is to be in equilibrium, the vector sum of all
the outside forces acting on it must be zero. If a 100 Ib body
rests on a flat table the forces acting on the body are the
gravitational force of 100 lbs and the normal supporting
force of the table; also 100 Ibs. The gravitational force (W)
is directed downward and the normal force (N) is directed
upward (see Figure 2.1). The vector sum of these two forces
is zero. :

When there are more than two forces acting on the
body the solution is not quite as simple, but the same rule
applies. The vector sum of the forces must be zero. Consider
the example of a 100 Ib block resting on a smooth inclined
plane. The block is prevented from sliding down the incline
by a cord parallel to the incline. The problem is to determine
the tension in the cord (T) and the normal support force
(N) that the incline exerts on the block.

To solve this problem we must first choose a body whose
equilibrium we wish to study; draw a vector diagram of all
the forces acting on the body; and finally equate the vector

11
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. Y

W=N=100 Ib
Figure 2.1 The Vector Sum is Zero

N

sum of all the forces to zero. In this problem the body to
study is the block itself. The three forces acting on the block
are illustrated in Figure 2.2. Let us use the polygon rule of
vector addition to find what the tension in the cord and
normal force have to be. The polygon must form a closed
figure if the sum of the vectors is to be zero. This polygon
is illustrated in Figure 2.3. The problem is to determine a
tension T and normal force N that are consistent with the
figure. Before we do this, let us look at another problem. We
would like to show that our method is applicable to a wide
variety of problems and not just the ones discussed above.

A Second Example A

12

A 100 Ib weight is suspended from a weightless cord.
The cord is tied to a horizontal weightless pole. The pole is
attached to a vertical wall. The free end of the pole is held
up by a weightless cord tied to the wall at an angle of 45°

@

m m.HHWHIHlnn...“

Figure 2.2 A Block on an Incline
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N W

Figure 2.3 Tension and Normal Forces

as illustrated in Figure 2.4. The task is to determine the
force F of the pole and the tension T in the cord. Again we
must pick a particle or body and examine the forces acting
on it. We choose the small particle where the two cords
and the pole meet. The forces acting on this particle are
shown in Figure 2.5. The sum of these forces will be zero if
they form a closed polygon, like that shown in Figure 2.6.
Once again, the task is to find the forces consistent with
those in the figure. :

To solve these and other similar problems we will con-
struct a Logo program.

45°

Figure 2.4 Suspended Block

13



Logo Physics

w

Figure 2.5 Forces acting on Particle

The Logo Program A

14

We will take as a general problem the equilibrium of
a body under the action of three forces; W, T and F. W is
a weight and is directed downward. F and T are forces
whose directions are known. We will denote their headings
by FANGLE and T.ANGLE. The problem is to determine
the magnitude of F and T so that they form a closed triangle
with W as illustrated in Figure 2.7.

Suppose we were to try to solve this problem with a
pencil, a piece of paper, and a ruler. We would draw a vector
of length W in the downward direction. We position the
ruler at the tip of this line and set the ruler to the angle
FANGLE. We must then draw a line along this heading of
such a length that a line from its far end to the base of W
possesses the proper heading of TANGLE. The turtle can

{ 45°

F

Figure 2.6 Polygon
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Figure 2.7 Forces

execute this process in the following manner. Start the turtle
from the bottom of W with a heading of FANGLE. Move
forward a distance of 10 turtle units. Ask the turtle to set
its heading toward the base of W (that is, toward [0 0]).
Check to see if the heading is less than T.ANGLE. If so, the
turtle has not gone far enough and so proceeds forward
another 10 turtle units. When the heading does become less
than T.ANGLE we step back 10 units and divide the length
of the step by 2. (For technical reasons it is actually faster
if you divide the step length by 3.5.) This process is repeated
until the step length is less than .01. This should bring us
within .01 units of the end of F. (If you want greater accu-
racy make this number smaller.) The magnitude of F is just
the distance between the present position and the tip of W.
We record the length of T as the distance between the tip
of F and the tail of W and draw the vector T. This process
is carried out in the following program:

TO EQUILIB :MW :F.ANGLE :T.ANGLE
WINDOW

HOME

BACK :W MAKE "OLD.POS POS

STEP 10

(PRINT [F =1 DIST.BETWEEN POS :0LD.POS )
MAKE "T DIST.BETWEEN POS [0 01
( PRINT [T =1 :7 )

SETH :T.ANGLE

FORWARD =T

END

TO STEP :S

IF :5 { 0,01 [STOP]

SETH :F.ANGLE

FORWARD :5

SETH TOWARDS [0 01

IF HEADING < :T.ANGLE [SETH :F.ANGLE BACK :5 MAKE "S :8/21]

15
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STEP :5
END

TO DIST.BETWEEN :P1 :P2

OP SQRT ( SO ( FIRST :P1 ) - FIRST :P2 ) +50 (LAST
:P1 ) - LAST :P2

END

T0 8@ :X
0P X % :X
END

TO START
EQUILIB 80 45 270
END

With this program we can solve a number of problems
in equilibrium dynamics.

Problems

16

1. A 100 Ib block is suspended by ropes as shown in Figure
2.8. Find the tension in the ropes. (Answer: 60 Ib and 80
Ib)

37°

100

Figure 2.8 Problem 1

2. A 100 Ib block hangs from a boom as shown in Figure
2.9. Find the thrust of the boom and the tension in the
supporting cord.
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60°

AQW

100

-

Figure 2.9 Problem 2

3. A driver is using a rope to pull her automobile out of a
rut. Rather than pull directly on the rope, the driver ties
the rope to a tree and makes the rope as taut as possible.
She then applies a 100 Ib force at the midpoint in a direc-
tion perpendicular to the straight line between the auto-
mobile and the tree. The rope bends, making an angle of
5 degrees with the straight line (see Figure 2.10). What is
the force on the auto?

Figure 2.10 Problem 3

17
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Project

4. A 200 Ib man is walking a tight rope. At his current posi-
tion, the rope makes an angle of 5 degrees on one side
and 10 degrees on the other as shown in Figure 2.11. What
is the tension in the rope on each side?

Figure 2.11 Problem 4

1. We have written a Logo program to determine the mag-
nitude of F and T given the direction of F and T and the
vector W. Can you write a program that determines the
direction of F and T given W and the magnitude of F and
T? (The answers will not be unique.)
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Free Fall

Introduction A

Velocity

One of the most important subjects in physics is the
study of motion. How do bodies move when forces are applied
to them? How does a baseball move after it leaves the bat?
How does a ball swing at the end of a string? How does a
satellite revolve about the Earth and the Earth about the
sun? We will examine these questions and more, but first
we must begin with a simple problem: the free fall of a body
in the Earth’s gravitational field.

There are three variables that we must consider when
we study motion: position, velocity, and acceleration. We
want to know where the body is, how fast it is moving, and
how fast the velocity is changing. Let us take a moment to
define the concepts of velocity and acceleration of a body

moving along a straight line.

The velocity of a body is defined as the distance the
body moves in a unit time. For example, a car traveling at

21
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a steady rate that moves 60 miles in one hour has a velocity
of 60 mi/hr. A ball rolling on a table that covers 20 ft every
second has a velocity of 20 ft/sec. In general, the velocity of
a body traveling at a constant rate is equal to the distance
covered divided by the time. We may express this relation
by the equation:

distance covered

velocity = PP

Question: A man runs the hundred yard dash in 9 sec (see Figure
3.1). What is his average velocity?

Answer: The distance is 100 yards and the time 9 sec so the velocity
is 100 yd/9 sec = 11.1 yd/sec. Since there are 3 ft in a yard we
might also express this velocity as 33.3 ft/sec.

Velocity can be either positive or negative. If a body is
moving along some directed line, the velocity is positive if
it is moving in the forward direction on the directed line
and negative if it is moving in the opposite direction. The x
and y axes in the turtle coordinate system are such directed
lines. A turtle moving to the right along the x-axis has a
positive x-component of velocity. A turtle moving to the left
has a negative x-component of velocity.

Acceleration A

22

A body that is changing its velocity is said to be accel-
erating. The acceleration is a measure of the rate at which
the velocity is changing. By comparison, the velocity is the
rate at which the position is changing. As an example, imag-
ine a ball rolling down an incline with a velocity of 20 f/
sec at some point (as shown in Figure 3.2). One second later
the velocity has increased to 22 ft/sec. The velocity has
increased by 2 ft/sec during one second. The acceleration
therefore is 2 ft/sec/sec. (This is often written as 2 ft/sec?.)
The velocity changes by 2 ft/sec every second.

In general, the acceleration is defined as the change in
velocity divided by the time it takes. We may define the

t=0 100 yr. t=9 sec.

&~ -
L 4 —t

Start Finish
Figure 3.1 100-yard dash
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Free Fall

v=20 ft/sec

v=22 ft/sec

Figure 3.2 A Ball Rolling Down an Incline

acceleration with the following equation:

change in velocity

acceleration = -
time
Question: A car moves from 30 mi/hr to 40 mi/hr in 1/2 hr at a
steady rate. What is the acceleration?
Answer: The acceleration is the change in velocity, 40 mi/hr — 30
mi‘/hr or 10 mi/hr divided by the time of 1/2 hr. That is,
40 mi‘hr — 30 mi/hr

leration = = 20 mi/hr/h
acceleration b mi‘/hr/hr

Question: The velocity of a ball thrown into the air changes from
90 ft/sec to 58 fi/sec during the first second. What is the
acceleration?

Answer: The acceleration is the change in velocity (final velocity
— initial velocity), 58 ft/sec — 90 ft/sec or —32 fi/sec. The
acceleration is the change in velocity divided by the time; that
is, —32 ft/sec/sec. (This is often called the acceleration due to
gravity. It is the same for all bodies when the air friction is
negligible.) We sometimes say that a body is decelerating if the
acceleration is negative.

A body is in free fall if there are no forces acting on it
other than the gravitational pull of the Earth. The simplest
motion of this type is vertical free fall. To be specific, sup-
pose a body is released from a height of 50 ft above the
ground. The body falls with constant acceleration. For con-
venience we will choose an acceleration of .5 ft/sec/sec. (This
is not the acceleration of gravity on Earth. That would be

23
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32 f/sec/sec. However, if we choose such a large acceleration
things would happen too fast on our small screen. We will
consider realistic problems when we take up scaling tech-
niques.) Two of the questions we would like to answer are:
What is the velocity when the body strikes the ground? How
long does it take before it strikes the ground?

We cannot answer these questions using the above def-
initions only. We can ask the turtle to help. We will ask the
turtle to execute the following set of commands once each
second:

TO STEP

FORWARD :VELOCITY

MAKE "VELOCITY :VELOCITY + :ACCELERATION
STEP

To see what this procedure does and why it solves our prob-
lem, we will follow the steps one at a time. The first com-
mand is FORWARD :VELOCITY, which translated says:
“Move forward a distance equal to the value of the velocity
variable” Suppose the velocity is 10 ft/sec. The turtle will
move 10 units in one second.

The next command is MAKE “VELOCITY :VELOC-
ITY + :ACCELERATION, which translated says: “Increase
the value of the velocity variable by an amount equal to the
acceleration variable” If the velocity is 10 ft/sec and the
acceleration (the change in the velocity per second) is .5 ft/
sec/sec, then the new value of the velocity variable will be
10.5 ft/sec. This gives us the increase in the velocity in one
second.

The next command is STEP. This calls the procedure
again, with a new velocity of 10.5 ft/sec. The turtle moves
10.5 ft during the next second. At the end of this time the
velocity has further increased to 11 ft/sec. This process is
repeated over and over again, moving the turtle by ever
increasing distances due to the ever increasing velocity. We
must, of course, find some way to get the turtle out of this
infinite loop. We do this with a conditional statement (an
“if” statement): IF YCOR < 0 [STOP.]

Our procedure is now:

TO STEP
IF YCOR < 0 [STOP1
FORWARD :VELODCITY
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MAKE "VELOCITY :VELOCITY + :ACCELERATION
STEP
END

This STEP procedure will follow the turtle to the
ground. But we must take care of some preliminaries before
it can be run. In FREE.FALL the ground is drawn, and
the turtle headed downward (RT 180). Our entire program
is:

TO FREE.FALL :HEIGHT
WINDOW

CS PD

DRAW.GROUND

PU

SETY :HEIGHT

MAKE "ACC .5

MAKE "VEL ©

MAKE "TIME ¢

RIGHT 180

PD

STEP

PRINT "

PRINT [THE TURTLE HAS LANDEDI
END

TO DRAW.GROUND

PU

SETPOS [-100 01 PD
SETPOS [100 01
HOME

PU

END

T0 STEP

(PRINT "TIME :TIME "VELOCITY :VEL “DISTANCE
(:HEIGHT - YCOR))

IF YCOR < O [STOPI

FORWARD :VEL

MAKE "VEL :VEL + :ACC

MAKE "TIME :TIME + 1

STEP

END

TO START
FREE.FALL 50
END

25
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Notice that we have amplified the STEP procedure by add-
ing a command to print the current time, velocity, and
distance.

We have also included a START procedure. (We will
often include a START procedure in the chapters to follow.
Its purpose is to simplify initial program execution.) If you
run START the turtle is released from a height of 50 ft
above the ground and the following results are printed:

After sec Velocity Distance covered
0 0 0

1 5 0

2 1.0 5

3 1.5 1.5
4 2.0 3

5 2.5 5

6 3.0 7.5
7 3.5 10.5
8 4.0 14

9 4.5 18
10 5.0 22.5
11 5.5 27.5
12 6.0 33
13 6.5 39
14 7.0 45.5
15 7.5 52.5

We see that sometime between the 14th and 15th sec-
ond, the turtle traveled the 50 ft to the ground. His speed
increased to between 7 and 7.5 ft/sec. Try some new values
for the height and see how the turtle picks up speed as he
falls.

We may clean up the STEP procedure by using this
simple tail recursion:

STEP :VEL :TIME

(PRINT "TIME :TIME "VELOCITY :VEL "DISTANCE
(:HEIGHT - YCOR))

IF YCOR < O [STOP1]

FORWARD :VEL

STEP :VEL + :ACC :TIME + 1

END

Each time STEP calls itself it does so with the increased
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values of the velocity and the time. (Notice also that you
must change the call STEP in FREE.FALL to STEP :VEL
*TIME.) We will continue to use this more compact form.

The Bouncing Turtle and the
Midpoint Approximation A

Let us look at an elastic turtle; a bouncing turtle. We
would like the turtle to rebound rather than stop when he
hits the ground. To rebound we mean that the turtle reverses
his velocity when YCOR < 0. Therefore we simply have to
change the line

IF YCOR < O [STOP1
in STEP to
IF YCOR < O [MAKE "WEL -:VEL]

Try this and watch him bounce. You should notice that he
bounces higher and higher; this is not right. If the turtle is
turned around at the bottom and sent up with the same
velocity as when he came down, he should rebound to the
same height. What went wrong?

The source of our difficulty is something that will pur-
sue us throughout this book. The turtle’s solution to the free
fall problem is only an approximation. It is the error in this
approximation that causes the turtle to continue to bounce
higher and higher. To see where the error arose, let us examn-
ine the STEP procedure.

When we ask the turtle to go FORWARD :VEL we
should ask: What velocity? The velocity after 10 sec is 5 ft/
sec. The velocity after 11 sec is 5.5 ft/sec. So what is its
velocity during the 10th second? We cannot really say.

There are two ways to deal with this problem. One is
to make the time interval between steps shorter. If the time
interval were just .1 sec then the change in velocity would
be just one tenth of the acceleration, or .05 ft/sec. The veloc-
ity after 10 sec is 5 ft/sec. The velocity after 10.1 sec is 5.05
ft/sec. The difference in velocity is so small that it would
not make a big difference which velocity we used. We could
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use a still smaller time interval of .01 sec and reduce the
error even further.

The trouble with using such small time intervals is that
the program would take a long time to run. A better solution
is to use the midpoint approximation.

If the velocity after 10 sec is 5.0 ft/sec and the velocity
after 11 sec is 5.5 ft/sec, then a good approximation of the
velocity during the 10th sec is 5.25 ft/sec—the average veloc-
ity. Another way to express this result is to set the midpoint
velocity to the velocity at 10 sec plus one half the change in
the velocity. Remember, the change in the velocity is the
acceleration. Therefore, instead of moving FORWARD
{VEL, we move FORWARD :VEL + :ACC/2. The improved
program is BETTER.FREE.FALL.

TO BETTER.FREE.FALL :HEIGHT
WINDOW CS PD

DRAW,GROUND

PU

SETY :HEIGHT

MAKE "ACC .3

MAKE "VEL 0

MAKE "TIME ©

RIGHT 180

PD

STEP :VEL :TIME

PRINT ™

PRINT [THE TURTLE HAS LANDED]
END

TO DRAW.GROUND

PU SETPOS [-100 01 PD
SETPOS [100 01

HOME PU

END

TO STEP :VEL :TIME

(PRINT "TIME :TIME “VELOCITY :VEL "DISTANCE
(:HEIGHT - YCOR))

IF YCOR < O [STOP]

FORWARD :VEL + :ACC / 2

STEP :VEL + :ACC :TIME + 1

END

TO START
BETTER.FREE.FALL 50
END
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We will make frequent use of this midpoint approximation
in the material that follows. It is particularly suitable in this
problem because the acceleration is constant. In fact, by
using the midpoint approximation the calculation is exact.

Try bouncing the turtle again using the midpoint
approximation. You should find that he no longer continues
to bounce higher and higher.

A Simpler Midpoint Approximation A

There is a simpler way to apply the midpoint approx-
Imation that will both clean up the appearance of our pro-
grams and make them run faster. Examine BEST.
FREE.FALL.

TO BEST.FREE.FALL :HEIGHT
WINDOW CS PD

DRAW. GROUND

PU

SETY :HEIGHT

MAKE "ACC .5

MAKE "VEL O + :ACC / 2
MAKE "TIME 0

RIGHT 180

PD

STEP :VEL :TIME

PRINT *

PRINT [THE TURTLE HAS LANDEDI
END

TO DRAW.GROUND

PU SETPOS [-100 01 PD
SETPOS [100 01

HOME PU

END

TO STEP :VEL :TIME

(PRINT "TIME :TIME "VELOCITY :VEL "DISTANCE
(:HEIGHT - YCOR))

FORWARD :VEL

STEP :VEL + :ACC :TIME + 1

END

TO START
BEST.FREE.FALL 50
END

Notice that it is the same as FREE.FALL except for one
statement. In FREE.FALL we said:

29



Logo Physics

30

Projects

MAKE "VEL 0

In BEST.FREE.FALL we say:
MAKE "VEL 0 + :ACC / 2

The only difference between the two programs is that we
have applied the midpoint approximation to the initial
velocity. Notice that STEP is unchanged. It would seem
that we have not been very consistent. We applied the mid-
point approximation to the first turtle step but not to the
subsequent steps as we did in BETTER.FREE.FALL. Try
running BEST.FREE.FALL. When the turtle lands, com-
pare the printed values of the distance and time with the
results of BETTER.FREE.FALL. (Forget about the veloc-
ity for the moment.) The results are precisely the same.
The reason they are the same is that in both BETTER.
FREE.FALL and BEST.FREE.FALL we get started on
the right foot and on each subsequent step, increment the
midpoint velocity by the acceleration thereby obtaining the
new midpoint velocity. (Since it is the midpoint velocities
that are computed, they will not be the same as the velocities
in BETTER.FREE.FALL.) We will use this simpler algo-
rithm in the future when we need the improved accuracy
of the midpoint approximation.

1. We have seen how to make the turtle bounce off the ground.
Suppose we wanted to place a shelf at any point and allow
the turtle to bounce off it (either on the way up or the
way down; see Figure 3.3). Try inserting an IF KEYP

Turtle may bounce

L & off this shelf
«—

Ground
Figure 3.3 Free Fall Turtle Bouncing Off Shelf
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Free Fall

statement to reverse the turtle at any point in his motion.
(Do not forget that KEYP will not proceed until the key
is printed.) Press the space bar and notice that he contin-
ues torise to the height from which he was dropped. (This
is a good example of energy conservation.)

. Write a program TOSS :HEIGHT :VELOCITY that

allows you to set the turtle at any height and give him
any initial velocity (either up or down).

. Using the midpoint approximation, make the following

calculation. (You will need to estimate the correct answers

since the turtle passes the ground level before stopping.)

a. If the turtle is released from a HEIGHT of 100 ft,
what is the velocity when the turtle strikes the ground?

b. Repeat (a) with HEIGHT = 200 ft.

c. Repeat (a) with HEIGHT = 50 ft.

. From the results of Problem 1 can you determine how the

velocity depends on the height? We have listed several
possibilities below.

. velocity = (some constant) X (height)

. velocity = (some constant) X (height)?

velocity = (some constant) X (height)'?

. velocity = (some constant) / (height)'/?

velocity = (some constant) / (height)

oo oW

To determine which formula is correct, notice that if (a)
is correct the velocity should double if you double the
height. If (b) is correct the velocity should quadruple if
you double the height. If (c) is correct you should double
the velocity if you quadruple the height. And so on and
so on.

. Can you determine how the time of flight depends on the

height? For example, does TIME = (some constant) X
(HEIGHT)?

4. How does the velocity depend on the time?

31



/Aﬂ

—9)deys




Projectile Motion
and the CRT

Introduction A

N ext to free fall, projectile motion is the simplest
example of motion in a gravitational field. The basic phys-
ical law is that the acceleration of any body in a uniform
gravitational field is constant.

A = constant

The acceleration is a vector directed vertically downward.
If we use the turtle coordinate axes, the two components of
the vector A are

A, =0
and
A, = -(some constant)

The value of this constant depends on the strength of the
local gravitational field. It will be smaller on Pike’s Peak
than in Death Valley. It will be smaller still on the Moon.
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Turtle Trajectory A

Let us write a program that will move the turtle through
the air in the same way a projectile would move. There are
three things we need to know in order to find the turtle
trajectory. We need to know the initial velocity with which
the projectile was thrown, the initial angle, and the local
gravitational constant. Let us define a procedure with these
three quantities as variables.

TO PROJECTILE :VELOCITY :ANGLE :GRAVITY
HT DRAW.GROUND

MAKE "UX :VELOCITY % COS :ANGLE

MAKE "VY :VELOCITY % SIN :ANGLE

STEP :UX :VY

(PRINT [RANGE =1 XCOR + 130)

END

TO DRAW.GROUND

PU SETPOS [130 -501
PD SETPOS [-130 -501
END

The ground is drawn, the turtle is placed at the left side of
the screen and given the appropriate x- and y-components
of velocity, and the procedure STEP is called.

TO STEP :VX :VY

SETH 90 FD :VX

SETH 0 FD :VY

IF YCOR ¢ -50 [STOP1]
STEP :UX :VUY - :GRAVITY
END

In STEP the turtle steps through his trajectory. We set a
time interval of 1 sec between steps. During 1 sec :VX will
remain constant but :V'Y will decrease by an amount equal
to the y-component of the acceleration (:GRAVITY). If the
turtle falls below ground level (YCOR = -50) the procedure
stops and control returns to PROJECTILE where the range
(the net horizontal displacement) is printed. To see how the
program works run START, where

TO START
PROJECTILE 9 45 .4
END
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Try a few different values for the velocity, angle, and gravity.
To smooth the trajectory try

TO STEP VX vy

SETPOS LIST XCOR + :VUX YCOR + :VY
IF YCOR < -50 [STOP]

STEP :UX VY - :GRAVITY

END

This will remove the ragged look of the path.

One important experiment we will cover in the Projects
section is the determination of the maximum range of a
projectile for a given initial velocity.

A More Accurate Trajectory A

We noted in Chapter 3 that we make a small error by
assuming that the velocity is constant when we issue the
command FORWARD :VELOCITY. We can improve the
accuracy by using the velocity at the beginning of the step
plus half the change in the velocity. Thus the turtle moves
by going FORWARD :VELOCITY + :ACCELERA-
TION / 2. In our projectile problem there is no acceleration
in the x-direction and the acceleration in the y-direction is
-:GRAVITY. A more accurate procedure therefore is:

TO ACCURATE.PROJ :VELDCITY :ANGLE :GRAVITY

HT

DRAW.GROUND

MAKE "UX :VELOCITY % CDS :ANGLE

MAKE "VY :VELOCITY # (SIN :ANGLE) - :GRAVITY / 2
STEP :UX :VY

(PRINT [RANGE =3 XCOR + 130)

END

TO DRAW.GROUND

PU SETPOS [130 -501
PD SETPDS [-130 -501]
END

TO STEP :VUX :VY

SETPOS LIST XCOR + :VX YCOR + :VY
IF YCOR < -50 [STOP1

STEP :VUX VY - :GRAVITY

END
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TO START
ACCURATE.PROJ 9 45 .4
END

Let us put this more accurate program to work in order to
reexamine the motion of a bouncing ball.

When an elastic ball rebounds from a hard surface, the
x-component of the velocity is unchanged but the y-com-
ponent is reversed. In the SETP procedure above, the pro-
Jectile stopped when it reached ground level. To simulate
the bouncing ball we require:

IF YCOR ¢ -50 [MAKE "VY - :vY]

With this change, try ACCURATE.PRQJ 9 80 .4. You
should see a bouncing ball. (If you had used PROJECTILE
instead of ACCURATE.PRQ@YJ, the ball would not rebound
to the same height each time.) '

Air Friction A

36

You will notice that all the trajectories of PROJEC-
TILE are symmetric. The right half of the trajectory is the
same as the left half. If you observe the trajectory of any
real projectile you will see that there is no symmetry. The
trajectory will look more like that in Figure 4.1.

We can make the trajectory more realistic by including
the effect of air friction. As a good approximation we may
say that the frictional force is proportional to the velocity.
For example, the x-component of velocity decreases by an
amount proportional to :VX and the y-component decreases
by an amount proportional to :VY. We have included this
frictional force in the following listing.

Figure 4.1 A Real Trajectory

TO PROJECTILE.FRICTION :VELOCITY :ANGLE :GRAVITY
HT DRAW.GROUND

MAKE "FRICTION .1

MAKE "VX :VELOCITY » COS :ANGLE
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MAKE "VUY :VELOCITY % SIN :ANGLE
STEP :UX :uY

(PRINT [RANGE =1 XCOR + 130)
END

TO DRAW.GROUND

PU SETPOS [130 -501
PD SETPOS [-130 -50]
END

TOD STEP :VUX :VY

SETPOS LIST XCOR + :UX YCOR + :VY

IF YCOR < -50 [STOP]

BTEP (:VX - :FRICTION % :VUX) (VY - :FRICTION # VY
- :GRAVITY)

END

T0O START
PROJECTILE.FRICTION 20 30 .4
END

Try START once again and see what the trajectory looks
like.

The Cathode Ray Tube A

A television picture tube is a cathode ray tube (CRT).
Electrons are heated in the cathode filament, accelerated
toward the screen, and pass through a pair of deflecting
plates. These deflecting plates carry a positive charge on
one plate and a negative charge on the other. As shown in
Figure 4.2, the top plate is positive. Since the negative elec-
tron is attracted to the positive charges and repelled by the
negative charges, this causes the electron to move upward.

The amount of charge on the deflecting plates is deter-
mined by the potential difference (or the voltage) across the
plates. The greater this voltage, the greater the deflection of
the charges as they pass between the plates. By varying the
potential, the electron beam can be directed to any chosen
point on the screen.

The equations for the x- and y-components of accel-
eration of the charge between the plates are very similar to
that of the projectile.

A, =0
A, = CONSTANT * VOLTAGE
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Figure 4.2 An Electron in Cathode Ray Tube

For simplicity we will assume that

A, = .03 * :\VOLTAGE

The factor .03 has been chosen to keep the turtle on the
screen. The voltage can be either positive or negative.

These equations for the acceleration are of exactly the
same form as those for the projectile. Therefore, the dynam-
ics of the electron is the same as that of any other projectile.
The sole difference is that the deflecting plates act on the
electron only when the electron is between them. This var-
iation has been included in the following listing for the cath-
ode ray tube:

TO CRT :VOLTAGE

MAKE "ACCELERATION 3,N2 % :VOLTAGE
CLEARSCREEN

WINDOW HT FULLSCREEN

DRAMW.SCREEN

DRAW.PLATES

SETPOS [-130 01

PD ST

STEP 4 0

SPLITSCREEN

PRINT [GO AGAIN ( Y / N ) ?1

IF RC = "Y [PRINT [WHAT VOLTAGE?]11 [STOP1
MAKE "V FIRST RL

CRT V¥

END
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TO DRAW.SCREEN

PU SETPOS [130 -1201

PD

SETH 0 FD 120 LT 90 FD S BK 5 RT 90 FD 120
PU

END

TO DRAW.PLATES

SETPOS [-40 -401

SETH g0

REPEAT 2 [PD FD B0 LT 90 PU FD 80 LT 9073

IF :VOLTAGE > O [DRAW.PLUS 0 50 DRAW,MINUS O -501
[DRAW.PLUS 0 -50 DRAW.,MINUS 0 503

END

TO DRAW.PLUS :X =Y
SETPDS LIST :X :Y
PD SETH 0

FD & BK 12 FD B
SETH 90

FD 6 BK 12 FD B

PU

END

TO DRAW.MINUS :X :vY
SETPOS LIST :X :v
PD FD B BK 12

PU

END

TO STEP :UX VY

IF XCOR > 130 [STOP]

SETPOS LIST XCOR + :VUX YCOR + :vy
STEP :VUX VY + acCcy

END

TO ACCY
IF (ABS XCOR) < 40 [OP :ACCELERATION] [OP 03
END

TO ABS :NUM
IF (:NUM < 0) [OP -NUM] [OP :NUMI
END

The electron steps through its trajectory with ACCX =
0 and ACCY = :VOLTS whenever the electron is between
the two deflecting plates. This occurs when the absolute
value (ABS) of the XCOR is < 40. Notice that in
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DRAW.PLATES the plates range from XCOR = —40 to
XCOR = +40. You may enter either positive or negative
voltages. The plus or minus sign will be drawn next to the
appropriate deflecting plate. Run START to see the CRT in
action (as illustrated in Figure 4.3).

TO START
CRT S
END

Problems

Projects

1. Use the PROJECTILE listing to determine the projec-
tion angle that produces the maximum range for a given
velocity and acceleration of gravity. Use various fixed values
of the velocity and gravity and show that the optimal
projection angle is approximately constant. (There will be
a small numerical error due to the fact that the turtle
will fall slightly below ground before he stops.)

2. Using the results of Problem 1, determine how the max-
imum range depends on the magnitude of the initial
velocity. Choose from one of the answers below:

a. R(max) = (constant) *v
b. R(max) = (constant) * v
c¢. R(max) = (constant) * v*
d. R(max) = (constant) /v

1/2

3. Using the results of Problem 1, determine how the max-
imum range depends on GRAVITY for a fixed initial
velocity. Choose from one of the selections below:

a. R(max) = (constant) * G
b. R(max) = (constant) * G'?
c. R(max) = (constant) / G
d. R(max) = (constant) / G*

4. Using the results of Problem 3, how far could you throw
a baseball on the Moon if you could throw the same ball
200 yards on Earth? The lunar gravity is .16 times the
gravity on Earth.

1. We have shown how a ball can be made to bounce along
the ground. Can you write a program to keep a ball
bouncing around a room?

2. Write a procedure that will automate the CRT. Send out
11 electrons with voltages on the deflecting plates set at
543,2,1,0, -1, -2, -3, -4, and -5. There are many
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ways of doing this. As an exercise in list manipulation try
writing two procedures, AUTO and BEGIN :VOLT-
AGES. In AUTO you define a list called “VOLTAGES
whichis [543 210 -1-2 -3 -4 -5 ]. AUTO then calls
the recursive procedure BEGIN :VOLTAGES that runs
CRT FIRST :VOLTAGES and then calls itself recur-
sively with BEGIN BF :VOLTAGES. You will need to
find some way to stop the program.
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5 Projectile Motion I

Introduction A

There are two kinds of problems we run into in gen-
erating numerical or graphical solutions to physics prob-
lems. One is that the turtle runs off the screen and the other
is that the accuracy of the numerical algorithm breaks down
when there are large changes in velocity over our one second
time interval between steps. The midpoint approximation
helps but it is not always good enough.

There are two remedies. If the turtle runs off the screen
we can scale the problem down to screen size. If the velocity
changes are very great over the one second step interval we
can choose a smaller time interval. Actually both problems
are solved by means of scaling techniques; in one case we
scale the length and in the other we scale the time.

Scaling the Time A

We have always assumed in stepping FORWARD
:VELOCITY that the velocity is approximately constant
over the given time interval (1 sec in our previous applica-
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tions). But suppose the time interval is 1 sec, the velocity 40
ft/sec, and the acceleration 32 ft/sec/sec. During a 1 sec inter-
val the velocity would change from 40 ft/sec to 72 ft/sec. It
is hardly appropriate to assume that the velocity is constant
over this 1 sec interval.

The solution to this problem is to use a shorter time
interval—perhaps 0.1 sec. During 0.1 sec, the velocity would
change from 40 ft/sec to 43.2 ft/sec if the acceleration were
32 ft/sec/sec. It is certainly a much better approximation to
assume that the velocity is constant over the smaller time
interval. For still greater accuracy, use an even smaller time
interval.

If we choose a time interval of 1 sec, the turtle will
move a distance equal to the velocity in 1 sec. This follows
from the very nature of the definition of velocity as the dis-
tance moved per second. If the Difference in Time (DT)
between steps is not equal to 1 sec, then the distance moved
in a time DT is the distance moved in a unit time multiplied
by the time IDT. So where we moved FORWARD :VX before,
we now move FORWARD :VX * :DT.

In a similar way, the change in the velocity in 1 sec is
the acceleration. The change in the velocity during a time
DT is :ACCELERATION * :DT.

These two modifications have been incorporated in
PROJECT.DT:

TO PROJECT.DT :VELOCITY :ANGLE :GRAVITY
WINDOW HT

DRAMW . GROUND

MAKE "DT .1

MAKE "VUX :VELOCITY x COS :ANGLE

MAKE "UY :VELOCITY # SIN :ANGLE

STEP :1VUX VY

(PRINT [RANGE =1 (XCOR +130))

END

TO STEP VX VY

INC XY :UX % :DT :UY % :DT

IF YCOR < -50 [STOP]

STEP VX VY - :GRAVITY % :DT
END

TO DRAW.GROUND

PU SETPOS [130 -501
PD SETPOS [-130 -501
END



Projectile Motion |l

TO INC.XY :DX :DY
SETPOS LIST XCOR + :DX YCOR + :DY
END

TO START
PROJECT.DT 70 45 32
END

We have made the two fundamental changes in STEP.
Instead of incrementing XCOR by :VX and YCOR by :VY,
we now increment XCOR by :VX * :DT and YCOR by :VX
* :DT. This modification also applies to the acceleration,
so the second change is that :¥X is now incremented by
—:GRAVITY * :DT rather than —:GRAVITY. We have
included the procedure INCXY :DX :DY as well. The effect
of this procedure is to increment the values of the x and y
coordinates by :DX and :DY. The variable :DX stands for
the Difference between the old and new values of x. A sim-
ilar definition applies to :DY in reference to the y values.

By choosing :DT small enough we may achieve any
desired degree of accuracy. There remains, however, the
problem of keeping the turtle on the screen when the dis-
tances are very large; for example, drawing the orbit of the
planet Pluto. This problem is solved by drawing the orbit
to scale. To see how this is done let us take up the general
problem of scaling.

Scaling the Distance A

When we draw a house on a piece of paper we are
applying principles of scaling. We recognize that we cannot
draw a full size house on an 8 1/2 X 11 inch sheet of paper.
We choose some reasonable scale and draw the house
accordingly. We will define the variable SCALE to be the
number of turtle units per foot (or mile, kilometer, and the
like). A turtle unit is the distance between an XCOR of 0
and an XCOR of 1.

If we fire a projectile with a range of 1000 ft, the tra-
Jjectory will not fit on the screen if we let 1 t.u. (turtle unit)
be equal to 1 ft. The screen is approximately 250 t.u. wide.
To get a range of 1000 ft on a 250 t.u. screen it is necessary
to choose a scale factor of 250/1000 t.u./ft or 1/4 t.u./ft. If
we multiply the range of 1000 ft by the scale factor of 1/4
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t.u/ft we get a screen range of 1000 * 1/4 = 250 t.u., which
will fit on the screen.

The trajectory calculations are carried out as usual
without regard to scaling considerations. There are only two
instances where the scale factor must be applied. First, when
we draw to the screen, we must convert the distance (in
feet, meters, or miles) to turtle units. Second, when we extract
information from the screen we must convert the turtle
units into distance (measured in feet, meters, or miles). This
process is illustrated in PROJECT.SCALE.

TO PROJECT.SCALE :VELOCITY :ANGLE :GRAVITY
WINDOW HT

DRAW.GROUND

MAKE "DT .1

MAKE "SCALE .25

MAKE "VX :VELDCITY * CDS :ANGLE

MAKE "VY :VELOCITY * SIN :ANGLE

STEP :UX VY

(PRINT [RANGE =1 (XCOR + 130) / :SCALE)
END

TO DRAW.GROUND

PU SETPOS [130 -501
PD SETPOS [-130 -501
END

TO STEP :VUX :VY

INC XY :UX % :DT % :SCALE :VY % :DT % :SCALE
IF YCOR < -50 [STOP]

STEP :VUX :VY - :GRAVITY # :DT

END

TO INC.XY :DX :DY
SETPOS LIST XCOR + :DX YCOR + :DY
END

TO START
PROJECT.SCALE 70 45 32
END

The two places the scale factor is applied are where
we move FORWARD and where we print XCOR. In the
first instance we convert feet into turtle units and, in the
second, we convert turtle units back into feet.
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Figure 5.1 PROJECT.SCALE 70 45 (.16*32)
PROJECT.SCALE 70 45 32

To see how far you could throw a baseball on the Moon
where gravity is 16% of gravity on the Earth, run PROJEC-
TILE.SCALE 70 45 .16 * 32. The velocity is 70 ft/sec
(about 50 mph), the projection angle 45°, and the acceler-
ation of gravity .16 * 32. To get a visual comparison with
the same trajectory on the Earth, run PROJECT.SCALE
70 45 32. You should see a significant difference in the
range (960 ft versus 153 ft), as shown in Figure 5.1.

Problems

Projects

1. If you can throw a baseball with a speed of 88 ft/sec (60
mph), how high can you throw the ball? (Answer: 144 ft)

2. Ifyou can throw a baseball with a speed of 88 ft/sec, what
is the maximum range on Jupiter? On Jupiter, gravity is
2.56 times as great as gravity on the Earth. (Answer: 100
ft)

3. Assume that you can jump 3 ft off the ground (that is,
raise your center of gravity by 3 ft). How high could you
Jjump on the Moon? On Jupiter?

4. If you can long jump 10 ft on the Earth, how far could
you long jump on the Moon? On Jupiter?

1. Artillery practice: A cannon is being fired from a building
of arbitrary height. The target is a small abandoned house.
The house should disappear if it is hit (PENERASE).
The muzzle velocity of the cannon is fixed and equal to
80 ft/sec. The configuration is illustrated in Figure 5.2.

2. Can you modify the projectile program so that both the
range and height are printed when the program ends?
(Hints: You might MAKE “SET.FLAG? “YES in PRO-
JECTILE. In STEP, check to see whether :VY is nega-
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Figure 5.2 Shell Trajectory

tive and whether the flag is set. If so, set the flag to NO
and note the height of the turtle. Another technique is to
note that when VY.OLD * VY.NEW is negative, there is
a change in the direction of motion.)
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The Monkey, the
Hunter, and
Einstein’s Principle
of Equivalence

Introduction A

In this chapter, we will describe an experiment for you
to perform—an expanded project. The experiment consists
of solving the following problem. A monkey rests on the
limb of a tree 200 ft above the ground. The base of the tree
is 200 ft from a hunter. The hunter is attempting to shoot
the monkey. The monkey, however, is wise in the ways of
avoiding the hunter’s bullets. The moment the monkey sees
the flash of the gun he drops from the limb of the tree so
the bullet passes harmlessly over his head.

The hunter is no fool either. She sees what is happening.
The monkey is dodging the bullet by jumping from the tree
limb. “Surely;” she thinks to herself, “there must be some
point at which I might aim the gun so that the bullet will
strike the monkey even if he does drop from the limb?”

The hunter returns to her safari tent to consult with
the turtle over this perplexing problem. She writes a Logo
program to simulate the situation. In this program, the tur-
tle is placed on the limb of the tree 200 units above the
ground with instructions to drop the moment the projectile
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is fired. The projectile comes from a point 200 units from
the base of the tree with a velocity and direction to be spec-
ified by the hunter. By trial and error she hopes to find the
particular angle and velocity which will bag her the monkey.

The results of the hunter’s Logo program are surpris-
ing. She finds that if she sets the angle so that the gun is
pointed below the turtle on the tree limb, the projectile
always passes below the falling turtle. If the angle is set
above the tree limb the projectile always passes above the
falling turtle. These results are independent of the muzzle
velocity of the projectile. However, the hunter finds that if
she aims the gun directly at the turtle on the limb, the
projectile strikes him every time—and this striking result is
independent of the muzzle velocity of the projectile. If the
muzzle velocity is low, the projectile strikes the turtle close
to the ground. If the muzzle velocity is high, the projectile
strikes the turtle close to the limb. Both examples are illus-
trated in Figure 6.1.

Your task is to reconstruct the hunter’s Logo program
and verify the results of her experiments. You may find the
PROJECTILE program in Chapter 5 useful. You will also
require two turtles. If your Logo does not have sprites, use
the ASK procedure from Notes to the User.

Einstein’s Principle of
Equivalence A

52

It is not too difficult to solve the equations of motion
for the monkey and the projectile and confirm the fact that
the monkey is struck if the gun is aimed directly at him. It
is, however, easier to convince ourselves of the correctness
of this result in another way. Imagine that the whole system
of hunter, monkey, and tree are enclosed in a gigantic ele-
vator as shown in Figure 6.2. Let us examine the dynamics
inside the elevator if the cable is cut the moment the gun is
fired and the elevator falls freely. As soon as the cable is cut,
the elevator begins to fall at a rate determined by the local
acceleration of gravity. If an object in the elevator were
dropped the moment the cable was cut, it would remain at
rest. Relative to the ground, it would fall with the local value
of the gravitational acceleration; but so does the elevator.
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Figure 6.2 Monkey and Hunter in Elevator

Thus the two accelerate together and therefore there is no
relative motion between the object dropped and the falling
elevator. Everything within the elevator appears to be
weightless. If at rest, it remains at rest. If in motion, it moves
with constant velocity in a straight line. To the hunter within
the elevator there are two possible interpretations of the
events that follow the cutting of the cable. She might assume
that she was in an elevator whose cable had just been cut
or that in some mysterious way, gravity had suddenly been

“suspended—everything within the elevator had just become

weightless. Indeed this is but a special case of Einstein’s
principle of equivalence:

It is impossible to distinguish between an accelerated frame of
reference and a uniform gravitational field.

Armed with this principle, Einstein was able to demonstrate
the association between gravity and the geometrical prop-
erties of space.

A Different Point of View

54

In the frame of reference in which the monkey and the
hunter are located in the elevator, it is easy to understand
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why the projectile hits the monkey. First we observe that
after the cable is cut there is no effective gravity in the elevator
car. Second, the cutting of the cable in no way affects the
motion of either the projectile or the monkey. Neither the
projectile nor the monkey is touching the walls of the ele-
vator so the elevator has no affect on them. (The hunter and
the tree are very much affected by the cutting of the cable.
They begin to accelerate. But then they are in contact with
the elevator.) Let us study the motion of the monkey and
the projectile from the point of view of an observer within
the freely falling elevator. This observer feels weightless.
Everything in the elevator is weightless. If the monkey is
weightless, he will remain at rest after letting go of the tree
limb. (The tree accelerates upward but the monkey remains
at rest.) The projectile, after it has left the barrel of the gun
is moving in a weightless environment and so, moves with
constant velocity in a straight line. If the gun is aimed directly
at the monkey, the monkey remains at rest, and the projec-
tile moves in a straight line, then the projectile must clearly
strike the monkey. The phenomenon is very easy to under-
stand in the accelerating frame of reference.

The laws of physics should be independent of the inter-
preter. Both the monkey and the hunter should be able to
apply basic physical principles and come to the same ulti-
mate conclusion. The only real difference between the two
is their point of view. To the hunter the elevator is at rest
and everything in it subject to a uniform gravitational field.
To the monkey, the elevator is accelerating upward and
there is no gravity. It so happens that for this particular
problem it is easier to obtain a solution by taking the mon-
key’s point of view.

1. Simulate this experiment. Let the muzzle velocity and
angle be input variables. ASK 0 to be the projectile and
ASK 1 to be the falling monkey.
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Escape Velocity

Newton’s Law of Universal
Gravitation A

In Chapter 3 we studied the motion of a falling body.
Now we will study the reverse motion—a body projected
straight up. The projection velocity will be so great that we
will have to consider the possibility that the body will move
far from the Earth’s surface. If it gets very far away, we
cannot assume that the acceleration due to gravity will be
constant. Certainly if the body gets very far away we can
neglect the Earth’s pull on the body. Therefore, our first task
is to study the effect of the Earth’s pull on a body that is
not close to the surface of the Earth.

This problem of gravitational forces had puzzled sci-
entists for over two thousand years. To the Greek astrono-
mers there were many questions to be answered. Why does
a stone fall to the ground? (Aristotle’s answer to this ques-
tion was: That’s where it belongs. That is its “natural state.”)
Why does the Moon rotate about the Earth? Is there any
connection between the motion of the Moon about the Earth
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and the trajectory of a stone? If so, why doesn’t the Moon
Just fall to the Earth the way a stone does?

Newton recognized the connection between the motion
of a projectile and the motion of planetary bodies. In his
treatise Principia Mathematica, we find an illustration very
similar to that of Figure 7.1. It represents a body being
thrown from a very tall pole. For low velocities the trajectory
is just what we would expect. As the velocity increases, how-
ever, the point at which the body strikes the Earth is further
and further from the pole. It seems quite reasonable that
at some very high velocity it will return to the pole without
ever striking the ground. Perhaps this is precisely how the
Moon behaves. It has a velocity which permits it to “fall” in
the Earth’s gravitational field in such a way that its orbit is
a circle. To verify this conjecture what Newton needed was
a quantitative law that he could test. The law he proposed
is called the law of universal gravitation and states that:

Any two bodies are attracted to each other with a force which
is proportional to the product of the mass of each body and
inversely proportional to the square of the distance separating
the centers of the two bodies. The force is attractive and is
directed along the line joining the two bodies.

or

mM

FKT

Figure 7.1 Ball Thrown From Tall Pole
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where F is the force on either body, m and M are their
respective masses and r the separation between the mass
centers. This law applies to all bodies. Your body is attracted
to the Earth with a force proportional to your mass and the
mass of the Earth. If your body was on the Moon, your mass
would be the same but the mass of the Moon is much less
than that of the Earth and so the gravitational attraction
between your body and the Moon would be much less.
Therefore, you would weigh less on the Moon.

You can measure this force of attraction between your-
self and the Earth by putting a spring under your feet and
measure the compression. This is essentially what you do
when you weigh yourself on a bathroom scale.

In order for the gravitational force to be large there
must be at least one large mass. Although there is a gravi-
tational force between you and your car, it is very small,
since neither you nor your car have a very great mass (cer-
tainly nothing like the mass of the Earth). It is not altogether
negligible and so, with very delicate instruments, it is pos-
sible to measure the attractive force between two bodies of
known mass m and M and so measure the factor of pro-
portionality in the above equation. The constant is called
the univeral gravitational constant and the symbol G is used.
We may now write:

_ GmM {11
TR

where G is a measurable quantity. (Its value is 6.67 X 10~ 1
in metric units.)

Newton’s Law of Motion A

Newton’s law of universal gravitation gives us the force
between any two bodies. But if we are to determine the
escape velocity of a rocket we must know how this force
affects the motion. This is given to us by Newton’s Law of
Motion which states that:

F

The sum of the external forces acting on a body is equal to the
product of the mass and the acceleration of the body.
or

Sum of the forces = ma
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Generally we write:
F = ma (2]

where F represents the sum of all the external forces. This
law tells us how a body responds to a force. In our particular
example of a body acted on by a gravitational force of a
body of mass M at a distance between centers of r, we may
combine Newton’s laws of motion and universal gravitation
and write,

—r2—=ma

Since the mass (m) is common to both sides of the equation
we have

_oM

rz

One last observation and we are finished. This acceleration
is attractive. Thus if the turtle is moving along the y=axis
the acceleration will be directed down toward the origin
where the planet is located. In this case the acceleration will
be negative. We have then

—GM
a=—3; (3]

- r

This is the rule we need. It tells us the acceleration of any
body at whatever distance (r) from the Earth’s center. We
see that the acceleration decreases as the body gets further

GMm
r2

(=

Figure 7.2 Acceleration Due to Gravity
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and further from the Earth. At very great distances the
acceleration due to the Earth’s gravity is negligible.

Of course this result applies to any two bodies. In gen-
eral it says:

The acceleration of a body due to the gravitational attraction

of another body of mass M at a distance r between centers

is GM/r%.

Notice that the acceleration of a given body depends only
on the mass of the other body. This is due to the cancellation
of the mass (m) in equation 3.

If we apply equation 3 to the surface of the Earth and
substitute the appropriate numbers we find that a = 32 ft/
sec/sec. If we did the same calculation for the Moon we
would find an acceleration of only 5.1 ft/sec/sec and on the
planet Jupiter a = 85 ft/sec/sec. If you fell out of bed on
Jupiter you might break your pajamas.

Escape Velocity A

Now that we have an expression for the acceleration
let us tackle the escape velocity problem. What must be the
velocity of a space ship when it has burned up its fuel if it
is to escape the Earth’s gravitational field? By “escape the
Earth’s gravitational field” we mean that the rocket is capa-
ble of coasting to indefinitely great distances from the Earth
and will never fall back. We shall make the assumption
(generally a good assumption) that the fuel is burned out
at a point not far from the Earth’s surface. When we speak
of the escape velocity we mean that for any velocity greater
than this value the rocket will coast to infinity, and for any
velocity less than this value it will fall back to Earth.

Our procedure for solving the escape velocity problem
will be very similar to the method we used to solve the free
fall problem. The basic motion will be determined by the
procedure:

TO STEP :VEL
FORWARD :VEL
STEP :VEL + ACC
END

The main difference is that the acceleration is no longer a
constant but will be determined by equation 3. Another
minor complication is that we will be blasting the turtle
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very far from the Earth and if we are to keep him in sight
we will have to use the WRAP mode. This means that we
cannot keep track of his position using YCOR as before.
But we shall see that Logo is more than a match for this
difficulty.

The ESCAPE program tests to see if the turtle has
been given a sufficiently high velocity that will allow him to
escape the Earth’s gravity.

TO ESCAPE :VEL :MASS
WRAP

CS FULLSCREEN

MAKE "RADIUS 40
DRAW.EARTH :RADIUS
SETH 0

MAKE "Y :RADIUS

ST

STEP :VEL + ACC /7 2
SPLITSCREEN PRINT [SPLATI!]
END

TO STEP :VEL

IF AND :VEL < 0 :Y < 278 [PE]
IF :¥ < :RADIUS [STOP1

FD :VEL

MAKE "Y :Y + :VEL

STEP :VEL + ACC

END

70 ACC
OP -:MASS / (:Y % :Y)
END

TO CIRCLE :RAD

MAKE "PI 3.14159

HT CS

PU FD :RAD RT 90 PD LT 1i5

REPEAT 12 [RT 30 FD 2 % :PI % :RAD / 121
LT 90 - 'i5

END

TO DRAW.EARTH :RADIUS
CIRCLE :RADIUS
END

TO START
ESCAPE 6.6 1000
END

The first procedure, ESCAPE :VEL :MASS, sets the stage.
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We use the WRAP mode so that we can always see the
turtle. The radius of the Earth is set at 40 (this may be
changed later) and a circle of radius 40 is drawn. The turtle
is placed on top of the Earth directed vertically, ready for
blast off.

The next command, MAKE “VEL :VEL + ACC/ 2
changes the initial velocity to the velocity after 1/2 sec. To
understand the reason for this command we must go back
to our earlier observation (see Free Fall) that all of our solu-
tions are approximations. The inaccuracies develop because
of the fact that the velocity is not constant but changes
continuously from the beginning of the step to the end of
the step. By using the average velocity between steps, we
improve the accuracy of our results.

Another point to notice in the STERP procedure is the
command MAKE “Y :Y + :VEL. Since the turtle moves
along the y=axis and the Earth is centered at the origin,
the distance from the center of the Earth to the turtle is
equal to the y coordinate. In the past we have used the
built-in YCOR to keep track of the y coordinate. We cannot
do that here since the turtle uses the WRAP mode. Each
second, the value of y increases by :VEL and so we simply
add it to y during each cycle. The conditional (IF) state-
ments are used to allow the turtle to erase his trail if he falls
back to Earth and to stop him when he reaches the Earth.

The units have been chosen to keep the turtle on the
screen. We have arbitrarily set G equal to one. In the next
section we will consider the problem of how to cope with
astronomical dimensions on a small TV or monitor screen.

Problems

1. Run the START procedure to see what happens. In
START the velocity is set equal to 6.6 and the mass of
the planet is chosen to be 1000. Estimate (approximately
+ .5) the minimum velocity needed for escape if the mass
of the planet is 400.

Repeat Project 1 with a planetary mass of 1600.

3. Can you predict how the minimum escape velocity will
depend on the mass of the planet? Use the results of
Problems 1 and 2 and choose from the following possi-
bilities. The escape velocity is proportional to:

a. the square of the mass of the planet.
b. the square root of the mass of the planet.
c. the mass of the planet.
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d. the inverse of the mass of the planet.
e. the reciprocal of the square of the mass of the planet.

1. Modify ESCAPE so that the radius of the planet is an

input variable (that is, TO ESCAPE :VEL :MASS
:RADIUS). Change the radius to several different values
and see if you can determine how the escape velocity
depends on the radius of the planet.

- A great hole is dug in the Earth which passes straight

through the center and out the other side. Let us study
the motion of the turtle as he falls through this hole.

We need a new rule for the acceleration of the turtle due
to the pull of the Earth. Suppose the turtle is a distance
y from the center of the Earth as in Figure 7.3. It can be
shown from Newton’s law of universal gravitation that
the acceleration due to gravity is given by

A= —GMy*

where M is now the mass inside a sphere of radius
y- Let M, be the total mass of the Earth and R
the radius of the Earth.

If the density of the Earth were constant the
mass inside a sphere of radius y is

(4/3)wy®
M=M,—=
(4/3)w R
or more simply
M = M,y*/R®

Figure 7.3 Turtle Passing Through the Earth
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The acceleration therefore is

a= —GMY* = —GMyy/R®
Notice that the acceleration is a linear function
of y rather than an inverse square function as
before.
Let G = 1, My = 400, and R = 40. Let the

turtle fall in the hole and see what becomes of
him.

A

In the previous section we discussed the escape velocity
using turtle graphics. We would now like to do some real-
istic problems. What, for example, is the escape velocity
from the Earth, or the Moon, or Mars?

To answer such questions we must modify the ESCAPE
program. We will call this program ESCAPE.SCALE.

TO ESCAPE.SCALE :VELOCITY :MASS :RADIUS
HRAP

CS FULLSCREEN

MAKE "G B.B67N11

MAKE "SCALE 50 / :RADIUS
DRAW.PLANET :RADIUS # :SCALE

SETH ¢

MAKE "Y :RADIUS

MAKE "DT :RADIUS / (5 » :VELOCITY)
5T

STEP :VELOCITY + :DT * ACC / 2
SPLITSCREEN PRINT [SPLAT!]

END

TO DRAW.PLANET :R
CIRCLE :R
END

TO CIRCLE :RAD

MAKE "P1 3.14159

HT CS

PU FD :RAD RT 80 PD LT 15

REPEAT 12 [RT 30 FD 2 % :PI % :RAD / 121
LT 90 - 15

END

TO STEP :VEL

IF AND :VEL < O (:Y < 279 / :5CALE + :RADIUS) ([PE1
IF :¥ < :RADIUS [STOP]
FD :VEL % :DT * :SCALE
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MAKE "Y :Y + :VEL % :DT

STEP :VEL + :DT x ACC
END

T0 ACC
OPF - :G % MASS / (:Y % :Y)
END

TO START
ESCAPE.SCALE 10300 6.0E24 B300000
END

The first thing we must do is to MAKE “G 6.67E —11
which is the numerical value of G in metric units. Next we
recognize that we cannot draw a circle of radius 6,300,000
m (the radius of the Earth in meters) on the screen. We need
to scale the dimensions so that the planetary body will fit
on the screen. You will see in ESCAPE.SCALE the com-
mand MAKE “SCALE 50 / :RADIUS where :RADIUS
is radius of the planetary body so that later, when we
DRAW.PLANET with a radius of :RADIUS * :SCALE
we will obtain a circle whose radius is 50 turtle units. This
is a reasonable size for the planet on the screen. We will
apply the scale factor only when we do something that applies
to the screen. In all of our numerical calculations we will
use the actual numbers that apply to the particular plane-
tary body. There are only two places in the program where
we address the screen. The first is when the planet is drawn
and the second is when the turtle goes FORWARD on the
screen (see the STEP procedure). All other calculations are
carried out as before with no scaling.

There is a second modification necessary. We must use
a time interval between STEPs which is greater than the 1
sec interval we have used earlier. In ESCAPE.SCALE you
will see MAKE “DT :RADIUS / (5 * :VELOCITY). With
this choice of DT the distance moved in each step
((VELOCITY * :DT) will be :RADIUS / 3 or one-fifth of
the planetary radius. This is a reasonable step length. Not
so small that the program takes too long to run and not so
long that the numerical algorithm breaks down.

With these modifications we can now consider some
realistic applications. Some of the many possible applica-
tions are included in the Projects and Problems sections.
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4. The mass and radius of several planetary bodies are listed
in the table. Fill in the table by determining the escape
velocities.

Mass Radius Escape Velocity

Earth 6 X 10**kg 6,300,000 m 11,000 m/sec
Moon 7.3 X 10**kg 1,740,000 m ?
Mars 6.4 X 10*kg  3,300,000m ?
Mercury 3.2 X 10*kg 2,400,000m ?

5. You have paused in your space journey to visit a small
asteroid. The asteroid is a spherical mass of ice with a
radius of 10 mi (16,000 m) and mass of 8.5 X 10% kg.
You must be very careful how you move about on this
asteroid. If you jump for joy you may achieve escape veloc-
ity and fly off into space to become just another planetary
body. To what velocities should you limit your Jjump for
Joy?

6. It is possible to escape the Earth’s gravitational pull but
not escape from our solar system. The sun, although much
further away than the Earth, has a much larger mass.
Let us suppose that your rocket ship is located at a dis-
tance of 1.5 X 10'' m from the sun. (This is the mean
distance between the Earth and the sun.) Starting from
this point (set RADIUS = 1.5 10'") what velocity at
burnout is required to escape the sun’s pull? The mass of
the sun is 2.0 x 10%° kg.

3. The upward and downward motion of a rocket are sym-
metric. The velocity at any point on the way up is equal
to the velocity at the same point on the way down. If the
rocket just barely escapes the Earth’s gravity it will coast
to a very great distance where its velocity is practically
zero. From the symmetry of the trajectory we might
determine the escape velocity of a rocket by releasing it
from a very great distance with zero velocity and note its
velocity when it strikes the Earth. This relieves us of the
tedium of trying many different velocities to see which
allows the rocket to escape the Earth’s gravity. Modify
ESCAPE.SCALE to determine the escape velocity in this
way.

4. Use the results of Project 2 to determine the time it would
take for a trans — earth train to pass through the Earth.
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Introduction A

The dynamical laws that govern the motion of a base-
ball and the flight of a rocket ship are the same as the laws
that govern the motion of the planets. Each planet is attracted
toward every other body in the solar system. The sun is by
far the most massive body in our solar system and therefore
has the greatest effect on the motion of the planets. In fact,
the mass of the sun is so great (300,000 times the mass of
the Earth) that we may neglect, for the most part, the effect
of all other bodies on the motion of the planets.

We would like to study what effect the sun has on the
motion of the planets. What is the shape of the planetary
orbits? How does their speed depend on the distance from
the sun? How does the Martian year compare with the Ven-
usian year?

The Equations of Motion A

We have seen that there is a gravitational force between
any two bodies. This force is given by Newton’s law of uni-
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versal gravitation:

_ GmM

F=—o

rZ

where r is the distance between centers. It is Newton’s law
of motion which tells us how this force affects the motion
of the body. It produces an acceleration given by:

F=mA
Combining these two laws we see that the acceleration of
the body of mass m is given by

A M
1,2

Now the acceleration is a vector. Since the gravitational
force is attractive, the acceleration of a given planet is directed
toward the sun. If we place the sun at the origin of the x-y
coordinate system, we can see from Figure 8.1 that the x
and y components of the acceleration vector are

Ay = — Asin (heading)

A, = — A cos (heading)

But we also see from the figure that

sin (heading) = x/r

A
__________ A, Planet
: ’ AY
7 A |
7
i !
y . e :
&6\(\ i |
Vg :
D N
Sun X

Figure 8.1 Components of the Acceleration Vector
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and
cos (heading) = y/r
Therefore
A, = —Axr
and
Ay = —Ayir
or since A = GM/r?
A, = —GMxr?
and
A, = —GMy/r®

It is useful to compare these equations to the funda-
mental equations of motion we used to determine escape
velocity in Chapter 7. If we consider the special case of a
body moving along the y-axis, thenx = 0 andy = r. Therefore

A,=0
and
A, = —GMy/r® = —GM/r?

which is exactly the equation of motion we employed to
study the escape velocity of a rocket ship.

The Logo Procedure A

Now that we have the laws for the acceleration we may
determine the trajectory of any planetary body. We do this
Just as we have done in the past: FORWARD velocity, change
the velocity by adding the acceleration and go back to FOR-
WARD velocity. In ORBIT we use units chosen to keep the
turtle conveniently on the screen. Later we will consider
more realistic problems by scaling the distances.

TO ORBIT :X :Y :SPEED :DIRECTION
WINDOW CS HT
MAKE "MASS 4000

CIRCLE 20

PENUP

SETX X SETY :Y
FIND.R

MAKE "UX (:SPEED % SIN :DIRECTION) + ACCX / 2
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MAKE "VY (:SPEED % COS :DIRECTION) + ACCY /7 2
FULLSCREEN PENDOWN

STEP VX VY

END

TO FINDR

MAKE "R SQRT ((S0 XCOR) + 50 YCOR)
MAKE "R3 :R % :R % :R

END

TO 8@ :X
OP :X % :X
END

TO STEP :VUX :VY

INC XY :UX :VY

FIND.R

STEP :VX + ACCX :VY + ACCY
END

TO INC.XY :DX :DY
BETPOS LIST XCOR + :DX YCOR + :DY

END

T0O ACCX

OP -:MASS % XCOR / :R3
END

T0 ACCY

OP -:MASS % YCOR / :R3
END

T0 CIRCLE :R

MAKE "PI 3.14159

HT PU HOME

FD :R RT 80 PD LT 15

REPEAT 12 [RT 30 FD 2 % :PI % :R / 121
LT (80 - 15)

END

TO CIRCULAR
ORBIT 50 0 8,3 0
END

TO ELLIPSE

ORBIT 120 0 5 0
END

T0 COMET
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ORBIT -150 -30 8 31
END

In ORBIT you may assign any value to the x and y
coordinates of the planetary body, give it any speed, and set
its direction of motion as you please. The mass of the central
body (the turtle’s sun) is chosen to be 4000 and we have set
G = 1. The central body has a radius of 20 turtle units
(CIRCLE 20). The orbiting body is placed in position and
given the appropriate x and y components of velocity. Notice
that once again we have adjusted the velocity to be the mid-
point velocity by adding 1/2 the change in the velocity (ACCX
and ACCY). (Take care to enclose the sine function in paren-
theses. It acts on everything that follows until it reaches a
parenthesis or an end of line.) The turtle then begins to step
off the trajectory of the orbiting body.

One of the things we will examine in the Projects sec-
tion is the shape of planetary orbits. Most of the planets in
our solar system move in roughly circular orbits, but there
are other shapes as well. The path may be an ellipse (with
the sun at one of the focii), a hyperbola, or a parabola.
Another thing we would like to examine is the relationship
between the period of the orbit (the time it takes to rotate
about the sun) and the distance of the planet from the sun.
What is the length, for example, of the Martian year? (One
Martian year, you say? Quite right, but how many Earth
days in a Martian year?)

Vector Addition of Velocities A

The basic problem in determining the trajectory of the
orbiting body is to determine the effect of the acceleration
in changing the velocity. We have solved this problem in
ORBIT by resolving vectors (velocity and acceleration) into
their components. The virtue of doing this is that the com-
ponents add in the same way that ordinary numbers add—
two plus two is four. But a vector two units due east plus a
vector two units due north is not a vector four units in
length. Vectors are a little more difficult to add. We have
seen in Chapter 1 that turtle graphics is made to order for
adding vectors. We can use this capability to solve our orbit
problem.
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In Figure 8.2, turtle O represents the orbiting planet.
Its current velocity is v and its acceleration A. We obtain its
new position by the command: FORWARD :V. We must
then obtain the velocity at the new position in order to repeat
the operation. We may set turtle 1 the task of finding this
new velocity. He does this by adding the acceleration A to
the velocity v. The sum is the velocity at the new position.
This basic process is carried out repeatedly in ORBIT.NEW.

We use turtle 0 as the orbiting body and turtle 1 to keep
track of the velocity for us.

Turtle O
x~

Planet

~¥  New
Turtle 1 velocity

Figure 8.2 Turtle O Orbiting and Turtie 1 Computing Velocity

TO ORBIT.NEW :X :Y :SPEED :DIRECTION

HOME .ALL

CS WINDOW

MAKE "MASS 4000

PENUP

SETPOS LIST X :Y

ASK 1 [PENUP HT HOME PENDOWN SETH :DIRECTION FD
:SPEED]

FULLSCREEN PENDOWN HT

STEP

END

TO STEP

SETH :DIRECTION
FD :SPEED
CHANGE.VEL

STEP

END
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TO CHANGE.VEL

SETH TOWARDS [0 01

MAKE "ACC.ANGLE HEADING .
MAKE "ACC :MASS / ( ( SQ@ XCOR ) + SO YCOR )
ASK 1 [ADD.ACCI

END

TO ADD.ACC

SETH :ACC.ANGLE

FD :ACC

MAKE "SPEED SORT ( SQ XCOR ) + SQ YCOR
SETH TOWARDS [0 01 RT 180

MAKE "DIRECTION HEADING

END

T0 80 :X
OP X » X
END

70 START
ORBIT.NEW 120 0 4 0
END

Notice in ORBIT.NEW that we ASK 1 to go HOME, set
itself in the direction of the velocity, and move forward a
distance equal to the speed. In effect this gives us a vector
at the origin that determines the velocity. Later in ADID.ACC
this velocity will be increased by an amount equal to the
acceleration.

In STEP, turtle O (the orbiting body) points itself in
the direction of the velocity and moves forward a distance
equal to the speed. We then call CHANGE.VEL where
turtle O sets its heading toward home. This is the direction
of the acceleration and determines the acceleration angle.
The magnitude of the acceleration is as before. Now turtle
1 is called on to add this acceleration to the old velocity in
order to generate the new velocity. When this is completed
turtle O proceeds to step again with the new velocity.

The advantage of this method is that we can see clearly
the nature of the vector addition of velocities. (If you would
like to see the velocity on the screen, you may wish to insert
a scale factor for turtle 1.)

(It is interesting to note that the trajectory of turtle 1
is always a circle; see Figure 8.3. The planetary orbit is a
circle in velocity space but an ellipse in configuration space.
The center of the circle is not necessarily coincident with
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Figure 8.3 ORBITNEW 120040

the force center. For further discussion of this subject see
Harold Abelson, Andrea di Sessa, and Lee Rudolph, “Veloc-
ity, space and the geometry of planetary orbits;” American
Journal of Physics 43 (1975), p. 579.)

Problems

. Try some orbits and see what you get. Choose different

values of x, y, speed, and direction and see what happens.
Try the given procedures of CIRCULAR, ELLIPSE,
and COMET and see what happens.

Change the mass to 3500 and try CIRCULAR again.
What is the shape of the new orbit?

. We would like to determine how the velocity of the planet

in a circular orbit is related to the MASS of the central
body and the radius of the orbit. To do this, we first
observe that a radius of 50 and a velocity of 8.9 give a
circular orbit. Change the radius to 100 and see what
new velocity is needed to produce a circular orbit. Can
you use this result to select from the following choices
the relationship between the velocity and the radius for
circular orbits?

a. v = constant * r'’?
b. v = constant / r*’?
c. v = constant *r
d. v = constant / r

Next we want to see how the velocity of a circular orbit
depends on the mass of the central body. To do this,
change the MASS to 2000, set the radius at 100 and see
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what velocity is necessary to achieve a circular orbit. Can
you tell from this result which of the following relation-
ships between the velocity and the mass of the central

body is correct?
1/2

a. v = constant * m
b. v = constant / m'?
C. v = constant * m
d. v = constant / m

Next see if you can put Projects 3 and 4 together and find
exactly how v depends on m and r together. Can you
determine the constant as well? For example, is v = 2

m*? r'? a correct formula?

It is interesting to see what would happen if we lived in
a universe in which the gravitational force were not pro-
portional to 1/r*. Consider the shape of the orbits if the
force is proportional to 1/r®. To do this, change MAKE
“R3 R * R * :R to MAKE “R3 :R * :R * :R * :R in
the FIND.R procedure. Also (to keep the turtle on the
screen) MAKE “MASS 4000 * 50 in ORBIT. Now try
CIRCULAR. (These orbits are known as Cotes’ spirals
in honor of the man who first investigated this problem.)

This project is similar to Project 1. Let the force be pro-
portional to 1/r*. (Change the mass to 4000 * 50 * 50;
that is, 1 X 10.) You will find only two types of orbits:
Those that go right into the sun and those that go off to
infinity. Be happy that you do not live in such a universe.
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The Music of the
Spheres

Introduction A

Scaling

In Chapter 8 we limited ourselves to imaginary plan-
etary bodies. We were restricted in our choice of parameters
by the necessity of keeping the turtle in view. We would like
to consider more realistic problems now-—in particular, the
orbits of all nine planets in our solar system as well as the
motion of the Earth’s moon and artificial satellites. In order
to solve our problem with the limitations of the screen size
we will scale all distances that are to be drawn on the screen.

A

Our objective is to represent the solar system on the
screen. This cannot be done all at once. If we were to draw
Pluto on the screen (orbital radius 5.9 X 10** m) at a dis-
tance of 100 turtle units, the radius of Mercury (orbital
radius 5.8 X 10'° m) would be approximately 1 turtle unit.
Now we clearly could not see a circle so small. We will
therefore consider the planets in two groups. The first will
be Mercury, Venus, Earth, and Mars. The second will be
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Jupiter, Saturn, Uranus, Neptune, and Pluto. Of the first
group, Mars is farthest from the sun. For this reason we
choose the scale in such a way that the orbit of Mars fills
the screen. The largest circle we can draw on the screen has
a radius of 119 turtle units. Thus our scale factor is 119
divided by the radius of the orbit of Mars (MAKE “SCALE
119/ MARS). To represent the second group we will change
the scale factor to 119 divided by the orbital radius of Pluto.

We will also have to make an adjustment in our time
interval DT or the orbit will take too long to develop. We
will do this by adjusting the time DT so that the distance
the turtle moves in each step is some reasonable screen
distance. The distance the turtle moves in each step is
SPEED * :DT * :SCALE. If this distance is too small, the
orbit will take too long. If the distance moved is too large,
the orbit will not be very accurate since our approximation
assumes that the velocity is fairly constant over the length
of the step. As a reasonable compromise we set

(:SPEED) * (:DT) = (:SCALE) = 8

The step length is therefore 8 turtle units, not too large and
not too small. If we solve this equation for :DT we find

8
T =
(:SPEED) * (:SCALE)

This should be a reasonable time interval between steps.

We have taken care of two of the problems in con-
structing a program to draw the planetary orbits. A scale
has been chosen for both the distances and the time. There
is one more question to deal with and then we will begin.

All of the planets in our solar system travel in orbits
which are very nearly circular. Since these orbits are nearly
circular we would like our program to generate only circular
orbits. We have examined in earlier problems the relation-
ship between the speed, mass of the central body (now the
Sun), and the radius in order to obtain a circular orbit. The
result of that work shows that this relationship is

v = (W)™

In that problem we had set G = 1. Now we use the appro-
priate value of G in metric units; G = 6.67 X 10™'. This G
must multiply the mass so that
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v = (GM/)Y2

In CIR.ORBIT we will input the value of the planetary
radius and require that the velocity satisfy this equation.
This assures us that the orbits will be circular and we do
not have to resort to the trial and error approach of Chapter
8. Our program CIR.ORBIT becomes

TO CIR.ORBIT :R- ,

CS

MAKE "X :R MAKE "Y 0

MAKE "DIRECTION ©

MAKE "TIME 0O

MAKE "RAD,OF.SUN 6.91998ES8

MAKE "MASS.DF.SUN 2.E30

MAKE "G B.B7N11

MAKE "SCALE 119 / MARS

MAKE "SPEED SORT :G % :MASS5,0F,SUN / :R
MAKE "DT 8 / (:SPEED % :5CALE)

CIRCLE :RAD.OF.S5UN % :SCALE

PU

SETX :R % :SCALE

FIND.R

MAKE "VUX (:SPEED % SIN :DIRECTION) :DT # ACCX /7 2
MAKE “VY (:SPEED x COS :DIRECTION) + :DT % ACCY / 2
FULLSCREEN PD

STEP :UX VY

SPLITSCREEN PRINT :TIME / (24 » BO % BO)
END

+

TO STEP :VUX VY

IF KEYP [STOP1]

MAKE "X X + :UX % :DT

MAKE "Y 1Y + :UY % :DT

SETPOS LIST (:X % :SCALE) (:Y % SCALE)
MAKE "TIME :TIME + :DT

FIND.R

STEP :VUX + ACCX * :DT :VY + ACCY % :DT
END

TO FIND.R

MAKE "R SORT (SQ :X) + SQ:V
MAKE "R3 :R % :R % :R

END

T0 8Q :X

OP X % ¥
END
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TO ACCX

OP -:G » :MASS.OF.SUN % :Y / :R3
END

T0 ACCY

OP -:G % :MASS.OF.SUN % :Y / :R3
END

TO CIRCLE :R

MAKE "“PI 3.141589

HT PU HOME

FD :R RT 90 PD LT 15

REPEAT 12 [RT 30 FD 2 % :PI % :R / 121
LT (80 - 15)

END

70 MERCURY
0P 5.79887E10
END

TO VENUS
OP 1.08E11
END

TO EARTH
OP 1.5E11
END

T0 MARS
OP 2.3E11
END

TO JUPITER
OP 7.89887E11
END

TO SATURN
OP 1.43E12
END

TO0 URANUS

opP 2.87E12
END

TO NEPTUNE

OP 4.48989E12
END

TO PLUTO
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0P 5.88997E12
END

As the planet steps through its orbit the time is incre-
mented by DT after each step. One of the things that we
want to examine is the period of rotation. The elapsed time
(measured in Earth days) may be determined at any point
in the orbit by pressing any key. This will stop the STEP
procedure. Control will then return to the procedure that
called STEP; that is, CIR.ORBIT. The next command is
PRINT :TIME / (24 * 60 * 60), which is just the time in
days.

We have included nine procedures, MERCURY through
PLUTO, that output the appropriate radius of the planet.
If we call CIR.ORBIT EARTH we obtain the Earth’s orbit.
By pressing the space bar (or any key) when the orbit closes
we should find the length of the Earth’s year.

If you attempt to determine the period of any of the
planets outside the orbit of Mars you will not be able to see
the turtle—he will be off the screen. To deal with this second
group of planets (Jupiter, Saturn, Uranus, Neptune, and
Pluto) change the scale from

MAKE "SCALE 119 / MARS
to

MAKE "SCALE 118 / PLUTD

Drawing Orbits A

Up to this point we have constructed the planetary orbits
by solving Newton’s laws of motion and universal gravita-
tion. For circular motion we already know the shape of the
orbit; it is a circle. We do not really need Newton’s laws to
draw a circle. The only thing we do need from Newton is
the speed and we have that:

v = (GM/r)?

We will write a program which draws the circular orbit
of any planet. We choose to draw the orbit not because it is
better than calculating it from the laws of motion; we do
so because it is much faster and our next objective is to write
a program that will put several planets on the screen at the
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same time in order to see how the planets move relative to
one another. With several planets on the screen at once the
turtle gets very busy, and so it is a kindness to simplify his
task.

In order to draw circular orbits we replace

STEP :UX VY
in CIR.ORBIT with

MAKE "ANGLE 360 % B8 / (2 % :PI % :R * :S8CALE)
DRAW.ORBIT

where DRAW is defined by the procedure

TO DRAW.ORBIT

IF KEYP [STOP1

FD 8

LT :ANGLE

MAKE "TIME :TIME + :DT
DRAW.ORBIT

END

Try this modification and see how much faster it is,
but not before you understand why ANGLE is defined the
way it is.

Four Planets A
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As mentioned earlier, it is not possible to put all nine
planets on the screen at once because of scaling problems.
We can, however, put up four at a time. To speed up the
movement we draw the orbits as demonstrated in the pre-
vious section.

TO PLANETS :RO :R1 :R2 :R3
WINDOW

HOME . ALL

CS FULLSCREEN ST

MAKE "PI 3.14159

MAKE "R ( SE :R0O :R1 :R2Z :R3 )
MAKE "TURTLE.NO [0 1 2 3]

MAKE "MASS.0F.SUN 2.E30

MAKE "G B.B7N11

MAKE "SCALE 119 / MAX :R

MAKE "V [1

MAKE "ANGLE [1

SET.VELOCITIES :R

MAKE "DT 8 /7 ( ( MAX :V ) x :SCALE )
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SET.PLACE :R :TURTLE.NO
SET.ANGLE :R :V

PD HT

DRAW.ORBITS :V :TURTLE.NO
END

TO SET.VELDCITIES :R

IF EMPTYP :R [STOP1

MAKE "V LPUT SORT (:G % :MASS.SUN / FIRST :R) :V
SET.VELOCITIES BF :R

END

TO SET.PLACE :R :TURTLE.NO

IF EMPTYP :R [STOP1]

ASK FIRST :TURTLE.NO [PU SETX :SCALE % FIRST :R PDI
SET.PLACE BF :R BF :TURTLE.NO

END

TO SET.ANGLE :R :V

IF EMPTYP :R [STOP]

MAKE "ANGLE LPUT (3B0 % :DT % FIRST :U) /7 (2 % :PI
¥ FIRST :R) :ANGLE

SET .ANGLE BF :R BF :V

END

TO DRAW.ORBITS :V :TURTLE.ND
TURN :TURTLE.NO :ANGLE

STEP :V :TURTLE.NO
DRAW,ORBITS :V :TURTLE.NO
END

TO TURN :TURTLE.NO :ANG

IF EMPTYP :TURTLE.NO [STOP]

ASK FIRST :TURTLE.NO CLEFT FIRST :ANG]
TURN BF :TURTLE.NO BF :ANG

END

TO STEP :V :TURTLE.NO

IF EMPTYP :TURTLE.NO [STOP] :

ASK FIRST :TURTLE.NO L[FD ( FIRST :V ) % :DT
:SCALE]

STEP BF :V BF :TURTLE.NO

END

TO MERCURY
DP 5.7999BE10
END

TO VENUS
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0P 1.08E11
END

TO EARTH
0oP 1,5E11
END

TO MARS
OP 2,3E11
END

T0 JUPITER
OP 7.789998E11
END

TO SATURN
OP 1.43E1Z2
END

TO URANUS
0P 2.97E12
END

TO NEPTUNE
OP 4.48999E12
END

TO PLUTO
OP 5.88998E12
END

TO START
PLANETS MERCURY VENUS EARTH MARS
END

In PLANETS there are four inputs, the radii of any
four planets. There are also four lists used in PLANETS
to keep track of the necessary information. First there is a
list TURTLE.NO ([0 1 2 3]) that simply keeps track of
which turtle we are talking to. Second, there is a list R in
which we store the values of the four radii of the orbits.
Third, there is a list V containing the four velocities of the
planets. Finally, there is a list ANGLE that stores the angles
through which the four planets should turn with each step.

Notice that PLANETS is self-scaling. The SCALE is
set at 119 / MAX :R where MAX :R is the maximum of
the four radii. Later when the planets are SET in PLACE
with the command SETX :SCALE * FIRST :R, we can



The Music of the Spheres

be sure that for any FIRST :R the value of the x-coordinate
will be 119 or less. We may call PLANETS 1 2 3 4 or
PLANETS 1E10 2E10 3E10 4E10 and the scale factor
will make the appropriate adjustment. (It is not necessary
to order the radii. The only precaution that you must take
is not to choose radii which differ by too great a factor. If
one radius is 1/1000 of the largest radius then its screen
radius will be approximately .1 turtle units, which is too
small to see. You cannot put Pluto and the Earth on the
screen at the same time.)

Problems

Determine the period of rotation for Mercury. To do this,
run CIR.ORBIT MERCURY and press the space bar
after the orbit is completed. The elapsed time will be
printed. Do the same for Venus, Earth, and Mars.

Change the scale so that Pluto, the farthest planet from
the Sun, is at 119 turtle units. Determine the period of
rotation for Jupiter, Saturn, Uranus, Neptune, and Pluto.
As a hint, the Pluto year is about 248 Earth years.

Determine the period of rotation of the Moon about the
Earth. The mass of the Earth is 6.0 X 10** kg and the
distance between the Moon and the Earth is 3.8 x 10°
m. You will need to make some modifications of
CIR.ORBIT to determine the answer to this question.

- A communication satellite stays over the same spot on

the Earth at all times. It appears to be stationary, which
makes it more useful for purposes of communication. If
it appeared to rotate about the Earth it would be avail-
able for use, at best, only 50% of the time. Of course it
is not actually sitting still. It is in fact rotating about the
Earth with a period of 24 hours. Such an orbit is called
“geosynchronous” (synchronous with the Earth). Assum-
ing that the orbit is circular, what is the radius of the
orbit? (Hint: Use the information given in Problem 3.
The result should be about 6 to 7 times the radius of the
Earth.)

Call PLANETS MERCURY VENUS EARTH MARS
and see if you can explain why Venus is seen from Earth
only in the early morning or late evening hours. Mars,
on the other hand, may be visible at any time of the night.

Call PLANETS MERCURY VENUS EARTH MARS.
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Next, compare with PLANETS JUPITER SATURN
URANUS PLUTO. This should give you some idea of
the size of the solar system.

In Appendix A you will find a table giving the planetary
positions on January 1, 1985. Construct a program which
places the Earth, Mars, Jupiter, and Saturn in their proper
positions at the first of the year. As you run the program
the planets should rotate about the center of the screen
and the elapsed time should be printed at the bottom.
Let the program run until the current date is reached.
Check the night sky and see if the positions of the planets
agree with your calculations.

It was noted as long ago as the third century B.C. by
Greek astronomers that at certain times of the year Mars,
Jupiter, and Saturn trace out retrograde orbits. A retro-
grade orbit is one in which the planet, viewed from the
Earth, reverses its apparent motion relative to the fixed
stars (see Figure 9.1). Can you construct a program which
illustrates the reason for the retrograde motion? The pro-
gram would draw a line connecting the Earth to the
planet of your choice. Would you see retrograde motion
of Mercury and Venus? How many times, during one
Martian year, will Mars exhibit retrograde motion?
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Fixed stars

T e e

Retrograde rotation

Normal rotation

Figure 9.1 Normal Rotation and Retrograde Rotation
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1 o Voyager Il and
Lunar Orbits

Introduction A

Sending a space ship to Uranus requires a very big
rocket and takes a long time. Voyager II is scheduled to
reach Uranus on January 14, 1986 and will have spent eight
years in space to cover the eight billion miles. Clearly, any
trick which would speed up the flight would be welcome.
One method we would like to explore is bouncing Voyager
off the other planets; in essence using the planets as large
paddles to accelerate Voyager. Now you clearly cannot bounce
a space ship off a planet. What you can do, however, is fly
the space craft very close to the planet and use the gravi-
tational field to pull the space craft around the planet. The
scheme is illustrated in Figure 10.1. On the left, a space ship
is accelerated by a planet and on the right a ball is accel-
erated by a paddle. The mechanism by which the two bodies
interact (the space ship and the planet or the paddle and
the ball) is not important. What is important is that in an
energy conserving collision one body may gain energy and
the other lose a comparable amount, thereby conserving the
total. As a general rule we can say that when a light object
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Figure 10.1 Space Ship Bouncing off Planet like Ball off Paddle

is “struck” by an advancing heavy object, the light object
will gain energy. On the other hand, when a light object
strikes a retreating heavy object, the light object will lose
energy. This is illustrated in Figure 10.2. Conversely, if the
truck were approaching the ball, the ball would gain energy
after impact, as illustrated in Figure 10.3.

v =40 v=10

O— %—}v=10 v=20 «—) w%—p

Ball o=
Before After

Figure 10.2 A Ball Bounces Off a Receding Truck

v=40. v=10

O <+—Vv=10 v=60 4—066 «—

=0
Before After

Figure 10.3 A Ball Bounces Off an Advancing Truck

The general rule in such head-on collisions is that if
energy and momentum are conserved, the relative velocity
of approach is equal to the relative velocity of recession. In
Figure 10.2 this relative velocity is 30 mph before and after
the collision. In Figure 10.3 the relative velocity is 50 mph
before and after the collision.
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Uranus

O

Jupiter

Earth
Figure 10.4 The Space Ship Gets a Boost From Jupiter

Now we do not want to bounce our space ship off the
planet the way the ball bounces off the truck. But we might
get a boost on our trip to Uranus by employing a tactic such
as that illustrated in Figure 10.4. The space ship will increase
its velocity by “colliding” with the advancing planet, Jupiter.
If the launch of the space ship is timed just right we may

boost it on its way toward Uranus by using Jupiter as a great
paddle.

The Turtle Soars A

This effect is not unlike the soaring of birds rising in a

thermal uplift. The strategy is to find something going your

- way and take a free ride. We may observe the effect with
the program VOYAGER:

TO VOYAGER :X0 :YO0 V0 :ANGO :1X1 V1
WINDOW HOME.ALL
MAKE "MASS 8000
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CS PU

SETPOS LIST :X0 :Y0

ASK 1 [PU SETPOS LIST :X1 0 PD1
FIND.R

MAKE "UX (:U0 % SIN :ANGO) + ACCX / 2
MAKE "UY (:V0 % COS :ANGO) + ACCY / 2
MAKE "DT .1

FULLSCREEN PD HT

STEP :VUX :VY :X1

END

TO STEP :VUX :VY X1

PD

SETPDS LIST :%0 :YO

ASK 1 [SETPOS LIST :Xi 01
MAKE "XO :1X0 + :UX % :DT
MAKE "YO :Y0 + :VY % :DT

FIND.R

(PRINT L[SPEED =1 SORT ((50 :UX) + S0 :UY))

STEP :UX + ACCX % :DT :UY + ACCY # :DT :X1 + HLS R
:DT

END

TO FIND.R

MAKE "R SORT ((SQ (:X0 - :X1)) + 8§ :Y0)
MAKE "R3 :R % :R % :R

END

TO ACCX
OP -:MASS * (:X0 - :X1) / :R3
END

TO ACCY
OP -:MASS % :Y0 / :R3
END

TO 80 :X
0P X % X%
END

TO START
VOYAGER -120 -120 10 60 120 -8
END

VOYAGER takes six inputs. The first four relate to the
space ship and specify its position and velocity. The last two
specify the x-coordinate and velocity of the planet. The planet
is given a mass of 8000. (You may wish to change this.) The
rest of the program is similar to that for planetary orbits.
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The main difference is that we have two moving, interacting
bodies.

Run START to see how the space ship can pick up
energy from an advancing planet. Use the split screen to
observe the increase in velocity. In this example, the space
ship begins with a velocity of 8 and after bending around
the planet it leaves the screen with a velocity of about 18.
Experiment with other initial parameters to see if you can
further increase the velocity. (Remember, if you get too close
to the planet, the numerical approximations break down
and your results may be due more to a numerical error.) In
the Problems section we will prove that the space ship will
lose velocity when it bounces off a receding planet.

The Lunar Orbit A

Suppose you were to view the solar system from a great
distance in space. You see the planets revolving about the
sun. You also see the planetary moons rotating about their
parent planets. From the point of view of someone on the
Earth, the Moon rotates in a circle about the Earth. But
what does the orbit look like to the observer in space? From
space we see the Moon rotating about a planet which is
itself rotating about the sun. Might the orbit look something
like that in Figure 10.5? Surprisingly, the path looks quite
different. It will more closely resemble that shown in Figure
10.6.

We would like to show how these figures can be gen-
erated as a special application of the VOYAGER program.
In that program there was one massive body (a planet)
moving with constant velocity in a straight line and one light
body (the space ship) whose motion was affected by its
gravitational interaction with the planet.

We now imagine the Moon as a space ship orbiting
about the Earth. The Moon does not greatly affect the motion
of the Earth since the Earth is S0 massive, but the Earth

o000 0N

XXX G X 7 o

Moon
Figure 10.5 Possible Moon Orbit About the earth
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Figure 10.6 Actual Moon Orbit About the Earth
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very definitely affects the motion of the Moon. Because of
the pull of the Earth on the Moon, the Moon rotates about
the Earth once every 27 days.

To see the shape of the Moon’s orbit we make the fol-
lowing modification to the VOYAGER program. We change
the MASS in ORBIT from 8000 to 750. We also add the
following procedure:

TO MOON.ORBIT :V,EARTH

MAKE "V,MOON 5

MAKE "Y.MOON 750 / ( :VU,MOON % :Y,MOON )

VOYAGER -120 :Y,MDON (:V,MOON + :Y,EARTH) 90 -120
:V,EARTH

END

In MOON.ORBIT there is one input: VVEARTH, which
is the velocity of the Earth. The velocity of the Moon relative
to the Earth is chosen to be 5. The distance between the
Moon and the Earth (Y.MOON) is set in such a way that
the orbit would be a circular orbit if the Earth were at rest.
(Remember that we showed in Chapter 8 that the orbit is a
circle when R = M/V2) When ORBIT is called, the Moon
is set at XCOR = —150 and YCOR = Y.MOON. The
velocity of the Moon is set at .MOON + V.EARTH which
is the net velocity of the Moon. The heading of the Moon is
90. The Earth is set at XCOR = —150, YCOR = 0, with
a velocity of V.EARTH. The initial condition is illustrated
in Figure 10.7. The velocity of the Moon relative to the Earth
is fixed (V.MOON = 5) as is the distance between the two.
The only physical variable is the velocity of the Earth. If the
Earth moves slowly, we expect the looping trajectory. If the
Earth moves quickly, we expect the wave-like pattern. Try
running MOON.ORBIT 3 and MOON.ORBIT 7. They
should generate first a looping trajectory and second a wave-
like trajectory. In the first case the Earth is moving slowly
and in the second the Earth is moving rapidly. To under-
stand which of these two cases more closely represents the
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Moon
V. Moon + V. Earth
Y. Moon
V. Earth
Earth

Figure 10.7 Earth and Moon Velocities

trajectory of the Earth’s moon you have only to observe that
the velocity of the Earth is 30 times the velocity of the Moon
relative to the Earth. The trajectory therefore will be wave-
like with a very long wave length.

As you allow these programs to run you should notice
two things. First, the distance between the Moon and Earth
remains constant and second, if you hold a toothpick par-
allel to the line formed by joining the Earth and the Moon,
you should find that the toothpick rotates with steady angu-
lar velocity as it should.

Problems

1. We have shown that a space ship can pick up speed by
colliding with an advancing planet. Demonstrate the con-
verse. Show that a space ship will lose speed by colliding
with a receding planet.

2. Try the MOON.ORBIT program with V.EARTH = 5.
Recall that the velocity of the Moon relative to the Earth
has been set to 5. The orbit trajectory has cusps and will
look like Figure 10.8. This figure is called a cycloid.

See if you can understand this result on the basis of the
vector diagram shown in Figure 10.9. The net velocity of
the Moon (V(m)) is the vector sum of the velocity of the
Moon relative to the Earth (V(mm/e)) and the velocity of

TN NV N

Figure 10.8 A Cycloid
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Figure 10.9 Vector Diagram of the Velocities

the Earth (V(e)). The vector V(e) remains fixed while the
vector V(mn/e) rotates with constant angular velocity. What
happens to the vector V(m)? Can you also interpret the
looping trajectories when V(mv/e) is greater than V(e) and
the wave-like trajectories when V(mve) is less than V(e)?

. Construct a program which simulates the ball bouncing

off the moving truck. The force shduld be zero until the
ball is within some specified distance from the truck and
also sufficiently strong to prevent the ball from striking
the truck. You might use a repulsive inverse square force
or, more realistically, a repulsive linear force. Demon-
strate that for any force (any force independent of the
velocity), the relative velocity of approach (the velocity of
the ball before it begins to feel the force) is equal to the
relative velocity of recession (the velocity after the ball has
left the force field).

- As an advanced project, write a program which draws

the trajectories of two interacting planetary bodies. We
have considered a special case of two interacting bodies:
Voyager II and Jupiter. But Voyager is so small in com-
parison to Jupiter that we can surely neglect the effect of
Voyager on the orbit of Jupiter. But suppose we were inter-
ested in the paths of a binary star. (A binary star is in
fact two stars moving about one another.) Suppose one
star were one half the mass of the other. What would
their orbits look like?

If you choose arbitrary values for the input velocities
and headings of the two bodies, they will more than likely
move off the screen. To avoid this, choose initial condi-
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tions in such a way that the total momentum is zero.
(This will fix the position of the center of mass of the
system. The bodies may leave the screen, but they will
return.) You pick one momentum (or velocity) and let the

computer set the other in such a way that the total
momenturmn is zero.
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Jets, Rockets, and
Conservation of
Momentum

Introduction A

If you have ever seen anyone fire a shotgun you must
have noticed the “kickback” from the gun. That is the jolt
you get in firing a large caliber gun. A cannon has an even
larger kickback. If you could put a cannon to your shoulder
and fire it, you might inflict as much damage on yourself
as you do your target. This action (projecting a shell) and
reaction (the kickback of the gun) are examples of one of
the most fundamental principles of physics, the principle of
conservation of momentum. We will see that the momen-
tum given to the shell is lost by the gun so that the overall
momentum is conserved; that is, remains constant.

To give these ideas greater precision we must define
momentum. Momentum is a vector. As such, it has both
magnitude and direction. A body of mass m and velocity v
has a momentum p given by

p = mv

A Mack truck and a VW Bug traveling at the same speed do
not have the same momentum. The truck has the larger

101



Logo Physics

Rockets

102

mass and therefore the larger momentum. But a VW, by
traveling at high speed may have a greater momentum than
a slowly moving Mack Truck.

The principle of momentum conservation says that:

In any isolated system, the total momentum remains constant
in time.

An isolated system is one in which we may, for all
practical purposes, ignore outside forces. If there are outside
forces present, then our conservation of momentum prin-
ciple is replaced by Newton’s second law of motion:

The sum of all the outside forces is equal to the rate of change
in the total momentum of the system.

Sometimes we may have a limited conservation of
momentum. If there are no forces acting in a given direction
then the component of the total momentum in that direc-
tion is conserved. For example, if two cars are traveling in
opposite directions on a city street and collide, we may say
that since there are no significant forces acting in the direc-
tion of travel (assuming the cars are coasting), the momen-
tum in the direction of travel must be conserved in the
collision.

and Jet Planes | A

As we have said, the recoil of a gun is an example of
momentum conservation. Before the bullet is fired the
momenta of the bullet and gun are zero. Imagine the gun
suspended by a pair of cords as shown in Figure 11.1. There

V.om
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Figure 11.1 A Gun Fires a Bullet
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is no horizontal force acting on the gun. Therefore the hor-
izontal component of momentum must be conserved. If the
horizontal momentum is zero before the bullet is fired the
total horizontal momentum must be zero after the bullet is
fired. We may write an equation

p (total, before) = p (total, after)
or since p (total, before) is zero
0 = p (total, after)

Now the total momentum after firing the gun is the momen-
tum of the bullet plus the momentum of the gun. Therefore

0 = p (gun, after) + p (bullet, after)

Each momentum is the product of its mass and velocity. If
the mass and velocity of the gun are M and V, and the mass
and velocity of the bullet are m and v we have

0 =MV + mv

If we chose the positive horizontal axis to be directed to the
right then the components of this vector eduation on the
horizontal direction is

0=MV — mv

since the velocity of the bullet has a negative horizontal
component. We may calculate the velocity of recoil of the
gun. It is

V = mvM

and is therefore a small fraction of the velocity of the bullet
(since m/M is a small number).

Now this “propulsion” of the gun by firing the bullet is
very similar to the mechanism for the propulsion of rockets
and jets. Both rockets and jets propel something out the back
end which, to conserve momentum, increases the velocity
of the jet or rocket. However, there are some important
differences between the rocket, the jet plane, and the gun.
First, the rocket and jet plane are in a continuous state of
motion. The gun is not. There is also a difference between
the jet and the rocket. The rocket carries all of its own
propellant. The jet does not. A jet takes in air, mixes it with
fuel, ignites the mixture, and expels the combustion prod-
ucts out the rear. The bulk of the mass ejected from the jet
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is the air; very little of it is fuel. The rocket mixes, ignites,
and ejects these propellants from the rear in much the same
way as the jet. But the important distinction is the fact that
the jet picks up the bulk of its propellant on the fly, while
the rocket carries its own. The rocket is the engine of choice
for space travel. There is nothing on the way to the moon
to scoop up. There is no air in space. The rocket must bring
whatever it needs.

To see how this difference between the rocket and the
Jet affects the motion we will study the two in some detail.
In Figure 11.2 a rocket of mass M is moving with a velocity
V. It emits a propellant of mass m, traveling at a velocity v
relative to the rocket. The new velocity of the rocket is V'.
The velocity of the propellant will be the velocity of the
rocket (V') minus the relative velocity of the propellant (v).
Since momentum is conserved, the initial momentum must
be equal to the final momentum. Therefore

MV =M —m)V' + mV' —v)
Solving for V' we find
V' =V + mvM

Therefore the velocity increases in proportion to the mass
and velocity of the propellant and inversely with the mass
of the rocket.

Next, let us compare this with the Jjet. In Figure 11.3 a
Jet of mass M is traveling with a velocity V. It picks up a
mass of air m, initially at rest, and propells it out the rear
with a relative velocity v. Once again, momentum is con-
served and so

Vv V' —v V'
—» - —>
> ——
Before After

Figure 11.2 A Rocket Ejects Propellant
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Vv A
! V' ~v .
At rest —>
Before After

Figure 11.3 A Jet Engine

MV = MV’ + m(V' - v)
or
V=V + m(v — V)/M

We see that the increase in velocity for the jet is not the same
as the increase in velocity for the rocket. We see in fact that
unless v — V' is positive, the jet will slow down (V' will be
less than V). Therefore the jet must be throwing air out the
back at a speed greater than the speed of the Jjet itself; other-
wise the jet is scooping up air in front and egjecting it from
the rear so that it is traveling in the same direction as the
plane. This is not unlike the drag that any body experiences
in moving through air: The object causes air around it to
acquire a momentum at the expense of the momentum of
the body. The trick is to get the air to travel in a direction
opposite to the direction of the jet. Perhaps we can under-
stand this best by considering the limiting case in which v
= V'. Here the jet picks up the air at rest and leaves it at
rest (v — V' = 0), and of course the plane neither speeds
up nor slows down (V' = V),

An example very similar to this is that of the row boat.
The function of the oars is to take water which is at rest
along side the boat and give it a velocity directed away from
the back of the boat. Initially the boat and the water are at
rest. After the first stroke, the water is moving backward
and so, if momentum is to be conserved, the boat must
move forward. There is, however, an upper limit on the boat
speed. It is possible to move the oars just so fast. Eventually
there will come a boat speed which is Jjust equal to the oar
speed. When this happens, the velocity of the oars relative
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to the water is zero. The oars no longer increase the velocity
of the water relative to the boat. When the oars are dipped
into the water, the oars and the water are moving at the
same relative speed. We might as well not put the oars in
the water at all. Thus the upper limit of velocity of the boat
is equal to the maximum oar speed. In exactly the same
way, the upper limit of the velocity of the jet is the velocity
of the propellant relative to the jet.

Turtle-Rockets and Turtle-Jets A
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Let us write a program to illustrate the differences
between rockets and jets. The program ROCKET dem-
onstrates the motion of a rocket.

TO ROCKET :VUR M :MM
WRAP

SETPOS [0 01

HOME RIGHT 90

STEP ¢

END

TO STEP :V

FORWARD :V

STEP :V + :M x :UR / :MM
END

TO0 START
ROCKET 10 5 1000
END

We see from the listing that the turtle is placed at the
origin facing right and in the STEP procedure, begins to
move forward with ever increasing velocity. The velocity
increases in proportion to the ejected mass (sM), the relative
velocity of the propellant (sWR), and in inverse proportion
to the mass of the plane (:MM).

The program for the motion of a JET is very similar.

TO JET :UR :M MM

WRAP

HOME RIGHT 90
STEP 0

END

TO STEP :V
FORWARD :V
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STEP VU + M % (:UR - :V) / :MM
END

TO START
JET 10 § 1000
END

If you wish to see precisely how the velocity increases you
might insert in the STEP procedure the line: (PRINT
“VELOCITY :V) and the velocity will be printed. (Be sure
to include the parentheses.)

By using more than one turtle we may let the jet and
the rocket move side by side. It is also instructive to plot the
velocity as a function of the time. In ROCKET.AND,JET
there are four turtles. The first two turtles represent the
rocket and the jet. The second two plot the velocity of the
rocket and the jet as functions of the time. You will notice
that the velocity of the rocket increases linearly with the
time while the velocity of the jet approaches a constant
value. This limiting value is the relative velocity of the exhaust.

TO ROCKET.AND.JET :UR :M :MM
WRAP PU HT

HOME.ALL

ASK O L[SETPOS [0 81 RT 901
ASK 1 [SETPOS [0 -B1 RT 903
PD

MAKE "TIME 0 MAKE "DT 1

MAKE “"SCALE 10

STEP 0 0

END

TO STEP :V0 :y1

ASK 0 [FORWARD :v0]

ASK 1 [FORWARD :V11

ASK 2 [SETPOS LIST ( :TIME - 120 ) (V0 % :SCALE
)]

ASK 3 [SETPOS LIST ( :TIME - 120 ) ( :V1 % :SCALE
]

MAKE "“TIME :TIME + :DT

(PRINT "ROCKET :V0 " "JET :v1)

STEP (:V0 + M % :UR /:MM) (:V1 + tMox (VR - V1)
/ iMM)

END

TO START

ROCKET.AND.JET S5 5 300
END
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Problems

Projects

. Vary some of the parameters in ROCKET to see what

effect they have on the motion.

a. Compare ROCKET 10 5 1000 with ROCKET 10
5 500. Can you explain why a reduction of the rocket
mass has the effect that it does?

b. Compare ROCKET 10 5 1000 with ROCKET 10
10 1000.

c. Compare ROCKET 10 5 1000 with ROCKET 20
5 1000.

. Do Problem 1 for the JET.

. If arocket ship is operating in outer space, there is no air

resistance. Within the Earth’s atmosphere, however, the

air resistance exerts a force on the rocket. This resistance

is very nearly proportional to the velocity.

a. Include a frictional force of —.02 * V in the equation
of motion of the rocket and see what happens.

b. How does the motion of the rocket with air resistance
compare with the jet without air resistance?

c. Suppose you added some air resistance to the jet. How
does this affect the maximum velocity of the jet?

. Give the jet an initial velocity which is greater than the

relative velocity of the exhaust. Describe the motion.

- A 1-ton open-top freight car is moving along a level track

with negligible friction at a speed of 40 mi/hr. It begins

to rain and the car accumulates rain at a rate of 1 ton/

hr.

a. If the rain is falling vertically, can you write a Logo
program to determine the motion of the railroad car?

b. How long does it take for the speed to be reduced to
20 m/hr?

. A railroad car weighing 1000 kg contains 100 kg of water.

The car is at rest on a level frictionless track. Water is
leaking from the back at the rate of 1 kg/sec. The velocity
of the water relative to the car is 5 m/sec and is streaming
away from the car parallel to the tracks. Determine the
velocity of the car at the moment that all of the water has
run out. To do this write a Logo program which describes
the motion of the car. This program should stop when
the water is all gone and then print the velocity of the car
at that time. (Answer: 3.46 m/sec)
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3. Can you improve on the ROCKET program to include
the effect of the decreasing mass of the rocket as it exhausts
its fuel? The mass :tM decreases by an amount :MM every
second.
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1 2 The Harmonic
Oscillator, Clocks,
Rabbits, and Foxes

Introduction A

Every form of clock relies on the repetitious motion
of something: The rotation of the Earth, the oscillation of a
spring or a tuning fork or a crystal, the swing of a pendu-
lum, or in the case of the old water clocks, the drip of water
from a bucket. All of these systems have one thing in com-
mon: They are repetitious. They repeat themselves over and
over again. Such systems are said to be periodic. The period
is denoted by the letter T and is defined as the time between
the repetitions.

There is one periodic system of special interest: the
harmonic oscillator. We will illustrate the harmonic oscil-
lator with a few examples. In Figure 12.1 you see a block
attached to a spring, a simple pendulum, and a ball rolling
in a bowl. All of these systems are periodic (neglecting fric-
tion) and for small amplitudes exhibit the following com-
mon feature:

a « — (positive constant) x

where a is the acceleration and x is the displacement from
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Figure 12.1 Three Oscillatory Systems

the equilibrium position. If we call the positive constant w?
we have

a= — wx

any physical system satisfying this equation is said to be a
harmonic system. The value of w will be different for dif-
ferent systems.

It is easy to see that any system that satisfies the above
equation will be periodic. It says that the velocity will decrease
as long as x is positive and increase as long as x is negative.
Clearly therefore, if the velocity continuously decreases for
positive x, it must become negative eventually. If the velocity
becomes negative (and continues to become more negative)
the object must pass back through the origin. When x becomes
negative, the velocity constantly increases and must even-
tually become positive and thus pass back through the ori-
gin again. This process is repeated over and over again so
that the object oscillates about the origin.

So what is so special about the harmonic oscillator? In
Figure 12.2 we illustrate a general relationship between the
acceleration and the displacement which satisfy the con-
ditions discussed above; that is, the acceleration is positive
when the displacement is negative and vice-versa. Notice
that for small values of x the dotted line is a good approx-
imation of the solid curve. But since the dotted line is a
straight line it follows that on this line

ax —x
or
a= —wx

We can see therefore, that for small displacements (small
values of x) we may always approximate periodic motion
(represented by a curve for which a is negative when x is
positive and vice-versa) by harmonic motion (represented
by a linear relationship between a and x). This is one reason
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Figure 12.2 Relationship Between Acceleration
and Displacement

why harmonic motion is special. The other is the wide vari-
ety of systems that satisfy this equation: The flow of elec-
trical charges back and forth in your television circuits, the
vibration of the electrons on the phosphors on the surface
of the screen which forms the television picture, the rocking
chair of the old gentleman watching the television picture,
the interacting chemical components in the body of the old
gentleman, and so on.

An Oscillating Turtle A

Let us write a Logo program to solve the harmonic
oscillator equation. We may rewrite the fundamental equa-
tion of the harmonic oscillator as follows:

The change in velocity per second = — w?x

If we choose our time interval to be one second, the motion
defined by this equation is approximated by the Logo pro-
gram OSC.

TO OSC :AMP

MAKE "W .5

PU SETPOS LIST 0 1AMP
PD

STEP 0

END
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TO STEP :VEL

FORWARD :VEL

STEP :VEL - :W % :W % YCOR
END

TO START
0s8C 50
END

In @SC we have chosen to move along the y-axis rather than
the x-axis. The value you select for :AMP (the amplitude)
determines the maximum displacement from the equilib-
rium position. The value of w has been chosen to be 0.5. As
you run the program you will see that the acceleration is
positive when YCOR is negative (the velocity decreases con-
tinuously for all positive values of YCOR). Conversely, the
velocity increases for all negative values of YCOR. These
requirements are demanded by the basic equation (a = —
w2 x).

If the value of w is increased, we find that the turtle
oscillates faster. The frequency therefore increases as w
increases. Try making w = 0.1 and see what happens.

To get a better “picture” of the harmonic motion we
will ask the turtle to leave a record of his trip by making a
y versus t plot. This plot is accomplished with the OSC. TIME

program:

TO OSC,.TIME :AMP

MAKE "W .1

MAKE "DT 1

PU SETPOS LIST O :AMP
HT PD

STEP 0

END

TO STEP :VEL

FORWARD :VEL

RIGHT 80

FORWARD :DT

LEFT 80

STEP :VEL - :W * :W » YCOR
END

TO START
O0SC.TIME S0
END
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If you run START the turtle will produce the curve shown
in Figure 12.3. We will leave it as an exercise to verify that
the period T of the wave is related to w by the equation

T = 2m/w. You may recognize this curve as the cosine
function.

We would like to demonstrate that
y = (constant) * cos (constant * t)

It can be shown that the constants are related to the ampli-
tude and period as follows:

y = AMP * cos(180 w t / 3.14)
or equivalently:
y = AMP * cos(360 v/T)

To verify this equation we add the following command to
the STEP procedure:

IF XCOR > 110 [PU SETPOS LIST O :AMP PD VERIFY 0]

This line follows immediately after STEP :VEL. We also
define VERIFY as follows:

TO VERIFY :TIME

SETPOS LIST :TIME :AMP x COS 180 * :W% :TIME / 3.14
VERIFY :TIME + :DT

END

In VERIFY the turtle should retrace the earlier curve. He
will ify = AMP cos(180 w t / 3.14).

Rabbits and Foxes A

Periodic motion is not limited to pendula and tuning
forks. Many systems in nature exhibit this phenomenon. As

Figure 12.3 Displacement as a Function of Time
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one interesting example, there is an area in biology called
“preditor-prey theory” It deals with the ecological balance
of a natural system. As a special example of this theory let
us imagine an island on which there are only two animals—
rabbits and foxes. The rabbits eat grass and the foxes eat
rabbits. In order to study the population dynamics of this
system we ask the following question: If there are currently
80 rabbits and 40 foxes on the island, how many rabbits
and foxes will there be next year, the year after that, and so
on?

Of course we need some more information to solve this
problem. Let us use R to represent the number of rabbits
and F the number of foxes. We assume that the growth rates
for the rabbits and foxes satisfy the following equations
(called the Volterra equations):

Rate of increase of R = aR — ¢cRF
Rate of increase of F = — bF + dRFT

The first term on the right hand side of each equation rep-
resents the natural growth rate of each species in the absence
of the other. If there were no foxes, the rabbits would grow
at a rate of a R (assuming unlimited grass). The coefficient
a is the growth rate per rabbit per year of the rabbit pop-
ulations. If the growth rate per rabbit is multiplied by the
number of rabbits (R) we get the growth rate of the entire
population. In a similar way, if there were no rabbits to feed
on, the foxes die out at a rate —b F.

The second term in each equation represents the num-
ber of encounters between rabbits and foxes. These encoun-
ters (not pleasant to behold) will contribute to the reduction
of the rabbit population and the nourishment of the fox
population. Now the number of encounters between rabbits
and foxes will be proportional to the product RF. For exam-
ple, if you double the number of rabbits or the number of
foxes you will double the number of encounters.

The Volterra equations can be solved using the PRED
Logo program for the indicated values of a, b, ¢, and d:

TO PRED :RABBITS :FOXES
WINDOW

CS PU HT

MAKE "A 4.N2

MAKE "B 4.N2
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MAKE "C 4.Nd

MAKE "D 4.N4

MAKE "R :RABBITS

MAKE "“F :FOXES

PD

DRAW.AXES

SETPOS LIST :R - 100 :F - 100
PD FULLSCREEN

STEP :R :F

END

TO DRAMW.AXES

PU FULLSCREEN
SETPOS [-100 -1001
SETH 80

PD FORWARD 200
DRAW.ARRONW

PU FORWARD 15
WRITE.R

SETPOS [-100 -1001
SETH O PD FORWARD 200
DRAMW . ARROW

PU FORWARD 10
WRITE.F

END

TO DRAW.ARROW

RT 30 BK 10 FD 10 LT B0 BK 10
FD 10 RT 30

PU

END

TO WRITE.R

PR SETH ©

FD 10 RT 90 FD 5 RT 90 FD S RT 90 FD 5
RT S0 BK 8 PU

END.

TO WRITE.F

SETH 0

PD FD 10 RT 90 FD 8 BK 8
RT 90 FD S LT 90 FD 5 PU
END

T0 STEP :R :F

SETPOS LIST :R - 100 :F - 100

MAKE "DR (:A * :R) - (:C % :R % :F)
MAKE "DF (-:B * :F) + (:D * :R * :F)
STEP :R + :DR :F + :DF

END
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TO START
PRED 40 80
END

As usual the turtle steps through the solution of the
rate equations in the STEP procedure. In PRED the coor-
dinate axes are drawn, the initial conditions set, and some
bookkeeping details are taken care of. If you run the START
procedure you begin the population study with 40 rabbits
and 80 foxes. You will obtain the solution illustrated in Fig-
ure 12.4. (Because the Logo solution to the rate equations
is only an approximation, the Logo curve will not quite close
on itself. The exact solution would produce a closed curve.
To get a better solution you might shorten the time interval
between steps.) We will leave the interpretation of this figure
to the Problems section.

The Volterra equations are rough approximations of
the actual events as they are found in nature. They dem-
onstrate that the rabbit and fox populations do interact.
When there are too many rabbits and too few foxes, the
rabbits decline and the foxes grow. The two populations
fluctuate about a mean with the same period. For small
fluctuations about the equilibrium state the oscillations are
harmonic. There are numerous examples of competing sys-
tems which may be similarly represented: Population dens-
ities of government agencies, political parties, political ideo-
logies, countries, chemical reactants, biological organisms,
wages and prices, and many more interacting and compet-
ing systems.

— R

Figure 12.4 Rabbit and Fox Population
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Problems

1. How is the period (T) of the oscillator related to w? To
answer this question you must introduce the time into
your program and have it printed to the screen. Write a
program which will produce the figure and print the
information shown in Figure 12.5. The equations rep-
resent the current values of the displacement Y, the veloc-
ity V, and the time. The specific numbers will not be the
same but the format should be similar. To produce a
print statement like that above you might consider:

(PRINT [Y¥=1 TWO.DEC YCOR [W=1 TWO.DEC :VEL [TIME=1]
:TIME)

This will print a single line and round YCOR and :VEL
to two decimal places. We define TWO.DEC by the
procedure:

TO TWO.DEC :X
OP (ROUND 100 % :X) / 100
END

which rounds a number to two figures after the decimal.”
Armed with this information you should be able to

find the period. By varying w, choose between the follow-

ing alternatives:

a. T = constant * w

b. T = constant * Vw

¢. T = constant/ w

d. T = constant / Vw

Can you show that the constant is approximately 27?

2. How is the period of oscillation related to the amplitude?
Try different amplitudes for a fixed w and show that the
period remains the same. This is why harmonic oscilla-
tors make such good clocks. They have the same period
regardless of the amplitude. Even though the clock winds
down (the amplitude becomes smaller and smaller) the

Figure 1256 Y = -30.49V = 518 TIME = 57
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Projects

period remains constant. Unfortunately most physical
systems are not exactly harmonic. The simple pendulum
satisfies the harmonic oscillator equation

a=—w'x

for small x. (Here x represents the angular displacement
and a the angular acceleration of the pendulum.) For
larger x we find:

a= — wsinx

Using this relation, write a Logo program for the pen-
dulum and see how the period changes with amplitude.
Show that the period decreases with decreasing ampli-
tude. (This means that the clock will run fast as it winds
down.) Can you see why this is so by looking at the two
equations above?

By experimenting with different initial values of R and F
see if you can determine the “equilibrium state” of the
system; that is, those initial values of R and F for which
there is no change with time. Can you see why these are
the equilibrium values by examining the rate equations
for the rabbit/fox populations?

The system in Figure 12.6 is a two-dimensional harmonic
oscillator. If all the springs are the same, the fundamen-
tal equations are

a, = — w?x
a, = —w'y

Write a program which will draw the path of a two-
dimensional oscillator. Show that the path is an ellipse,
a circle, or a straight line depending on the initial con-
ditions. Other examples of two-dimensional harmonic
motion are the pendulum bob on the end of a string and
a ball rolling freely in a bowl. Examine for yourselves
and see if the trajectories are indeed ellipses, circles, and
straight lines.

If the springs in the Project 1 are not the same, the fun-
damental equations become

a, = — (W)%x

ay = — (W.v)2 y
Repeat Problem 3 for this more general case. The figures
you obtain will be complex curves called Lissajou figures.
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Figure 12.6 A Two-dimensional Harmonic Oscillator

3. Another way to represent the changing populations of
rabbits and foxes is to plot R and F as functions of time.
Write a program using two turtles to make this plot.
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1 3 The Big Bang

Introduction A

How did it all begin? How was the Earth formed?
How did our solar system come to be? Sol, the star at the
core of our solar system, is but one of many billions of stars
in our galaxy. Our galaxy is but one of many billions in the
universe. How did this whole colossus begin?

There are few questions to which we can give an ulti-
mate answer. Is there an ultimate answer to this ultimate
question? Can we look back in time to the beginning of the
beginning? We surely can look into the past. We can look at
the sun and see it as it was eight minutes ago—the time it
takes for sunlight to reach the Earth. A look at Alpha Cen-
tauri, the nearest star, reveals its position as it was four years
ago. Light from the nearest galaxy takes two hundred thou-
sand years to reach us. Light from the farthest galaxy travels
for one billion years before we see it. This gives us a consid-
erable look into the past of that particular galaxy. But this
is not quite what we are after. We would like to look all the
way back to the beginning of time. Is there any light out
there in space that was generated at the very beginning of
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the universe that might give us a clue to how the universe
began?

The most widely accepted theory is that there was indeed
abeginning to the universe. In this theory the universe began
some twenty billion years ago in a giant explosion. The den-
sity and temperature were enormous. The density was one
billion times that of water and the temperature thirty billion
degrees Celsius. The entire system exploded in a very big
way. This explosion is referred to as the Big Bang. (Do not
ask what came before the Big Bang. It is not possible to see
beyond the Big Bang.) There was a great fire ball which
produced an enormous flash of light. Now one might expect
that this light would have been absorbed after all this time
of flying about the universe at 360,000 mi/sec and there
would be nothing left of it to testify to its early beginnings.
However, there was so much light and there is so little mat-
ter in the universe to absorb the light that most of it has
survived.

Now it might have survived, but light travels so much
faster than matter that it must surely have moved so far
away from the rest of the matter in the universe that there
would be very little chance of our ever seeing it. But light is
bound up with all the matter in the universe; it cannot
escape. The reason it is trapped is that light is subject to the
same laws of gravity as all the rest of matter. Light is attracted
to the matter of the universe. The attraction is strong enough
that all light is bound to the universe in much the same way
that the Moon is bound to the Earth and the Earth to the
sun. \

As this great quantity of light generated by the Big Bang
expanded with the rest of the matter in the universe, it
cooled. It has had twenty million years to cool. It has cooled
to a point where it is but a shadow of its former self. Its
present temperature is about 3° above absolute zero, or 456°
F below zero on the Fahrenheit scale. It was the 3° K back-
ground radiation that was first discovered by Penzias and
Wilson and it was for this achievement that they were
awarded the Nobel prize in physics.

The light they observed had all the properties that ther-
mal radiation at this temperature should have. It has the
proper spectral distribution; that is, the proper distribution
of frequencies. At so low a temperature the dominant fre-
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quency is very low. The most intense frequency is only 3 X
10"! Hz. This is ten thousand times smaller than the most
intense frequency given off by our sun, which coincidentally
lies right in the middle of the visible spectrum. (Aren’t we
lucky. Or maybe it isn’t luck. Maybe the eye evolved in such
a way that it was most sensitive to the most abundant fre-
quencies given off by the sun.) Furthermore, Penzias and
Wilson discovered that the 3° K background radiation was
isotropic; there was as much light directed one way as any
other. These two observations, the frequency distribution
and the isotropy, were convincing evidence that this was
thermal radiation.

The next time you gaze out into space on a dark night
and dream the deep thoughts that occasionally come upon
us when viewing the heavens, think of the 3° K background
radiation out there. That light, if our eyes were sensitive
enough to see it, allows us a view of the birth of our universe;
an event which occured twenty billion years ago. That is a
long look back into the past. It is as far back as man will
ever be able to see.

Hubble’s Law of the Expanding
Universe A

The 3° K background radiation is not the only evidence
that our universe began as a great fire ball. Edwin Hubble
has provided us with much more immediate evidence of the
Big Bang theory.

Hubble made a study of all the known galaxies. He
measured their distances from the Earth and their velocity.
He discovered two curious things. The first was that all the
galaxies are moving away from our galaxy and second, the
further a galaxy is from us the faster it is receding from us
(see Figure 13.1). If all the galaxies are moving away from
us, does that mean that we are located in some special place
in the universe? Are we located at the center of all galactic
motion?

There was another time in history when man believed
that he occupied a central place in the universe. In the now
discarded Ptolemaic universe, the sun and all the planets
revolved about the Earth. That theory did not work out very
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Figure 13.1 The Big Bang

well and having been once bitten we must be twice shy. The
fact that all galaxies are moving away from our galaxy may
not imply that our galaxy is central. Hubble observed that
if all the matter in the universe was born in a mighty explo-
sion, then all galaxies would be moving away from all other
galaxies. To understand how this is not only possible but
inevitable, let us examine an analogous situation for which
Hubble’s law is more easily derived.

Turtle Galaxies A

126

We may illustrate Hubble’s law by comparing it with
a horse race (or perhaps a turtle race). In a horse race, all
horses start from a common point at the same time (a samll
bang). The horses bolt from the starting gate with different
speeds. We will assume that in this race (unlike a real race)
each horse continues to move with a constant velocity
throughout the race. Clearly the fastest horse will win. Of
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interest to us is the view of the race as seen by any one of
the jockies. We maintain, and we will let the turtles show
us presently, that at any time during the race, each jockey
sees the other horses moving away from him. A jockey in
the middle of the pack sees the horses ahead of him contin-
ually moving still further ahead. He sees the horses behind
him continually moving still further behind. Moreover, the
further a horse is from him, the faster it is moving away
from him.
To see this in action, run the BIG.BANG program:

TO BIG.BANG
WINDOW

MAKE "V0 PICK.RAN
MAKE "V1 PICK.RAN
MAKE "U3 PICK.RAN
MAKE "U3 PICK.RAN
MAKE "VY,LIST (SE :V0 :Vi :1y2 :V3)
MAKE "V ©
CLEARSCREEN PU
SET.AT START ©

HT

STEP

END

TD STEP

ASK O L[FD ( V0 - :y )]

ASK 1 [FD ( V1 - :y )]

ASK 2 [FD ( :v2 - :y )]

ASK 3 L[FD ( :v3 - :Vv )]

IF KEYP [MAKE "V ITEM (i1 + FIRST RC) :V.LIST]
STEP

END

TO PICK.RAN
OP (1 + RANDOM 100) / 40
END

TO SET.AT.START :N

IF :N > 3 [STOP1

MAKE :N [[-120 01 901
SET.AT.START : N + 1
END

TO ASK :N :CMD

PU SETPOS FIRST THING
SETHEADING LAST THING
DRAW.TURTLE [PE]

=z 2
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PD

RUN :CMD

DRAMW/TURTLE CPD1

MAKE :N LIST POS HEADING
END

TOD DRAW.TURTLE :CMD
RUN :CMD

LT 45

REPEAT 4 [FD 5 RT 901
RT 45

END

(If you are using Apple Logo, load in the ASK proce-
dure that draws the turtles.)

In BIG.BANG each horse is randomly given a velocity
which lies between 1.00 and 3.25. (For Apple Logo it is
advisable to increase these velocities. You might try OP ( 1
+ RANDOM 100 )/ 10 in PICK.RANDOM.) V.LIST
is a list containing the velocities of the four horses. We will
make use of this list and the variable :V later. All horses are
put in the gate (SETPOS [—-120 0]) and headed down
the track (SETH 90).

In STEP the horses begin to step through their paces,
each with its own constant velocity. Since :tV = 0 we can
for the moment ignore it. Our objective is to view the race
from the point of view of some particular jockey. (By anal-
ogy, we wish to view the other galaxies that started with us
at the Big Bang and observe their motion relative to us. The
horse race is a one-dimensional analogue to the real three-
dimensional problem.) If we press the #2 key, for example,
we are selecting turtle #2 which is the third horse. When
we make this selection, :V is set equal to :V2 (the third
member of :V.LIST). From this point on all horses move
relative to horse #2. Notice that :W2 — :V will be zero and
so this horse comes to rest. The horse you are riding is
always at rest relative to you. You should observe two things.
First, all horses move away from the chosen horse. Second,
the velocity at which they recede is proportional to the dis-
tance. The further a horse is from you, the greater its velocity
relative to you.

Projects

1. If your version of Logo has the ability to edit the turtle
shapes you might “number” the turtles.
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2. Hubble stated his law in the following quantitative form:

relative velocity
relative distance

and K is the same constant for all galaxies. See if you can
verify this law from our horse race. Compute K for each
horse relative to the chosen horse and see if it is a con-
stant. To get the distance between horses you might
MAKE “X0 XCOR just after you ASK 0 to go FOR-
WARD. MAKE “X1 XCOR just after you ASK 1 to go
FORWARD, and so on. The rest is up to you.

3. How about a two-dimensional model of the Big Bang?

4. Write a program which will place the turtles at random
distances from the origin and give them velocities pro-
portional to that distance. Reverse all velocities and con-
firm Hubble’s law.

5. Add to BIG.BANG the option of pressing the key “R”
which reverses the velocities of all turtles. You should
retain the option of pressing 0, 1, 2, or 3. If you reverse
the velocities after selecting horse 2 (that is, choosing to
observe the race from the point of view of the jockey on
horse 2), how does the race appear?
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4 Radioactive Decay

Introduction A

The nucleus of most atoms is stable. However, a few
are unstable and decay by emitting a particle (generally an
alpha particle or an electron). Such a nucleus is said to be
radioactive and the particle emission is called radioactive
decay. For example U**® decays into Th*** by emitting an
alpha particle (the nucleus of helium). Carbon 14 radiates
an electron and becomes nitrogen 14.

This process of radioactivity is spontaneous and ran-
dom. The decay of a radioactive atom is independent of its
environment and its past history. It is as if the nucleus was
continuously spinning a roulette wheel or rolling a die and
will radiate only when its lucky number comes up. Although
the exact moment of decay is pure chance, it is nevertheless
governed by strict rules of probability. Even though we can-
not say when a given number will appear on a die, we can
say with certainty that over the long haul it will appear with
a frequency rate of one in six. If we roll the die a very large
number of times we will see any given number appear one-
sixth of the time.
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In a similar way, if we have 1,000,000 radioactive atoms
and the probability of each atom radiating during a 1 sec
interval is .1 then we may expect with reasonable certainty
that 100,000 atoms will radiate in the first second. This will
leave 900,000 atoms of which approximately 90,000 will
radiate during the next second, and so on. The rule therefore
which determines decay of the system is the radioactive rate
equation:

Rate of increase in N = — PN

where N is the current number of radioactive atoms and P
is the probability of decay per atom per unit time. Notice
that if P = .1 and N = 1,000,000, then the rate of increase
in N is — 100,000 as we found above.

Radioactive Turtle _ A
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The program RAD.DECAY illustrates the radioactive
process.

TO RAD.DECAY

WINDOW CLEARSCREEN HT

PRINT [PROB. OF DECAY IS ONE CHANCE IN ( 7 }1

MAKE “CHANCE FIRST RL

MAKE "NUMBER 30 MAKE "TIME 0 MAKE “N.DECAY ©

MAKE "N.SCALE 4 MAKE "T.SCALE 6

MAKE “X.BOX -130 MAKE "Y.BOX -50

MAKE "SIZE 4 MAKE "SEPARATION 9

BOXES :X.BOX Y.BOX :SIZE :SEPARATION :NUMBER

BOXES :X.BOX :Y.BOX + :SIZE + 1 .75 % SIZE
:SEPARATION :NUMBER

MAKE.STATE :NUMBER

DRAW.AXES

ASK 1 [HT PU SETPOS LIST :X,BOX :NUMBER % :N.SCALE
PD]

ASK 2 [HT PU SETPOS LIST :X.BOX :NUMBER % :N,SCALE
PD1]

STEP :NUMBER

END

TO STEP :N

CYCLE ©

MAKE "TIME :TIME + 1

ASK 1 [SETPOS LIST ( :X.BOX + :T.SCALE % :TIME ) (
:N.SCALE * ( :NUMBER - :N.DECAY ) 1]

ASK 2 [SETPOS LIST :9 X.BOX + :T.SCALE % :TIME ) (
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YCOR - ( YCOR / :CHANCE ) ) 13

( PRINT [TIME =1 :TIME [NO.DECAYED =1 :N,DECAY )
STEP :N
END

TO MAKE.STATE :N

MAKE "STATE L1

REPEAT :N [MAKE "STATE FPUT "R :STATE]
END

TO DRAW.AXES

PU SETPOS LIST :X,BOX :N,SCALE % :NUMBER
PD SETPOS LIST :X.BOX ©

RT 90 FD 300

END

TO CYCLE :N

IF :N = :NUMBER [STOP]

IF AND ( ¢ FIRST :STATE ) = "R ) ( ( RANDOM :CHANCE
) = 0 ) [MAKE "STATE ( LPUT "8 BF :STATE ) ¢ EMIT
:N )] [MAKE “STATE ( LPUT ( FIRST :STATE ) ( BF
:STATE ) ) 1

CYCLE :N + 1

END

TO EMIT :N

BOX ( :X.BOX + :N # :SEPARATION ) ( :Y.BOX + :SIZE
+ 1) ( .75 % :SIZE ) [PE]

PD SETH ( -30 + RANDOM 61 ) FD 40 PU

MAKE "N.DECAY :N.DECAY + 1

END

TO BOXES :X :Y :SIZE :SEP :N

IF :N = 0 [STOP1]

BOX :X :Y :SIZE [PENDOWN]

BOXES :X + :SEP :Y :8IZE :SEP :N - |
END

TO BOX :X :Y :SIZE :CMD

SETH O

PU SETPOS LIST ( :X - :SIZE / 2 ) ( :1Y - :BIZE / 2
)

RUN :CMD
REPEAT 4 [FD :SIZE RT 901
END

If this program is run you will observe something like
that illustrated in Figure 14.1. There are thirty atoms in the
system represented by the thirty boxes at the bottom of the
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WAV AVOWARINS

TIME
TIME
TIME

? NQ.DECAYED = 23
10 NO.DECAYED = 2S5
11 NO.DECAYED = 26

Figure 14.1 Radioactive Decay of 30 Atoms

figure. On top of some boxes there are still smaller boxes.
These represent the particles that will be emitted by the
radioactive atoms. On other atoms these smaller boxes are
replaced by lines coming from the top at some random
angle which represent the track of the emitted particles.
The two curves plotted at the top of the figure represent
both the actual number of radioactive atoms as a function
of time and the theoretical curve as predicted by the radio-
active rate equation. In the legend below the atoms the time
and number of decayed atoms is printed.

Briefly, the individual procedures in this program func-
tion as follows. In RAD.DECAY the radiation probability
is selected. It is the inverse of CHHANCE; that is, one chance
in CHANCE. For example, if there is 1 chance in 9 of the
atom decaying then the probability of decay (P) is 1/9. (The
reason for introducing this definition is that it simplifies the
random selection process in CYCLE.) Also in RAD.DECAY
scale factors for the particle number (N.SCALE) and time
(T.SCALE) are introduced to improve the legibility of the
plot. X.BOX and Y.BOX define the coordinates of the first
box as well as the position of the origin of the coordinate
axes. SIZE and SEP represent the size and separation of
the boxes.

BOXES draws the boxes with centers at the coordi-
nates X :Y, of size (sS8IZE), separation (:SEP), and num-
ber (NUMBER). The second call to BOXES draws the
three-quarter size boxes on top of the larger boxes.

In MAKE.STATE a list is created which will be used
to determine the state of the collection of atoms. Initially
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:STATE = [RRRRR + + .+ R1

There are 30 Rs for the 30 radioactive nuclei. If the third
nucleus emits a particle and becomes stable, the third R is
changed to S, so that STATE becomes

tSTATE = [RRSRR .+ + . R]

In this way the program keeps track of the progress of the
radioactive decay process.

DRAW.AXES does just that. The STEP procedure
controls the evolution of the collection of radioactive atoms.
It first calls CYCLE 0 where the computer cycles through
the list defined by the present :STATE and chooses at ran-
dom which atoms will decay and which will not. For exam-
ple, if CHANCE is 9, then RANDOM 9 will yield a value
between 0 and 8. One ninth of the time it yields a 0. When
this happens the radioactive atom will EMIT a particle.
The emission is accomplished by erasing (PE) the small
box and drawing a tracer line 40 units in length at a random
angle between —30° and + 30°.

Run the program and select various values for the
radiation probability. Notice the change in the decay rate.
Next reduce the number of nuclei by changing NUMBER
and notice the increase in the discrepancy between the actual
decay rate and the predicted decay rate. This is because
statistical predictions are always much better with larger
samples. It is for this reason life insurance companies make
money every year.

Half Life ' A

The rate at which radioactive atoms decay is often
expressed in terms of their “half life” The half life is the
time it takes for half of a large collection of radioactive
atoms to decay. The reason we cannot define a “full life” is
because of the probabalistic nature of the decay process and
the unreliability of the statistics when the numbers become
small.

The program HALF.LIFE will allow us to determine
the relationship between the half life T and the radiation
probability P.

TO HALF.LIFE
MAKE "P GET.P
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DRAW . AXES

SETPOS [0 1001 PD
STEP 0 100

END

TO GET.P

PRINT C[DECAY PROBABILITY
OP FIRST RL

END

?1]

TO DRAW.AXES

PU SETPOS [0 1001

SETH 180 PD FD 100 LT 90 FD 320 PU

END

TO STEP :TIME :N

SETPOS LIST XCOR + 1 :N

IF :N < 50 [(PRINT [HALF LIFE =] :TIME) STOP]
STEP $TIME + 1 :N - :P % :N

END

In this example we begin with 100 atoms and record the
time it takes for 50 to decay. In Figure 14.2 you see the results
of HALF.LIFE with a probability of decay of .01.

Try different values of the radiation probability (any
number between zero and one) and notice the change in
the half life. In the Problems section we will consider the
general relationship between T and P.

Carbon Dating A
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You are given a fragment of parchment purporting to
be a portion of the Dead Sea scrolls. How might you verify
the authenticity of the fragment? One thing you might do
is verify its age by using a technique called “carbon dating”

Figure Figure 14.2 Half Life = 69
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-Plants absorb carbon dioxide from the air. Radioactive
carbon is generated in the air by cosmic ray neutrons bom-
barding nitrogen. This process happens at a continuous rate,
so the proportion of radioactive carbon in the atmosphere
is fixed and it is assumed to have been relatively constant
over the past 10,000 years. The proportion of radioactive
carbon to stable carbon is not large. It is about one part in
10°. Thus if the sample contained 1.0 X 10*° carbon atoms,
only 100 of them would be radioactive C**. The rest will be
C'®. When the plant or animal dies, the radioactive carbon
will begin to decay at a rate determined by the radioactive
rate equation:

Rate of increase in N = — PN

For C'* the value of P is 1.2 X 10 particles per year. The
half life is 5,730 years.

Let us write a program to compute the age of a spec-
imen given certain experimental data. To simplify the turtle
graphics we will use convenient numbers for our ficticious
radioactive sample. Let us assume that the fraction of the
ficticious radioactive atoms in living matter is .1 and that
the probability of decay is .2 per year. A Geiger counter tells
us that the sample is radiating at a rate of .8 particles per
year. (Remember, these are not realistic numbers and have
been chosen simply to keep the turtle on the screen. We will
consider scaling techniques in the Projects section.) By
chemical analysis we determine that there are in all 1000
atoms (both stable and unstable). From this information
we wish to determine the time that has lapsed since the
specimen died.

If one tenth of the atoms were radioactive when the
organism died then .1 X 1000 = 100 were radioactive at
its death. If the sample is decaying at a rate of .8 atoms per
year, then because

Rate of increase in N = — PN

and P is .02 it follows that the current value of N is 40. To
determine the age of the specimen we need to find a solution
of the rate equation. We need to know how long it takes for
N to decrease from its original value of 100 to its present
value of 40. To do this we modify the HALF.LIFE program
by removing the conditional statement (IF N < 50 . . .
and instead print the number of particles and the time.
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(PRINT [NUMBER =1 :N [TIME =1 :TIME)

If we run this modified program with P = .02 we will find
that NUMBER = 40 when TIME = 45. Therefore the
specimen is 45 years old.

Problems

Projects

Use the HALF.LIFE program to determine the precise
relationship between P and T. (Hint: 1n 2 = .6931. If
you have not been exposed to logarithms, consider 1n 2
as a convenient abbreviation for .6931.)

. A once living specimen currently radiates at the rate of

.3 particles/year. When the organism died, .1 of the atoms
were radioactive and the rest stable. The total number
of such atoms is 1000. The radiation probability is .01.
What is the current age of the sample? (Answer: About
120 years)

. A bone fragment currently radiates at the rate of 2 X

10° particles/year. When the animal died, one tenth of
the atoms were radioactive and the rest stable. The total
number of such atoms is 9 X 10'°. The radiation prob-
ability is .001. Use the self-scaling program of Project 1
to determine the age of the bone fragment. (You will
have to increase the time interval between steps. Do not
forget to multiply P * N by the time interval to determine
the change in N). (Answer: About 1500 years)

. Aradioactive specimen radiates at a rate of 10° particles/

year with a radiation probability P = .01 particles/year.
The specimen will not be safe to handle until the radia-
tion level is reduced by a factor of 100; that is, until the
rate is reduced to 10° particles/year. Use the self-scaling
program of Project 1 to determine how long must one
wait before the specimen is safe. (Answer: About 430
years)

Modify the HALF.LIFE program so that it is self-scaling
and the original number of atoms (:N) is an input vari-
able. By self-scaling we mean that for any choice of :N,
the turtle does not go off the screen. Specifically, for any
choice of :N the plot begins at XCOR = 0 and YCOR
= 100.

- You can speed up the RAD.DECAY program by elim-

inating the graphics display of the atoms as boxes. Write
a program which plots both the actual number of radiat-
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Ing atoms as a function of time and the number pre-
dicted by the radiation rate equation. Compare the pre-
dicted results with the actual numbers when the initial

number of atomns is first 20 and then 100. Let the decay
probability be one third.
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1 5 Bridges,
Catenaries, and
the Perfect Arch

Introduction A

We would like to investigate the physics of three
similar shapes: a suspension bridge, a hanging chain, and
the perfect arch. They all look very much alike, as shown
in Figure 15.1. In fact, if we turned the perfect arch upside
down, it would have exactly the same shape as the hanging
chain and a shape very similar to the suspension bridge
cable although somewhat less blunt.

We will discuss the difference between these three shapes

AN A

St. Louis arch or
The perfect arch

Suspension bridge Hanging chain

Figure 15.1 Suspension Bridge, Hanging Chain, and Perfect
Arch
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later, but first we will focus our attention on just one—the
suspension bridge.

The Suspension Bridge A

The reason for the name “suspension bridge” is that
the roadbed is suspended from the supporting cable. The
cable is attached to two towers, one at either end. Vertical
cables hang from the suspension cable and the roadbed is
supported by these vertical cables. What we would like to
understand is why the suspension cable is shaped the way
it is. Furthermore, we would like to have the turtle draw a
bridge for us.

To examine the physics of the cable, we will try to put
the bridge together bit by bit. Our construction technique
will be somewhat unorthodox, but no matter; we are look-
ing for the basic physical laws and not their practical
implementation.

We begin with a segment of the bridge already in place
as illustrated in Figure 15.2. The bridge segment begins at
the midpoint and runs to the right. The cable is held in
place by two forces: a horizontal force H at the low point
in the cable and a force T equal to the tension in the cable
at the upper end. The only other force is the weight of the
roadbed. (We will neglect the weight of the cables in com-

Midpoint
of bridge

vfj

Y
Weight

v

Figure 15.2 Segment of the Right Side of Bridge
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parison to the roadbed.) If this system is to be in equilib-
rium, the net force must be zero. If we break up the cable
tension T into its x- and y-components, we may balance the
forces by setting:

TX = H
T, = Weight
Let us now imagine that we are to add the next segment
of the roadbed of length DX (see Figure 15.3). This new
segment adds an additional weight proportional to the length
of roadbed. Let us define the density (DEN) of roadbed to
be the weight per unit length. If we add a length DX, the
additional weight is DEN * DX; that is, the weight per unit
length multiplied by the length. This added weight must be

supported by an increase in the vertical component of the
tension (Ty). Therefore

Increase in T'V = DEN * DX

Since there has been no change in the horizontal forces we
still have

T, = H

By dividing these last two equations we obtain the following
rate equation:

Rate of increase of Ty/T, = (DEN) * (DX) /H
But we see from the similar triangles in Figure 15.3:

T,/ T, = DY/DX

Figure 15.3 Adding to the Bridge
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It is customary to define the slope of the cable by the ratio
DY/DX so that

SLOPE = DY/DX
and our rate equation becomes
Increase in SLOPE = DEN * DX/H

and this is the fundamental equation which we shall ask the
turtle to solve. It tells us that the slope of the supporting
cable increases at a constant rate with the addition of each
segment of roadbed. We will ask the turtle to step along the
bridge cable, increasing the slope at a constant rate as he
goes.

The Turtle Builds a Bridge A
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The solution of the fundamental equation is accom-
plished with the aid of the following recursive procedure:

TO STEP :SLOPE

SETPOS LIST ( XCOR + :DX ) ( YCOR + :DX % :SLOPE )
STEP :SLOPE + :DEN x :DX / :HOR
END

where we have noted that since SLOPE = DY/DX then
DY = SLOPE * DX. We have denoted the horizontal force
H by :HOR. Since the increment in the slope is a constant
we may improve the readability of the procedure by
MAKEIing “INC.SLOPE :DEN * :DX / :HOR so that our
STEP procedure becomes:

TO STEP :SLOPE

SETPOS LIST ( XCOR + :DX ) ( YCOR + :DX % :SLOPE )
STEP :SLOPE + :INC.SLOPE
END

This procedure steps the turtle along the cable with the
appropriate values of DX and DY. It continuously increases
the slope by the amount required by the fundamental rate
equation. But we need some way to draw both the left and
right hand sides of the bridge as well as some way to stop
the recursive procedure. Our complete program is:

TO BRIDGE :M

WINDOW
CS PU HOME
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MAKE "DEN :W / 200

MAKE "HOR 50

MAKE "DX 10

MAKE "YO -50

MAKE "INC.SLOPE :DEN x :DX / :HOR
SETPOS LIST O :YO

PD STEP 0 1 1

STEP 0 1 -1

END

TO STEP :SLOPE :COUNTER :SIGN

SETPDS LIST (XCOR + :DX % :SIGN) (YCOR + :DX «
:5LOPE)

MAKE "HEIGHT YCOR - :Y0

BK :HEIGHT FD :HEIGHT

IF :COUNTER = 10 [BK :HEIGHT SETX 0 STOP]

STEP :SLOPE + :INC.SLOPE :COUNTER + 1 :SIGN

END

TO START
BRIDGE 200
END

BRIDGE takes one input, the weight (W) of the bridge.
Our bridge is 200 units long and so the weight per unit
length (the density) is W/ 200. We have arbitrarily chosen
the horizontal force (H) to be 50. To give our bridge more
room in which to rise we have set the roadbed at YO =
- 50.

We have chosen three inputs for STEP. These are the
SLOPE (initially zero), the COUNTER (initially 1), and
the SIGN (initially 1). The COUNTER is used to enumer-
ate the segments of the bridge as we add them one at a
time. The SIGN is used to denote which side of the bridge
we are building, +1 for the right side and —1 for the left
side.

The value of HEIGHT is the height of the suspension
cable above the roadbed. It determines the length of the
support cables.

When the counter is equal to 10 we have completed the
right side of the bridge and so we stop STEP 0 1 1 and
call STEP 0 1 —1 to finish the left side.

Run BRIDGE 200 to see Figure 15.4. BRIDGE 300
produces a bridge whose cable rises more sharply. BRIDGE
100 produces a bridge whose cable rises less sharply.
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Figure 15.4 BRIDGE 200

The Perfect Arch A
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The great St. Louis arch, the “gateway to the west,’ was
designed by Eero Saarine. It was a mammoth undertaking
and twenty years elapsed between its design and comple-
tion. The shape of the arch is a catenary. We would like to
explain what a catenary is and why it is such a good shape
for an arch.

The word “catenary” comes from the Latin word for
chain. A catenary is the shape which a chain assumes when
suspended from its ends. An arch, on the other hand, looks
more like an upside down catenary.

The St. Louis arch has been called “the perfect arch”
Its perfection lies not in its beauty, although it is strikingly
beautiful, but in its mechanical strength. An arch shaped
like a catenary is stronger than an arch shaped like a parab-
ola or a circle or any other shape.

Let us look at the chain and see what makes its shape
so special. If a wire were suspended from its ends it might
assume almost any form. This is because a wire is “stiff’ A
chain is not “stiff2” A chain cannot support torsion or com-
pressive forces. It can only support tensil (stretching) forces
tangent to its length. There is an old saying: “You cannot
push on rope” meaning: “You cannot make something or
someone behave in an unnatural way.” The natural property
of a chain or a rope is that you can only pull on them.

In Figure 15.5 a rope hangs from its ends. Any segment
of the rope exerts forces on adjoining segments. These forces
must be stretching forces tangent to the rope at the point
of contact. This is not the case for a hanging wire. Forces
between adjoining segments may be in any direction. To
make matters more complicated, there may also be a “cou-
ple” A couple is a measure of the tendency to cause rotation.
By exerting a pair of forces on part of the wire, you can
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! !

Gravity Gravity ~

Figure 15.5 Forces Acting Within a Rope

cause the rest of the wire to rotate. You cannot do this with
a rope. ‘

Now that we know what a rope or chain is we must
determine the connection between the catenary and the
“perfect arch.” To see the connection we first observe that
the shape of the catenary curve does not depend on the
weight of the chain or on the strength of the gravitational
force. All chains of a given length suspended from two given
points will hang in the same shape. It will be the same shape
on the Earth as on the Moon or on Mars. (You may simulate
the reduction of the gravitational force by pinning the ends
of a chain to a large piece of plywood. If the plywood is held
vertically the chain assumes the shape of a catenary under
1 G. Tilt the board back at some angle, then tap the board
until the chain assumes its equilibrium shape. This is the
shape of a chain under less than 1 G. The tilting of the board
effectively reduces the force of gravity. You will notice that
the shape of the chain is unaffected by the angle of the
board.)

The fact that the shape of the catenary is the same on
all planetary bodies has an interesting generalization. Hang
a chain. It takes the shape of a catenary. Reduce somehow
the gravitational force (move it into outer space). The shape
remains unchanged. It remains a catenary. Imagine now
that the gravitational force is reduced to zero and then made
negative. The gravitational force is now acting in the oppo-
site direction. The forces acting within the chain will still
be tangent to the chain but are now compressive forces. By
reversing the gravitational force we reverse all the forces.
Since the chain cannot support compressive forces it will
collapse. But suppose that instead of the chain we had a
rope with a bit of starch in it to give it some stiffhess. Now
if we inverted the gravitational force, or more simply we
inverted the starched rope, it would still be shaped like a
catenary (see Figure 15.6). All of the forces would be tangent
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Figure 15.6 Tensile Forces Become Compressive Forces

to the catenary curve. The forces would all be compressive
forces; no nontangential forces, no couples tending to cause
rotation. Pure compression.

Let us now stack a pile of stone blocks alongside the
starched rope in the same shape as the rope; that is, in the
form of the catenary. The forces between the stones would
be the same as the forces between the rope segments, purely
compressive forces tangent to the arch. Now stone is very
good at supporting compressive forces. No need to worry
about the stones being crushed. But what about the indi-
vidual stone sliding out of position? Or what about blocks
tipping and so causing the arch to collapse? Again, no need
to worry. The forces between stones is tangent to the arch
and because of the way in which the stones are cut, the
forces on each supporting face are perpendicular to that
face. Thus no need for friction. No need for mortar to pre-
vent tipping. (Mortar is not very good for this purpose any-
way since it is very poor under tension. It will easily give
way and the blocks would tip.)

In summary we see that by inverting the catenary we
invert all the forces. The pulling forces in the rope become
pushing forces as shown in Figure 15.7. The rope is good at
withstanding pulling forces and the stone blocks are good
at withstanding pushing forces. The inverted catenary is the
perfect arch for stone blocks.

The Catenary Curve A
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There are two physical properties of a chain or rope
which determine its shape when hung by its ends. The first
is that the tension must be tangent to the curve and the
second is that the tension cannot be compressive.

Let us give this information to the turtle and see if he
can construct the catenary curve. We begin as we did in the
construction of the bridge: start with a segment and add on
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Figure 15.7 Forces Acting in a Rope and on an Arch

bit by bit. Figure 15.8 represents a segment of the right half
of a hanging chain. The weight is not the weight of the
roadbed as before, but the weight of the chain segment.
This is an important difference. The weight of the chain is
proportional to its length. The weight supported by the cable
of a suspension bridge is proportional to the roadbed below
or in effect, proportional to the projection of the cable on
the horizontal axis.

If the forces in the figure are to balance, then

T, = Weight
T, = H

as before.

Let us add another link to the chain. In Figure 15.9, DS
is the length of the link, DX its horizontal projection, and
DY its vertical projection. Since we have added another link,

the tension T must increase to support the weight of the
new link. Therefore,

Increase in T, = weight of the new link

Since the horizontal forces have not changed

T, = H

v

Weight
Figure 15.8 Segment of Right Side of Rope
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Figure 15.9 An Additional Segment is Added

Proceeding as in the bridge example we have
Increase in SLOPE = (weight of new link) / H

Now the weight of the link of length DS is DS * DEN where
DEN is the weight of the chain per unit length. So finally

Increase in SLOPE = DEN * DS/H

The only difference between this equation and that for the
bridge is that DS has replaced its horizontal projection DX.
The program to draw the catenary follows:

TO CAT :M

PU

MAKE "DEN :W / 200
MAKE "HOR 50

MAKE "DX 10

MAKE "YO -50
SETPOS LIST 0 :YO
PD

STEP.CAT 0 1 1
STEP.CAT 0 1 -1
END

TO STEP.CAT :SLOPE :COUNTER :SIGN

SETPOS LIST (XCOR + :DX % :SIGN) (YCOR + :DX
:SLOPE)

IF :COUNTER = 10 [PU SETPOS LIST 0 :Y0 PD STOP]

MAKE "DS SQRT (S0 :DX) + SO :DX # :SLOPE

MAKE "INC.SLOPE :DEN % :DS / :HOR

STEP.CAT :SLOPE + :INC.SLOPE :COUNTER + 1 :SIGN

END
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Notice that the CAT program is very similar to
BRIDGE. Of course, we omit the roadbed and its sup-
porting cables. We also omit WINDOW and CS so that you
may superimpose the catenary on the bridge without eras-
ing the bridge. If you run BRIDGE 200 followed by CAT
200 you should see something like that in Figure 15.10. As
we observed earlier, the catenary rises more sharply than
the bridge cable. You should be able to see this from the
basic physics of the two systems without completing the
calculations.

Projects

For the purposes of these projects we would like to
recommend a modification which improves the accuracy of
the BRIDGE program. The modification is identical to
that used in our projectile motion program.

We recognize that the initial slope is 0. After one cable
segment has been added the slope has increased by
INC.SLOPE. Thus the average slope for this first segment
should be INC.SLOPE/2. Therefore, in BRIDGE we call

STEP :INC.SLOPE /
STEP :INC.SLOPE /
END

211
21 (-

1)

Not only does this get us started on a better foot, throughout
the rest of the program the slope used in the calculations
will be the average slope.

1. The first thing we would like to do is verify that the shape
of the suspension bridge cable is a parabola. Pick some
weight W, say 200. Plot the equation for a parabola, Y
= A * X* where A is some chosen constant. See if you
can find a value of A for which the parabola fits the
bridge cable. You can do this by trial and error or by
examining the coordinates of the end points of the bridge
cable.

2. The St. Louis arch is not a true catenary. The thickness
of the arch is not uniform but becomes progressively
thinner toward the top. To study this effect, modify the
CAT program to determine the shape of a hanging chain
if the density of the chain varies uniformly from the cen-
ter to the ends. Let there be 200 links, each 1 inch long.
The first link to the right of center weighs 1/1000 lbs, the
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second 2/1000 lbs, and so on. The last link on the right
side weighs 100/1000 Ibs. The chain is symmetrical about
the center.

Problems

1. Can you build a bridge 200 units long between two tow-
ers 160 units high? The weight of the roadbed is 300.
(Hint: You will have to change the tension :HOR in the
cable at the midpoint.)

2. Determine the shape of the bridge cable if the central
100 ft of the bridge weighs 100 tons and the outside 100
ft (50 on each side) weighs 200 tons.

Figure Figure 15.10 Bridge and Catenary
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6 Fishes and Optics

Introduction A

The fish that got away is always bigger than the one
we bring home to brag on. There may be many reasons for
this, but at least one has a physical basis. Things do look
bigger under water. By the same token, things above the
water look smaller to the fish.

The reason for these optical illusions is that light rays
bend as they pass from air to water or from water to air.
The law that governs this bending is Snell’s law.

Snell’s Law A

In Figure 16.1, a ray of light is incident from air and is
refracted into the water. The angle between the incident ray
and the normal is called the angle of incidence (i) and the
angle between the refracted ray and the normal is the angle
of refraction (r).

The way light bends as it passes from one medium to
another depends on the velocity of light in the two media.
The ratio of the velocity of light in a vacuum to that in the
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Air

Water
r

Figure 16.1 A Ray o_f Light Bends as it Enters the Water

medium is called the index of refraction and the symbol n
is used:

n=c/v

The index of refraction of a vacuum is, by definition, one.
The index of refraction of air is approximately 1, water 1.33,
and glass 1.5.

We will call n; the index of refraction of the incident
medium and n, that of the refractive medium. With these
definitions we may state Snell’s law; the fundamental law
of geometrical optics. Snell’s law says that:

n;sini = n.sinr

Let us denote the index of refraction of water by N. Since
the index of refraction of air is nearly one, Snell’s law applied
to the air/water interface in Figure 16.1 becomes:

sini = Nsinr

The Underwater Horizon | A
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The Archer fish of Thailand derives its name from the
curious way in which it makes its living. It has developed a
technique for spitting a jet of water at unsuspecting bugs,
knocking them out of the air into the water. It must take
the Archer fish some time to learn this anti-aircraft tech-
nique because, as you see from Figure 16.2, the line of sight
is not the same as the trajectory of the water jet.
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Line
of sight / Bug I
/\xyﬁ |
/ i
/ |

Water jet

Figure 16.2 The Archer Fish

The Archer fish has apparently learned by trial and
error to compensate for the discrepancy. We will write a
program to determine the degree of compensation. In
ARCHER :DEPTH :R the turtle draws the ray that enters
the fish’s eye. The fish is at a given DEPTH and looking in
the direction R.

TO ARCHER :DEPTH :R
WINDOW

CS PU HT HOME

MAKE "N 1,33
DRAW.WATER

SETY -:DEPTH

SETH :R

PD FD DIST.TO.WATER
FD 100 BK 100

SETH I

FD 100

END

TO DRAW.WATER
PD RT 90 FD 100 BK 200 HOME PU
END

TO DIST.TO.WATER
OP :DEPTH / COS :R
END

TO I

MAKE “SINE.I :N % SIN :R

OF ARCTAN :SINE.I / SOQRT (1 - 80 :SINE,I)
END
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TO START
ARCHER 70 40
END

In ARCHER we have set n = 1.33, the index of refrac-
tion of water. The angles of incidence and refraction are 1
and R. To find the DIST.TO.WATER we do a little trigo-
mometry. To determine the ANGLE.R, we first apply Snell’s
law:

sini = Nsinr
and then output the angle i. Since most versions of Logo do
not have a primitive for the arcsine function, the procedure
I instead outputs: arctan sin i/ SQRT(1 — SIN? i), which is
the same as outputting the angle i. (To see this, note that
SQRT(1 — sin®i) = cosiandsini/cosi = tan 1.)

If we run ARCHER 70 40 the turtle draws the ray
that leads from the bug to the fish’s eye (in the reverse order)
and then extends the ray from the fish back into the air to
make it easier to see the net deflection (as shown in Figure
16.3.) It is a simple matter to have the angles of incidence
and refraction printed to the screen if you wish.

You will notice as you increase the angle of refraction
R, that the ray above the water becomes more and more
parallel to the surface of the water. The angle for which the
ray in air becomes parallel to the water is called the critical
angle. If you increase the angle of refraction beyond this
critical angle you get an error message. If the fish were to
look at such an angle it would see nothing above the water.
(If it saw anyhing at all it would be objects at the bottom
of the lake reflected off the surface.) The fish’s horizon
therefore is much less than our horizon (see Figure 16.4).
We must turn through 180° to look from one horizon to the
other. We leave it as an exercise to determine the fish’s hori-

g

Figure 16.3 ARCHER 70 40



Fishes and Optics

Air

Angle between

horizons Water

Y Eye

Figure 16.4 The Fish's Horizon

zon. Thus when the first amphibian emerged from the pri-
mordial oceans, it took a giant step toward broadening its
horizons.

Apparent Depth A

We have seen that the world above the water’s surface
appears distorted to the fish. By the same token, the under-
water world appears distorted to the fisherman. For exam-
ple, a fish appears to be closer to the surface than it actually
is. In Figure 16.5 we show two rays emanating from a point
P below the surface. These rays bend as they enter the air
and are seen by the eye of the fisherman. To the eye, these
rays appear to be coming from the point of intersection P’
and so the apparent depth is less than the actual depth.

Figure 16.5 Rays Emerging From the Water
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To see precisely how this comes about let us apply Snell’s
law and follow the rays as they pass from the water into
the air. Since the rays are incident from the water and
refracted into the air, Snell’s law becomes:

Nsini = sinr

In the program APPARENT.DEPTH we apply this equa-
tion to determine the apparent depth of a fish whose actual
depth is :DEPTH.

TOD APPARENT.DEPTH :DEPTH

ARCHER .NEW :DEPTH 20

ARCHER .NEW :DEPTH -20

(PRINT [APPARENT DEPTH =1 -YCOR)
(PRINT [ACTUAL DEPTH =1 :DEPTH
END

TO ARCHER.NEW :DEPTH :1
PU HOME HT

MAKE "N 1,33
DRAW.WATER

SETY -:DEPTH

SETH :1I oL
PD FD DIST.TO.WATER
SETH R

FD 100 BK 100

BK DIST.TO.Y.AXIS
END

TO DRAW.WATER
PO RT 90 FD>100 BK 200 HOME PU
END

TO DIST.TO.WATER
OP :DEPTH / COS :1I
END

TO R

MAKE "SINE.R :N % SIN :I

OP ARCTAN :SINE.R / SOQRT (1 - SQ :SINE.R)
END

TO DIST.TO.Y.AXIS
OP :DEPTH % (TAN :I) / SIN R

END

TO TAN :X

OP (SIN :X) / COS :X
END
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T0 80 :X
OP X » X
END

TO START
APPARENT.DEPTH 70
END

This program is very much the same as ARCHER.
One of the primary differences is that the rays are now
emerging from a source in the water (the fish) rather than
a source in the air (the bug). Hence incident angles become
refracted angles and refracted angles become incident angles.

The program draws two rays at 20° to the vertical. The
emerging rays are extended back to their point of intersec-
tion on the y-axis. To an observer above the water the rays
appear to be coming from this point of intersection. This is
therefore the image point. If we run APPARENT.DEPTH
70 we obtain Figure 16.6.

(These results are somewhat misleading. Two rays do
not an image make. We should show that most of the rays
leaving the source point P and entering the eye converge to
the same image point P’. You can show this using the Logo
program. Try three small angles; say 1°, 2°, and 3°. You will
find that the apparent depth does not change much. For
large angles there is a large variation in the depth but these
rays do not enter the small pupil of the observers eye.)

Magnification A

The fact that the apparent depth of a fish is less than
the actual depth suggests that objects under water will appear

N/

AFPFARENT DEPTH = 49,8789
ALTUSL DPETH = 70

Figure 16.6 APPARENT.DEPTH 70 20
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pe

Figure 16.7 Retina Image of Fish

162

magnified. However, the question of magnification is quite
different from the question of image location. A convex
mirror brings an image closer to the observer but dimin-
ishes its apparent size. To illustrate the difference between
apparent size and image position, you can see from Figure
16.7 that all the fish would create the same size image on
the retina of the eye and so “appear” to be of the same size.
To determine the apparent size of the fish we must examine
the size of the image of the fish on the retina of the observer.

Figure 16.8 shows the two rays that leave each end of
the fish and pass through the optical center of the eye. These

Figure 16.8 The Apparent Angle and Actual Angle



Fishes and Optics

rays subtend an angle A. If there were no water, the rays
entering the eye from either end of the fish would subtend
a smaller angle B and so leave a smaller image on the retina.
Magnification is defined as the ratio of the apparent angle
to the angle in the absence of the water (or other optical
system in general). So that

Magnification = A/B

To determine this magnification we may employ the
program MAG. It will determine the magnification of a fish
at a given depth below the surface as observed by an eye at
a given height above the surface. The magnification depends
also on the angle subtended by the fish.

TO MAG :HEIGHT :DEPTH :ANG.RAY

HT CS HOME

MAKE"EYE LIST O :HEIGHT

DRAW.WATER

MAKE "N 1,33

SETPOS :EYE

PD

DRAW.RAY :ANG.RAY

PU SETPOS :EYE PD

DRAW.RAY -:1ANG.RAY

( PRINT [ANGLE IN AIR =1 HEADING )

( PRINT [ANGLE IN WATER =1 :ANG.RAY )
( PRINT [MAGNIFICATION =1 :ANG.RAY / HEADING )
END

TO DRAW.WATER
PD RT 90 FD 100 BK 200 HOME PU
END

TO DRAW.RAY :ANG
SETH ( 180 - :ANG )
FD DIST.TO.WATER
SETH ( 180 - I )

FD DIST.TO.FISH
SETH TOWARDS :EYE
END

TO DIST.TO.WATER
OP :HEIGHT / COS 1
END

TO DIST.TO.FISH

OP :DEPTH / ABS COS I
END
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T0 I

MAKE "SINE.I ( SIN :ANG ) / :N

OP ARCTAN :SINE.I / SORT ( 1 - SO :SINE.I )
END

TO ABS :X
IF X » O [OP :X1 [OP -:X1
END

TO START
MAG 100 BO 20
END

In MAG, the eye is set at the given height above the
surface, and a ray is drawn at an angle :ANG.RAY. The
ray strikes the water where it is refracted to one end of the
fish. A second ray is drawn at an angle — :ANG.RAY which
intercepts the other end of the fish. (The early Greeks believed
that objects were perceived by means of rays which were
emitted from the eye. We begin the ray from the eye for
convenience only. The rays perceived by the eye, of course,
emanate from the fish.) The angular magnification is then
printed.

By varying the three parameters :HEIGHT, :DEPTH,
and :ANG.RAY) we find different degrees of magnifica-
tion. We explore this variety in the Problems section.

Problems

Project

1. Determine the angle between opposite horizons for a fish.

2. Show that the apparent depth varies only slightly for small
angles, but that its variability is greater for large angles.
(Try 1° and 2° followed by 20° and 21°.)

3. Show that for small angles the ratio of the true depth to
the apparent depth is the same for all depths. Can you
identify the significance of this ratio?

4. Experiment with various values of HEIGHT and
DEPTH in MAG. Show that the magnification lies

between 1 and 1.33 (the value of N). Under what con-
ditions is the magnification at maximum?

1. The skin diver does not see the world as the fish does.
This is because his eyes are encased in a mask and are
therefore in air and not in water. Write a program that
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Displacement
Figure 16.9 Ray of Light Passing Through Slab

shows how a ray through a slab is displaced but not
deflected (see Figure 16.9). Get a printout of the
displacement.
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Rainbows

Introduction A

There are few sights in nature as inspiring as a rain-
bow. It arches across the sky in glorious color. The end of
the storm and gateway to a bright future.

The physical basis for the rainbow has been the subject
of speculation for thousands of years. The myths that sur-
round the rainbow are as colorful as the rainbow itself,
There is even a bit of mythology to be found in some physics
texts as well. The impression is often given that rain drops
act like little prisms that split the white sunlight into its
color constituents: red, orange, yellow, green, blue, and violet.
If this were all there were to it we should see color wherever
we look. Wherever there are illuminated raindrops there
should be a spectrum of color. Instead we see color only in
the rainbow arch. :

As we shall show, we should see a rainbow even if the
light from the sun were monochromatic (just one color). If
we could somehow place a filter over the Sun that would
allow only red light to penetrate, the rainbow would become
a single bright red band arching across the sky. The first
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thing we would like to explain is this red band and then the
presence of the rest of the spectrum will be easy to understand.

The Red Band A

So, let us investigate first the red band. To do so we
must study what happens to a ray of light when it enters a
raindrop.

When light encounters a sudden discontinuity such as
an air/water interface, part of the light is reflected and part
is refracted. In Figure 17.1, the dotted line is the normal to
the surface. If the incident ray makes an angle i with the
normal, the reflected ray also makes an angle i with the
normal. The refracted beam is bent as it enters the water.
If we denote the angle between the refracted beamn and the
normal by r, then i and r are related by Snell’s law:

nsini = n,sinr

where n; and n, are the indices of refraction of light in their
respective media.

Consider now the case of light entering a water drop.
We wish to study the progress of a ray which is refracted as
it enters the drop, reflected off the inside surface, and then
refracted back into the air as illustrated in Figure 17.2. At
each interface there is both a reflected and a refracted ray
but we choose to follow only the indicated sequence. We

Reflected beam Incident beam

|
|
|
|
|

Air

Water

rl

|

|

|

Refracted beam |

Figure 17.1 Light Reflected and Refracted off Water

168



Rainbows

Refraction

Reflection

Refraction
Figure 17.2 Ray of Light Through a Water Drop

shall see that this particular ray has a special property
responsible for the rainbow. /

To facilitate the calculation it is helpful to include some
construction lines. The dotted lines in Figure 17.3 all rep-
resent radii of the circle. Because the radius of a circle inter-
sects the circle perpendicularly, these radii are also the nor-
mals to the circle. The angles of incidence, refraction, and
reflection are all measured relative to the extensions of the
radii. Because the triangles within the circle are all isosceles
triangles, it follows that all the indicated angles within the
circle are equal to r.

Snell’s law applied to the first refraction becomes

sini = nsinr

Figure 17.3 Construction Lines for the Rays
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where we have set the index of refraction of air equal to
one, and n is the index of refraction of water. We can there-
fore rewrite this equation as follows:

sint = (1/n) sin i

We will use the equation in this form when we apply Snell’s
law to the second refraction.

The Ray Program A

170

We would like to write a program to draw a series of
rays coming from the sun which enter the drop at various
points on its surface. The sun’s rays are coming from the
right in Figure 17.4. We will characterize each incident ray
by the perpendicular distance between the ray and the cen-
ter of the circle. We will call this distance the impact param-
eter (D).

The procedure RAINBOW draws a circle of radius
RAD to represent the rain drop. In DRAW.RAY.AT :D
we draw the ray whose impact parameter is D. The pro-
cedure then checks to see if the impact parameter (D) is
greater than the radius (RAD) of the drop. If not, it STARTSs
a NEW.RAY. When the ray first meets the drop it under-
goes a REFRACTION then moves to CROSS the DROP,
where it undergoes a REFLECTION. The ray then
CROSSes the DROP once again and undergoes a second
REFRACTION with the index of refraction (N) inverted
since the ray is now moving from water to air rather than
from air to water. In EXIT.RAY the ray emerges from the
drop at a heading that is printed on the screen. The next
ray is drawn with the impact parameter increased by :DD.

|

Figure 17.4 A Single Ray



TO RAINBOW :D :DD
CLEARSCREEN FULLSCREEN
MAKE "R B0

MAKE "N 1.33

WINDOW

CIRCLE :R

DRAWRAY AT :D

END

TO DRAW.RAY.AT :D

IF (ABS :D) > :R [STOPI
START.RAY.AT :D
REFRACTION :N
CrROSS.DROP
REFLECTION
CROSS.DROP
REFRACTION 1 / :N
EXIT.RAY

PRINT HEADING - 90
DRAW.RAY.AT :D + :DD
END

TO START.RAY.AT :D

PU

SETPOS LIST (40 + SQRT ((S0 :R) - 50 :D))
SETH 270

PD

FD 40

END

TO REFLECTION :N

FIND.ANGLE

MAKE "ANG ARCSIN ((SIN :zANG / :N)
SETH (HEADING + :ANG)

END

TO ARCSIN :X
OP ARCTAN (:X / (SQRT ((1 - S0 :X)))
END

TO FIND.,ANGLE

MAKE "HEAD HEADING

SETH TOWARDS [0 0]

IF (ABS (:HEAD - HEADING)) > 90 L[RT 1801
MAKE "ANG :HEAD - HEADING

END

TO REFLECTION
LT 180

Rainbows
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MAKE "HEAD HEADING
SETH TOWARDS [0 01
RT (HEADING - :HEAD)
END

TO0 CROSS.DROP

MAKE "L 2 % :R % COS :ANG
FD :L

END

TO EXIT.RAY
FD 160
END

T3 START
RAINBOW 30 2
END

If this program is run by calling RAINBOW 30 2 we
see a series of rays emerging from the drop at various angles
(see Figure 17.5). The important thing to notice is that there
is a maximum deflection which occurs at about 42.5°. The
angle of the exit rays increase up to a point and then begins
to decrease. The ray with the greatest net deflection (42.5°)
is called the Cartesian ray (after Rene Descartes, who first
explained the physical basis for the rainbow). Because of
this reversal of the net deflection, there will be a greater den-
sity of rays emerging in the direction of the Cartesian ray.

It may help to understand the enhancement in the
intensity of the light in the Cartesian ray by means of the
following analogy. Imagine that you are carrying a bucket
of sand. There is a hole in the bucket and the sand is running
out leaving a trail of sand on the ground behind you. If you
were to slow down, stop, and back up, there would be more
sand at the turn-around point than at any other point along
the trail. You spend more time over this point than any
other. This is precisely what happens in the rain drop. There
is more light coming from the direction of the reversal in
the deflection. If you look carefully at the exit rays you should
be able to see this increase in intensity at the Cartesian
angle.

If you were located below a collection of rain drops,
you would notice a bright ray emitted from all drops in the
direction of the Cartesian ray as seen in Figure 17.6. Other
drops would be deflecting the sunlight toward the observer
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Figure 17.5 RAINBOW 30 2

as well, but the intensity of these rays would be much less
than that of the Cartesian rays.

We have only shown in Figure 17.6 those rays and water
drops that lie in the vertical plane. If you were to hold this
figure upright you would have a representation of the ver-
tical plane. Now grasp the figure with both hands at the
two Xs marked in the figure. Rotate the page about a hori-
zontal axis. The eye of the observer remains fixed as does
the direction of the incident beam of sunlight. The Cartesian
rays, however, rotate in an arc. This is the rainbow arc for
the monochromatic red beam of light.

If the sun were high in the sky, the size of the rainbow
is diminished. To see this, again hold the page by the Xs.
Rotate the entire page to the left until the sunlight is at the
appropriate angle. Now rotate about the line Jjoining the Xs.

——
—— Sunlight
——

Figure 17.6 Enhancement of Cartesian Rays
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Notice that the size of the rainbow arc is now diminished.
Notice also that the angle between the observer, the rain-
bow, and the sun remains 42.5°.

The Color in the Rainbow A

We have shown that an incident beam of monochro-
matic light will generate a bright arc at 42.5° relative to the
incident beam. Now sunlight is not monochromatic. It scans
the entire visible spectrum and much more. If we were to
consider other frequencies we would find that the Cartesian
rays emerge at different angles. This is due to the fact that
the index of refraction depends on the frequency of the light.
In DRAW.RAY.AT set N = 1.34 and run RAINBOW 30
2. You will find that the Cartesian ray emerges at 41.06°.

The index of refraction increases with increasing fre-
quency. Thus, the above experiment demonstrates that the
angle of the Cartesian ray for high frequencies is less than
the angle of the Cartesian ray for low frequencies. Blue light
represents high frequencies and red light low frequencies,
so the Cartesian blue ray emerges at a lower angle and the
Cartesian red ray emerges at a high angle (see Figure 17.7).
It is for this reason that we see red on the top of the rainbow
and blue on the bottom (see Figure 17.8).

/\ < White

Blue
Red

Figure 17.7 Red and Blue Rays
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Blue

Figure 17.8 Red Appears at Top of Rainbow

A Mini-language A

We have written the rainbow program in such a way
that you may use the procedures as a small language; an
optics language for spheres. The vocabulary of this language
consists of five words:

START.RAY.AT :D
REFRACTION :N
REFLECTION
CROSS.DROP
EXIT.RAY

These five words may be called in the immediate mode or
used in a procedure. For example, if you type START.-
RAYAT 30, you will see a ray strike the drop with an
impact parameter of 30. Next type REFRACTION 1.33
and (if the turtle is visible) you will observe a change in the
heading of the turtle. Next type CROSS.DROP, REFR AC-
TION 1/ 1.33, and EXIT.RAY and you will see the ray
pass through the drop and emerge from the far side. You
have complete control of the course of the ray.

There are a variety of optics problems that you can solve
using this mini-language. You may bundle the words together
as we have done in the DRAW.RAY.AT procedure.

To understand the optics of a concave mirror consider
the following modification:

DRAW.RAY.AT :D

IF (ABS :D > :R) [STOP]
START.RAY.AT :D
REFRACTION 1

CrROSS.DROP

REFLECTION

CROSS.DROP

REFRACTION 1

EXIT.RAY
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DRAW.RAY.AT :D + :DD
END

and call RAINBOW 30 —60 to see Figure 17.9, which
demonstrates that the focal point of a concave mirror is at
about R/2 from the mirror. By using REFRACTION 1
(index of refraction equal to one) we allowed the rays to
pass through the sphere without deflection. In the problems
that follow you may use similar techniques to find the focal
point of a single refracting surface, a spherical lens, and a
convex mirror.

Figure 17.9 RAINBOW 30 —60

Projects
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1. We have demonstrated the cause of the primary rainbow.
There is also a secondary rainbow of lower intensity located
above the primary at about 50°. The Cartesian ray which

50°

Figure 17.10 Cartesian Ray for the Secondary Rainbow
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Incident ray

Figure 17.11 Refractions and Reflections from Incident Ray

is responsible for the secondary rainbow is reflected twice
inside the drop and is illustrated in Figure 17.10. To find
this rayv, insert an additional REFLECTION and
CROSS.DROP into DRAW.RAY.AT and try RAIN-
BOW —30 —1. In the primary rainbow we see red on
the top and blue on the bottom. Is this true for the sec-
ondarv rainbow as well?

2. What is the angle of the tertiary rainbow?

3. A light ray that enters a water drop undergoes many
internal reflections. With each reflected ray is a refracted
ray (see Figure 17.11). Write a procedure that shows as
many internal reflections as you choose to input. Show
both the reflected and refracted rays.

4. Determine the focal point of a single refracting curved
surface of radius 100. Let the lens be made of glass for
whichn = 1.5.

5. Determine the focal length of a spherical lens whose radius
is 60 and index of refraction 1.5.

6. Determine the focal length of a convex mirror whose
radius is 60.

7. As a more ambitious project, consider a converging thin
lens of glass whose opposing faces have radii of 50 cm.
Since it is a thin lens you may assume that both surfaces
are on the v-axis (see Figure 17.12). Therefore to cross
the lines you go FORWARD 0. To determine angles of
incidence SETHHEADING TOWARDS [ — 50 0] and
[—50 0]. The object is at a distance of 70 cm from the
lens. Where is the image located?
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—P X

Figure 17.12 A Thin Lens

Problems

1. By examining all the rays that undergo one internal
reflection and all rays that undergo two internal reflec-
tions, can you explain Alexander’s dark band? (Alex-
ander’s dark band is the dark area that exists between
the primary and secondary rainbows.)

2. We have shown for a single drop that the Cartesian ray
emerges at 42.5°. Since raindrops come in many different
sizes it is important to show that this result is indepen-
dent of the radius of the drop. Set the radius to several
different values and verify that the maximum deviation
is independent of the radius.
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Electric and
Magnetic
Field Lines

18

Introduction - A

F ields of one sort or another fill all of space. There
are electric fields, magnetic fields, gravitational fields, and
nuclear fields. We will investigate the nature of static electric
and magnetic fields in this chapter.

The electric field of a single point charge of strength Q
is given by the equation:

E = Qr®

where r is the distance between the charge and the field
point. The electric field is a vector and so has a direction as
well as a magnitude. The direction of the field of a point
charge is directed radially away from a positive charge and
radially toward a negative charge.

The static electric field of a group of point charges can
be obtained by adding together the fields of the individual
charges. For a large collection of charges this field can be
quite complicated and so it is helpful to be able to visualize
it in some way. This is accomplished with the aid of electric
field lines. Electric field lines have the property of being
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Figure 18.1 - Electric Field Lines of a Single Positive Charge

everywhere tangent to the electric field. For example, the
field lines of a positive point charge are illustrated in Figure
18.1. The electric field lines of two equal and opposite charges
are shown in Figure 18.2.

Electric Field Lines A
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Let us consider a method by which the turtle might be
employed to draw field lines. In order to be as definite as
possible we will consider two charges of strength Q, and
Q- Imagine the turtle to have somehow completed a por-

Figure 18.2 Field Lines of Equal and Opposite Charges
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\\\®
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Figure 18.3 A Portion of an Electric Field Line

tion of one field line as illustrated in Figure 18.3. We would
like to show how the turtle might add a small segment to
this line. The first thing is to determine the direction of the
electric field. Once we have this direction we simply extend
the line a short distance at this heading and repeat the
process over and over again.

To obtain the direction of the electric field we note the
field is the vector sum of the fields produced by Q, and Q..
These fields are directed radially away from the two charges
and have magnitudes given by the equations:

E, = Q1/(r1)2
E, = Q?-/(rz)z

where r; and r, are the distances between the charges and
the field point (see Figure 18.4). We will use our tail-to-tip
rule of vector addition to obtain the sum. The net field E is
a vector from the tail of E, to the tip of E, as illustrated in
Figure 18.5.

With this background we can now write a program to
draw the electric field lines.

The Program A

The electric field lines of any pair of charges may be
drawn using the following program:

7/ \\\\
S, @
Q2

Qq
Figure 18.4 Electric Fields of Two Charges
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Figure 18.5 The Vector Sum of Two Fields

TO ELEC.FIELD :Q1 :X1i :Q2 X2

WINDOW

HT FULLSCREEN CS

MAKE "POS.01 LIST :X1 ©

MAKE "POS.02 LIST :X2 ©

PU CHDOSE.LINE 0 330 :P0S.0Q1 10

IF ¢ :Q1 % :02Z » 0 ) [CHOOSE.LINE 0 330 :P05.92 101
[CHOOSE.LINE ( 3B0 - :ANGLE + 20 ) ( -1B0 + :ANGLE
- 30 ) :PDS.Q2 -101

END

TO CHODSE.LINE :ANG :FINAL.ANG :Q,PDS :LENGTH
PU
SETPOS :0.POS

SETH :ANG
PD FD 10
STEP ©

IF :ANG > :FINAL.ANG [STOP]
CHOOSE.LINE :ANG + 20 :FINAL.ANG :0,POS :LENGTH
END

TO STEP :N

FIND.FIELD.DIREC

FORWARD :LENGTH

IF ¢ OR ( ABS XCOR ) > 120 ( ABS YCOR ) » 120 )
[STOP]

IF ( DR ( ABS :80,DIST.1 ) < 90 ( ABS :50.DIST.Z2 )
< 890 ) [MAKE "ANGLE HEADING STOP]

STEP :N + 1

END

TO FIND.FIELD.DIREC

MAKE "OLD.PDOS POS

PU SETH TOWARDS :P0S.0Q1

MAKE "HEAD.1 HEADING

MAKE "S0.DIST.1 SQ,DIST :P0S.Q1
SETH TOWARDS :P0S.0Q2

MAKE "SQ.DIST.2 50.DIST :P0S.Q2
BACK :02 / :5Q,DIST.2
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SETH :HEAD.1

BACK :Q1 / :50.DIST.1
SETH TOWARDS :0LD.POS
SETPOS :0LD.POS

PD RIGHT 180

END

T0 SQ.DIST :POSITION

OP ( ¢ 60 ( ( FIRST POS ) - FIRST :POSITION ) ) +
5Q ( LAST POS ) - LAST :POSITION )

END

TO START

ELEC.FIELD 20 -50 -10 50

END

The inputs to ELEC.FIELD are the charge and posi-
tion of the two charges on the x-axis. For simplicity we
always choose the greater charge to be positive and to the
left of the second charge Q.. The sign of Q, may be positive
or negative. In the first call to CHOOSE.LINE :ANG
:FINAL.ANG :().POS :LENGTH we begin to draw field
lines which emanate from :POS.Q1 at an angle of 0° and
a step length of 10. (You may reduce this step length to
obtain more accurate field lines.) The lines are drawn at
20° intervals until :ANG > 330. All lines continue until
they near the boundary or terminate on the other charge.
When the lines from :Q1 have been completed a second call
to CHOOSE.LINE will draw the lines which emanate from
Q2. If :02 is opposite in sign from :Q1, some of the lines
from Q1 will terminate on Q2. Therefore, in this second
call we must take care to choose only those headings away
from Q92 which have not already been drawn. The angle at
which the lines must begin is determined in STEP where
tANGLE is set to the heading at which the last field line
terminated on Q2.

The result of ELEC.FIELD 20 —50 — 10 50 is illus-
trated in Figure 18.6.

The Magnetic Dipole A

Except for the region close to the dipole, the magnetic
field of a magnetic dipole is very similar to the electric field
of an electric dipole.
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ELEC.FIELD 20 -S0 -10 5@

Figure 18.6 ELEC.FIELD 20 —50 —10 50

It is instructive to turn the magnetic dipole on its side
as shown in Figure 18.7. These magnetic field lines are very
similar to those generated in the Earth’s core. By drawing
a large sphere about the dipole, we can see the direction of
the Earth’s magnetic field at any latitude on the Earth’s
surface. Notice that the magnetic field is not parallel to the
Earth’s surface (except at the equator).

If we had a free-swinging compass, we would observe |
the true direction of the magnetic field. The usual compass
is constrained to rotate in a horizontal plane and so we are
unable to observe the vertical component. The angle between
the magpnetic field and the horizontal is called the dip angle.
The dip angle is zero at the equator and 90° at the North
Pole. In Washington D.C. the dip angle is 71° which may
account for some of the strange goings on in the Capitol.

Figure 18.7 The Earth's Magnetic Dipole Field
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Electric and Magnetic Field Lines

Draw a dipole and a large sphere to illustrate the Earth’s

magnetic field. :

. Someplace on the line joining two positive charges the

electric field must be zero. Run ELEC.FIELD 2 —50
1 50. Study the field and see if you can spot the place
where the electric field must be zero.

. Try to write a program that generates the field lines of

three positive charges.

. When the number of lines emanating from the charges

is proportional to the quantity of charge one can show
that the density of the field lines is proportional to the
strength of the electric field. Modify ELEC.FIELD so
that for two positive charges the number of lines ema-
nating from each charge is proportional to the quantity
of charge.

Construct a program that will draw arrows on the elec-
tric field line to indicate the direction of the field as in
Figure 18.8. In this figure we have called ELEC.FIELD
20 —50 —10 50 and the arrows were drawn according
to the sign of the charges.

. We have considered only the electric field of two charges.

The objective of this project is to explore the field lines

Figure Figure 18.8 Project 5
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of any collection of charges. To simplify the task you

might try to follow the steps outlined here:

a. Write a program which will execute the following
procedure:

TO START
INITIALIZE
GO.TO 30 40
PLACE.CHARGE 10
GO.TO0 -20 80
DRAW.ELEC

END

where INITIALIZE allows you to initialize variables
(for example, you may wish to place the position of the
charge and its magnitude in a list “CHARGE.LIST—
in this case [30 40 10], where the position is (30,40)
and the charge is 10. GO.TO 30 40 sends the turtle to
the point (30,40). PLACE.CHARGE 10 places a charge
of 10 at this point. You may wish to include a subpro-
cedure to draw the charge (for example, draw an aster-
isk). DRAW.ELEC should draw an arrow in the direc-
tion of the electric field at the new turtle location of
(—20,80). (Hint: To simplify parts (b) and (c) it is rec-
ommended that you use rectangular components for the
positions and electric fields. You may then point the turtle
in the direction of the electric field by SETH TOWARDS
LIST XCOR + EX YCOR + EY, where EX and EY
are the components of the electric field and XCOR and
YCOR are the current location of the turtle.)

b. Repeat (a) but allow the turtle to place any num-
ber of charges. You may wish to keep track of the charges
by constructing a CHARGE.LIST. For example, if
CHARGE.LIST is [[30 40 10] [10 90 —41], there is
a charge of 10 units at (30,40) and a charge of —4 at
(10,90).

c. Repeat (b) except allow the turtle to move to any posi-
tion in the field of preset charges and follow along the
electric field line that passes through that point. For
example, you should be able to run the following
procedure:

TO START
FULLSCREEN
INITIALIZE
GO.TO BO -BO
PLACE.CHARGE 50
GO.,TD -90 -90
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PLACE.CHARGE 20
GO.TO 40 90
PLACE.CHARGE -10
GO.T0 -80 -85
FOLLOW.FIELD.LINE
END

where FOLLOW.FIELD.LINE moves the turtle along
the electric field line through the point (—80,—85). (To
stop the turtle you may try: IF KEYP [STOP].) If vou
run this procedure you should obtain the field line illus-
trated in Figure 18.9.

¥

Figure Figure 18.9 Project 6
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Astronomical Data A

Physical Data for the Earth

Radius = 6.3 X 10°m
Mass = 6.0 X 10** kg

Physical Data for the Sun

Radius = 6.9 X 10®° m
Mass = 2.0 X 10°° kg

Physical Data for the Moon

Radius (Earth = 1) = .0123

Mass (Earth = 1) = .27

Surface Gravity (Earth = 1) = .16
Escape Velocity = 2,400 mv/sec
Period = 27 days

Distance from Earth = 0.4 X 10° m
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Physical Data for the Planets

Dist. from sun (x 10° m)

Radius (Earth =
Radius (x 10> m)

Surf. gravity (Earth = 1)
Escape Vel. (x 10° mvs)

1)

Mass (Earth = 1)

Temperature (°K)

Length of year (yrs.)

Orbit vel. (X 10® nvs)

Mercury

58
.38
2.4
.38
4.3
.05

690

24
48

Venus

108
97
6.1
.87

10
.81

330

.61
35

Planetary Positions

Position of the Planets on January 1, 1985

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

192

45°
326°
00
268°
194°
130°
156°
172°
113°

Earth

Mars
Jupiter

Saturn
Uranus
Neptune
Pluto

150 228 778 1430 2900 4500 5900

1
6.3
1.0

11
1.0

b2 11
3.3 68
39 26
51 61
11 320

287 285 135

1.0
30

1.9 12
24 13

9.0 3.7 34 45
57 23 21 28
12 11 1.2 4
37 22 26 5
95 15 17 1
120 80 ? ?
29 84 165 248
10 6.8 55 4.8

A

Earth



Appendix B

Terrapin and
Commodore Logos A

There are two dialects of Logo in common use. The
first is represented by Apple, Atari, and IBM Logos; the sec-
ond by Krell, Terrapin, and Commodore Logos. There are
minor modifications within each of these two groups. It is
the Apple/Atari/IBM Logo that is employed in the body of
this book and these programs will run with little or no
modification. The only additions necessary are a TOWARDS
command for the Atari Logo and an ASK command for the
Apple and IBM Logos. There will be other minor differences
such as the use of abbreviations for certain commands but
these differences should cause little difficulty.

The Krell, Terrapin, and Commodore Logos use a
somewhat different syntax and for the benefit of these users
we have included a translation of all major programs used
in this book into Terrapin Logo. Modification to Krell and
Commodore Logos will be minor. The one notable differ-
ence between the Terrapin and Commodore Logos is that
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the Commodore Logo possesses sprites and so it is unnec-
essary to employ the ASK command presented below. Users
of Commodore Logo should take advantage of their sprites
(using the TELL command) and not force one turtle to do
the work of four as is necessary in Apple, IBM, Terrapin,
and Krell Logo.

A

Terrapin Logo does not like to use numbers as variables
(although it is quite acceptable in Apple, Atari, and IBM
Logos). It is not possible to MAKE 1 “ANYTHING. Since
we wish to be able to MAKE 1 [[0 0]0] for example, it is
necessary to resort to a subterfuge. Instead of the variable
1 we shall use the variable WORD 1 “ . (Note the space
after the quote.) This WORD command joins the 1 to the
empty word and yields a word that Terrapin Logo will accept
as a variable. For example, it is proper to MAKE WORD
1 “ “ANYTHING. If we print out the names we see “1 is
ANYTHING. (While it would also be possible to MAKE
“1 “ANYTHING, we would not be able to treat “1 as both
a variable and a number. This is a necessary feature of the
ASK command as used in this book. Therefore the ASK
command listed below is somewhat different from that
included in Notes to the User).

TO HOME.ALL
LOCAL "N
MAKE "N "O

REPEAT 4 [MAKE :N [[0 01 01 MAKE "N WORD :N + 1 " 3]
END

TO ASK :N :CMD

MAKE "OLD.POS.HEADING LIST POS HEADING
PU SETPOS FIRST THING WORD :N *
SETHEADING LAST THING WORD :N "

PD

RUN :CMD

MAKE WORD :N " LIST POS HEADING
PU

SETPOS FIRST :0LD.PDS.HEADING
SETH LAST :0LD.POS.HEADING

PD

END
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TO SETPOS :LIST
SETXY FIRST :LIST LAST :LIST
END

TO POS
OP LIST XCOR YCOR
END

You will also notice in our ASK command the use of
the two procedures SETPOS and POS. The use of the
subprocedures is not necessary but makes the program a
little more legible. You will find occasional use of SETPOS
and POS in the listings below.

Note: The following program listings are complete with
the exception of HOME.ALL, ASK, SETPOS, and POS.
These subprocedures must be included where necessary.

T0 VECTOR.ADDING.MACHINE

HOME

CS HT PD

DRAW.VECTORS

FIND.RESULTANT

PRINT [DO YOU WISH ANOTHER EXAMPLE? ( Y OR N )1
MAKE "ANSWER RC

IF :ANSHER = "Y VECTOR.ADDING.MACHINE

END

TO DRAW.VECTORS

PRINT [ENTER MAGNITUDE ( SPACE ) DIRECTION.1]
MAKE "VEC RO

IF :VEC = [] STOP

SETH LAST :VEC

FORWARD FIRST :VEC

DRAW.TIP

DRAW.VECTORS

END

TO FIND.RESULTANT

SETH TOWARDS 0 0O

RIGHT 180

PRINT [RESULTANT VECTORI]

( PRINT [MAGNITUDE =1 DISTANCE.FROM.HOME [HEADING
=] HEADING )

MAKE "TIP POS

PU HOME

SETH TOWARDS FIRST :TIP LAST :TIP PD

SETPOS :TIP

DRAW.TIP

END
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TO DRAW.TIP

RIGHT 25

BACK 15 FORWARD 15
LEFT 50

BACK 15 FORMWARD i5
END

TO DISTANCE.FROM,HOME
OP SORT ( SO XCOR ) + S50 YCOR
END

T0 59 :N

OP :N % :N
END

A

TO EQUILIB :W :F.ANGLE :T.ANGLE

HOME

BACK :u

MAKE "OLD.POS POS
STEP 10

( PRINT [F =1 DIST.BETWEEN POS :0LD.PDS )
SETH :T.ANGLE

MAKE "T DIST.BETWEEN POS [0 O3

¢ PRINT [T =1 :T7 )

SETH :T.ANGLE

FORWARD :T
END
TO STEP :8

IF :8 < 0,01 STOP

SETH :F.ANGLE

FORWARD :85

SETH TOWARDS 0 ©

IF HEADING < :T.ANGLE SETH :F.ANGLE BACK :8 MAKE "§

:§ /7 2
STEP :8
END

TO DIST.BETWEEN :P1 :P2

OP SQGRT ( S@ ( FIRST :P1 ) - FIRST :P2 ) + 5Q
LAST :P1 ) - LAST :pP2

END

TO S0 :X

0P X » X%
END
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TO START
EQUILIB 80 45 270
END

A

TO FREE.FALL :HEIGHT
€S PD

DRAMW.GROUND

PU

SETY :HEIGHT

MAKE "ACC 0.5

MAKE "VEL 0

MAKE "TIME 0

RIGHT 180

PD

STEP :VEL :TIME

PRINT "

PRINT [THE TURTLE HAS LANDED]
END

TO DRAW.GROUND

PU SETPOS [-100 01 PD
SETPOS [100 01

HOME PU

END

TO STEP :VEL :TIME

( PRINT "TIME :TIME “VELOCITY :VEL "DISTANCE (
sHEIGHT - YCOR ) )

IF YCOR < O STOP

FORWARD :VEL

STEP :VEL + :ACC :TIME + 1

END

TO START
FREE.FALL 50
END

A

TO BETTER.FREE.FALL :HEIGHT
CS PD

DRAW.GROUND

PU

SETY :HEIGHT

MAKE "ACC 0.5
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MAKE "VEL ©
MAKE "TIME 0O
RIGHT 180

PD

STEP :VEL :TIME
PRINT "

PRINT [THE TURTLE HAS LANDED]
END

TO DRAW.GROUND

PU SETPOS [-100 01 PD
SETPOS [100 01

HOME PU

END

TO STEP :VEL :TIME

( PRINT "TIME :TIME "VELOCITY
ftHEIGHT - YCOR ) )

IF YCOR < 0 STOP

FORWARD :VEL + :ACC / 2

STEP :VEL + :ACC :TIME + 1

END

TO START
BETTER.FREE.FALL 50
END

A

TO BEST.FREE.FALL :HEIGHT
CS PD

DRAW.GROUND

PU

'SETY :HEIGHT

MAKE "ACC 0.5

MAKE "VEL 0 + :ACC / 2

MAKE "TIME 0

RIGHT 180

PD

STEP :VEL :TIME

PRINT *

PRINT [THE TURTLE HAS LANDED]
END

TO DRAW.GROUND
PU SETPOS [-100 01 PD

tVEL

"DISTANCE

(
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SETPOS [100 01
HOME PU
END

TO STEP :VEL :TIME

( PRINT "TIME :TIME "VELOCITY :VEL "DISTANCE ¢
tHEIGHT - YCOR ) )

IF YCOR < O STOP

FORWARD :VEL

STEP :VEL + :ACC :TIME + 1

END

TO START
BEST.FREE.FALL 50
END

A

TO PROJECTILE :VELOCITY :ANGLE :GRAVITY
HT DRAW.GROUND

MAKE "VUX :VELOCITY % COS :ANGLE

MAKE "VY :VELOCITY % SIN :ANGLE

STEP VX VY

{ PRINT [RANGE =1 XCOR + 130 )

END

TO DRAW.GROUND

PU SETXY 130 ( - 50 )
PD SETXY - 130 ( - 50 )
END

TO STEP VX VY

SETH 890 FD :VUX

SETH O FD :VY

IF YCOR < - 50 STOP
STEP :VUX :VY - :GRAVITY
END

TO START
PROJECTILE 9 45 0.4
END

A

TO ACCURATE.PROJ :VELOCITY :ANGLE :GRAVITY

HT DRAW.GROUND

MAKE "VUX :VELOCITY % COS :ANGLE

MAKE "VY :VELOCITY » ( SIN :ANGLE ) - :GRAVITY / 2
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STEP VX VY
( PRINT [RANGE =1 XCOR + 130 )
END

TO DRAW.GROUND

PU SETXY 130 ( - 50 )
PD SETXY - 130 ( - 50 )
END

TO STEP :VX :VY

SETXY XCOR + :VX YCOR + :VY
IF YCOR ¢ - 50 STOP

STEP :VUX :VY - :GRAVITY

END

T0 START
ACCURATE.PROJ 9 45 0.4
END

A

TO PROJECTILE.FRICTION :VELOCITY :ANGLE :GRAVITY

HT DRAW.GROUND

MAKE "FRICTION 0.1

MAKE "VX :VELOCITY % COS :ANGLE
MAKE "VUY :VELOCITY % SIN :ANGLE
STEP :UX vy

( PRINT [RANGE =1 XCOR + 130 )
END

TO DRAW.GROUND

PU SETXY 130 ( - 50 )
PD SETXY - 130 ( - 50 )
END

TO STEP VX :VY

SETXY XCOR + :VX YCOR + :vy

IF YCOR < - 50 STOP

STEP ( :UX - :FRICTION % :VUX ) ( :yy -
VY - :GRAVITY )

END

TO START
PROJECTILE.FRICTION 20 30 0.4
END

A

tFRICTION =
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TO CRT :VOLTAGE

MAKE "ACCELERATION 0.33 % :VOLTAGE
CLEARSCREEN

HT FULLSCREEN

DRAMW.SCREEN

DRAW.PLATES

SETXY - 130 ©

PD ST

STEP 4 ©

SPLITSCREEN

PRINT [GO AGAIN ( Y / N ) 71

IF RC = "Y THEN PRINT [WHAT VOLTAGE?1 ELSE STOP
MAKE "V FIRST REQUEST

CRT :V

END

TD DRAMW.SCREEN

PU SETXY 130 ( - 120 )

PD

SETH 0 FD 120 LT 80 FD S BK S RT 80 FD 120
PU

END

TO DRAW.PLATES

SETXY - 40 ( - 40 )

SETH 80

REPEAT 2 [PD FD B8O LT 90 PU FD 80 LT 901

IF :YOLTAGE > O THEN DRAK.PLUS 0 S0 DRAW.MINUS O (
- 30 ) ELSE DRAW.PLUS 0 ( - 50 ) DRAW.MINUS 0 S50

END

TO DRAW.PLUS :X :¥
SETRY X :¥

PD SETH O

FD 6 BK 12 PD &
SETH 90

FD 6 BK 12 FD 6

PU

END

TO DRAW,MINUS =X =¥
SETXY X Y

PD FD 6 BK 12

PU

END

TO STEP WX vy
IF XCOR > 130 STOP
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SETKY XCOR + :UX YCOR + :VY
STEP :UX :VY + ACCY
END

TO ACCY

IF ¢ ABS XCOR ) < 40 THEN OP :ACCELERATION ELSE OP
0

END

TO ABS :NUM

IF ¢ sNUM < O ) THEN OP - :NUM ELSE OP- :NUM
END

A

T0 PROJECT.DT :VELOCITY :ANGLE :GRAVITY
HT

DRAW.GROUND

MAKE "DT 0.1

MAKE "UX :VELOCITY % COS :ANGLE

MAKE "VY :VELDCITY % SIN :ANGLE

STEP :UX VY

( PRINT [RANGE =1 ( XCOR + 130 ) )

END

TO STEP VX VY

INCXY :UX % :DT VY % :DT

IF YCOR < - 50 5T0P

STEP :UX :VY - :GRAVITY % :0DT7
END

TO DRAW.GROUND

PU SETXY 130 ( - 50 )
PD SETXY - 130 ( - 50 )
END

TO INC.XY :DX :DY
SETXY XCOR + :DX YCOR + :DY
END

T0 START

PROJECT.DT 70 45 32
END

A

TO PRDJECT.SCALE :VELOCITY :ANGLE :GRAVITY
HT
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DRAW.GROUND

MAKE "DT 0.1

MAKE "SCALE 0.25

MAKE "UX :VELOCITY x CDS :ANGLE

MAKE "VUY :VELOCITY % SIN :ANGLE

STEP :VUX :vY

SPLITSCREEN

( PRINT [RANGE =1 ( XCOR + 130 ) / :SCALE )
END

TO STEP :VUX :VY

INC/XY 2UX % :DT % :SCALE :YY % :DT » :SCALE
IF YCOR < - 50 STOP

STEP :UX :VY - :GRAVITY % :DT

END

TO DRAW.GROUND

PU SETXY 130 ( - 50 )
PD SETXY - 130 ( - 50 )
END

TO INC.XY :DX :DY
SETXY XCOR + :DX YCOR + :DY
END

TO START
PROJECT.SCALE 70 45 32 % 0,18
END

A

TO ESCAPE :VEL :MASS
HOME WRAP

€S FULLSCREEN

MAKE "RADIUS 40
DRAW.EARTH :RADIUS
SETH 0

MAKE "Y :RADIUS

5T

STEP :VEL + ACC / 2
PENCOLOR 1
SPLITSCREEN PRINT [SPLAT!]
END

TO STEP :VEL

IF ALLOF :VEL < 0 :Y < 279 PENCOLOR 0
IF :¥ < :RADIUS STOP

FD :VEL

MAKE "Y :Y + :VEL

203



Logo Physics

204

STEP :VEL + ACC

END

T0 ACC

OP - :MASS /7 ( Y % :Y )
END

TO CIRCLE :RAD

MAKE "PI 3.14158

HT €S

PU FD :RAD RT 80 PD LT 15

REPEAT 12 [RT 30 FD 2 % :PI » :RAD / 121
LT 90 - 15

END

TO DRAW.EARTH :RADIUS
CIRCLE :RADIUS
END

TO START
ESCAPE 8.6 1000
END

A

TO ESCAPE.SCALE :VELOCITY :MASS :RADIUS
HOME WRAP

CS FULLSCREEN

MAKE "G B6.67N11

MAKE "SCALE S0 / :RADIUS

DRAW.PLANET :RADIUS # :SCALE

SETH 0

MAKE "Y :RADIUS

MAKE “DT :RADIUS / ( 5§ % :VELOCITY )
ST

STEP :VELOCITY + :DT % ACC / 2
PENCOLOR 1

SPLITSCREEN PRINT [SPLAT!]

END

TO DRAW.PLANET :R
CIRCLE :R
END

T0 CIRCLE :RAD

MAKE “PI 3.14159

HT CS

PU FD :RAD RT 90 PD LT 15
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REPEAT 12 [RT 30 FD 2 x :PI % :RAD / 121
LT 80 - 15
END

TO STEP :VEL

IF ALLOF :VEL < ©0 ( :Y ¢ 279 / :8CALE + :RADIUS )
PENCOLOR ¢

IF :¥ < :RADIUS STOP

FD :VEL % :DT % :SCALE

MAKE "Y :¥ + :VEL % :DT

STEP :VEL + :DT % ACC

END

TO ACC

OP - :G % :MASS / ( 1Y % :Y )

END

T0 START

ESCAPE.SCALE 10300 5.99895E24 6300000
END

A

TO ORBIT :X :Y :SPEED :DIRECTION

CS HT

MAKE "MASS 4000
CIRCLE 20

PENUP

SETX :X SETY :Y
FIND.R

MAKE "VUX ( :SPEED # SIN :DIRECTION ) + ACCX / 2
MAKE "VY ( :SPEED % COS :DIRECTION ) + ACCY / 2
FULLSCREEN PENDOWN

STEP :UX vy

END

TO FIND.R

MAKE "R SQRT ( ( 50 XCOR ) + SO YCOR )
MAKE "R3 :R % :R % :R

END

TO SQ :X
OP X % X
END

TO STEP :VUX :vY
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INC.XY VX VY

FIND.R

STEP :VUX + ACCX :VY + ACCY
END

TO INC.XY :DX :DY
SETXY XCOR + :DX YCOR + :DY

END

TO ACCX

OP - :MASS x XCOR / :R3
END

T0 ACCY

OP - :MASS x YCOR / :R3
END

TO CIRCLE :R

MAKE “PI 3.141589

HT PU HOME

FD :R RT 90 PD LT 15

REPEAT 12 [RT 30 FD 2 % :PI % :R / 121
LT ¢ 80 - 15 )

END

T0 CIRCULAR
ORBIT 50 0 8.8 0
END

TO ELLIPSE
ORBIT 120 0 5 ©
END

TO COMET
ORBIT - 150 - 90 8 31
_END

A

TO ORBIT.NEW :X :Y :SPEED :DIRECTION

HOME . ALL

Cs

MAKE "MASS 4000

PENUP

SETXY :X :Y

ASK 1 [PENUP HT HOME PENDOWN SETH :DIRECTION FD
:SPEED]

FULLSCREEN PENDOWN HT

206



Appendix B

STEP
END

TO STEP

SETH :DIRECTION
FD :SPEED
CHANGE . VEL

STEP

END

TO CHANGE.VEL

SETH TOWARDS 0 ©

MAKE "ACC.ANGLE HEADING

MAKE "ACC :MASS / ( ( S50 XCOR ) + 50 YCOR )
ASK 1 [ADD.ACC]

END

TO ADD.ACC

SETH :ACC.ANGLE

FD :ACC

MAKE "SPEED SORT ( SQ XCOR ) + S0 YCOR
SETH TOWARDS © O RT 180

MAKE "DIRECTION HEADING

END

T0 89 :X
OP X % :X
END

TO START
ORBIT.NEW 120 0 4 ©
END

A

TO CIR.ORBIT :R

CS HOME

MAKE "X :R MAKE "Y 0

MAKE "DIRECTION ©

MAKE “"TIME 0

MAKE "RAD.OF.SUN 6.91995E8

MAKE "MASS.OF.SUN 2E30

MAKE "G B.B7N11

MAKE "“SCALE 119 / MARS

MAKE "SPEED SORT :G % :MASS5.0F.SUN / :R
MAKE “DT 8 / ( :SPEED % :SCALE )
CIRCLE :RAD.OF.SUN % :SCALE

PU SETX :R » :SCALE
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FIND.R
MAKE "VX ( :SPEED % SIN :DIRECTION ) + :DT % ACCX /
2

MAKE "WY ( :SPEED % COS :DIRECTION ) + :DT % ACCY /

2z

FULLSCREEN PD

STEP VX vy

SPLITSCREEN PRINT :TIME / ( 24 % BO % GO )
END

TO STEP VX :VY

IF RC? STOP

MAKE "X X + :1VUX % :DT

MAKE "Y :Y + VY % :DT

SETXY ( sX % 3:8CALE ) ( :Y % :SCALE )
MAKE "TIME :TIME + :DT

FIND.R

STEP :UX + ACCX % :DT :VY + ACCY % :DT
END

TO FIND.R
MAKE "R SORT ( 5Q :X ) + 5Q :Y
MAKE "R3 :R % :R % :R

END

TO 80 :X

OP X % X

END

TO ACCX

OP - :G % :MASS5.0F.SUN % :X / :R3
END

TO ACCY

OP - :G % :MASS.0F,SUN % :Y / :R3
END

TO CIRCLE :R

MAKE "PI 3.14159

HT PU HOME

FD :R RT 90 PD LT 15

REPEAT 12 [RT 30 FD 2 % :PI % :R / 121
LT ¢ 80 - 15 )

END

TO MERCURY

OP 5.78997E10
END
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TO VENUS
OP 1,08E11
END

TO EARTH
0P 1.5E11
END

TO MARS
OP 2.3E11
END

TO JUPITER
0P 7.78E11
END

TO SATURN
0P 1.43E12
END

TO URANUS
0p 2.B7E12
END

TO NEPTUNE
OF 4.4989B6E12
END

TO PLUTO
OP 5.89995E12
END

A

TD PLANETS :RO :R1 :R2 :R3
HOME.ALL

CS FULLSCREEN ST

MAKE "PI 3.14159

MAKE "R ( SE :RO :R1 :R2 :R3 )
MAKE "TURTLE.ND [0 1 2 3]

MAKE "MASS.0F.SUN ZE30

MAKE "G B.B7N11

MAKE "SCALE 119 / MAX :R

MAKE "V L[]

MAKE "ANGLE [1

SET.VELOCITIES :R

MAKE "DT 8 / { ( MAX :V ) % :S8CALE )
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SET.PLACE :R :TURTLE.NO
SET.ANGLE :R :V

PD HT

DRAW.ORBITS :V :TURTLE(NO
END

TO SET.VELOCITIES :R

IF EMPTY? :R THEN STOP

MAKE "V LPUT SORT ( :G % :MASS,0F.SUN / FIRST :R )
HY

SET.VELOCITIES BF :R

END

TO SET.PLACE :R :TURTLE.NO

IF EMPTY? :R THEN STOP

ASK FIRST :TURTLE.NO [PU SETX :SCALE x FIRST :R PD1
SET.PLACE BF :R BF :TURTLE.NO

END

TO SET.ANGLE :R :V

IF EMPTY? :R THEN STOP

MAKE "ANGLE LPUT ( 3B0 * :DT % FIRST ¥ ) / (
:PI % FIRST :R ) :ANGLE

SET.ANGLE BF :R BF :V

END

r
E 3

TO DRAW.ORBITS :V :TURTLE.NO
TURN : TURTLE.NO :ANGLE

STEP :V :TURTLE.NO
DRAW.ORBITS :V :TURTLE.ND
END

TO TURN :TURTLE.NO :ANG

IF EMPTY? :TURTLE.NO THEN STOP

ASK FIRST :TURTLE.NO [LEFT FIRST :ANG]
TURN BF :TURTLE.NO BF :ANG

END

TO STEP :V :TURTLE.NO

IF EMPTY? :TURTLE.NO THEN STOP

ASK FIRST :TURTLE.NO [FD ( FIRST :V ) % :DT »
:S5CALE]

STEP BF :V BF :TURTLE.NO

END

TO MERCURY

0P 5.79897E10
END
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TOD VENUS
OP 1.08E11
END

TO EARTH
0P 1.5E11
END

TO MARS
OpP 2.3E11
END

TO JUPITER
OP 7.78E11
END

TO SATURN
OP 1.43E12
END

TO URANUS
OP 2.87E11
END

TO NEPTUNE
OP 4.4999B6E12
END

TO PLUTO
0P 5.89995E12
END

TO START
PLANETS MERCURY VENUS EARTH MARS
END

A

TO VOYAGER :X0 :YO :VU0 :ANGO :X1 :V1
HOME . ALL

MAKE "MASS 8000

CS PU

SETXY X0 :YO

ASK 1 [PU SETXY :X1i 0 PD1

FIND.R

MAKE "VUX ( :U0 % SIN :ANGO ) + ACCX / 2
MAKE "VY ( :V0 x COS :ANGO ) + ACCY / 2

FULLSCREEN PD HT
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STEP :VUX VY X1
END

TO STEP :UX VY X1

PD .

SETXY :1X0 :Y0

ASK 1 [SETXY :X1 01

MAKE "X0 X0 + VX

MAKE "YO0O :Y0 + :VY

FIND.R

{ PRINT [SPEED =1 SQRT ( ( 80 :UX ) + 80 :uY ) )
STEP :UX + ACCX :VY + ACCY :X1 + Ui

END

TO FIND.R

MAKE "R SORT ( ( 80 ( X0 - X1 ) ) + 8Q Y0 )
MAKE "R3 :R # :R % :R

END

TO ACCX
OP - :MASE * ( X0 - :X1 ) / :R3
END

T0 ACCY
OP - :MASS % :Y0 / :R3
END

T0 89 X
OP X * X
END

TO START

UDYAGER - 120 ( - 110 ) 10 80 120 ( - 8 )
END

A

TO ROCKET :VUR :M :MM

WRAP

SETKY 0 O
HOME RIGHT 80
STEP O

END

TO STEP :V

FORWARD :V
STEP :V + M % :VUR / :MM
END
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TO START
ROCKET 10 5 1000
END

A

TO JET VR M :MM

WRAP

HOME RIGHT 80
STEP 0O

END

TO STEP :V

FORWARD :V
STEP ¥V + M % ( :UR - ¥ ) / :MM
END

TO START
JET 10 & 1000
END

A

TO ROCKET.AND.JET :VR :M :MM
WRAP PU HT

HOME.ALL

ASK O [SETXY 0 8 RIGHT 803
ASK 1 [SETXY 0 ( - 8 ) RT 901
PD

MAKE "TIME 0 MAKE "DT 1

MAKE "SCALE 10

STEP 0 O

END

TO STEP :V0 :y1

ASK O [FORWARD :V01]

ASK 1 [FORWARD :V11]

ASK 2 L[SETXY ( :TIME - 120 ) ( :U0 % :SCALE )1

ASK 3 [SETXY ( :TIME - 120 ) ( :U1 % :SCALE )1

MAKE “"TIME :TIME + :DT

( PRINT "ROCKET :0U0 " "JET ¥l )

STEP ( VO + M % UR / MM ) ( VUl + :M % ( :VUR -
V1 ) / MM )

END

T0O START

ROCKET.AND.JET 5 5 300
END
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TO OSC :AMP
MAKE "W 0.5

PU SETXY 0 :AMP
PD

STEP 0O

END

TO STEP :VEL

FORWARD :VEL

STEP :VEL - :W % :W % YCOR
END

TO START
0SC 50
END

A

TO OSC.TIME :AMP
WRAP

MAKE "W 0.1

MAKE "DT 1

PU SETXY 0 :AMP
HT PD

STEP ©

END

TO STEP :VEL

FORWARD :VEL

RIGHT 90

FORWARD :DT

LEFT 90

STEP :VEL - :W % :W » YCOR
END

TO START
0SC.TIME 50
END

A

TO PRED :RABBITS :FOXES
CS PU HT

MAKE "4 0.04

MAKE "B 0.04

MAKE "C 4N4

MAKE "D 4N4

MAKE "R :RABBITS
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MAKE "F :FOXES

PD

DRAW.AXES

SETXY :R - 100 :F - 100
PD FULLSCREEN

STEP :R :F

END

TO DRAW.AXES

PU FULLSCREEN

SETXY - 100 ( - 100 )
SETH 90

PD FORWARD 200
DRAW.ARROW

PU FORWARD 15

WRITE.R

SETXY - 100 ( - 100 )
SETH 0 PD FORWARD 200
DRAKW.ARROW

PU FORWARD 10
WRITE.F

END

TO DRAW.ARROW

RT 30 BK 10 FD 10 LT B0 BK 10
FD 10 RT 30

PU

END

TO WRITE.R

PD SETH 0

FD 10 RT 90 FD 5 RT 90 FD S RT 80 FD 5
RT S0 BK 8 PU

END

TO WRITE.F

SETH 0

PD FD 10 RT 90 FD 8 BK 8
RT 80 FD S LT 90 FD S PU
END

T0 STEP :R :F )

SETXY :R - 100 :F - 100

MAKE "DR ( :A % :R ) - ( :C % :R % :F )
MAKE "DF ( - :B % :F ) +( :D * :R * :F)
STEP :R + :DR :F + :DF

END

TO START
PRED 40 BO
END
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TO BIG.BANG

MAKE
MAKE
MAKE
MAKE
MAKE
MAKE

“Y0 PICK.RAN
"Y1 PICK.RAN
"YUz PICK.RAN
"U3 PICK.RAN

"ULLIST ( SE :V0 01

"0

CLEARSCREEN PU
SET.AT.5TART ©

HT

STEP

END

TO STEP

ASK O L[FD ( V0O -
ASK 1 L[FD ( V1 -
ASK 2 [FD ( V2 -
ASK 3 [FD ( :V3 -
IF RC? THEN MAKE
STEP

END

T0 PICK.RAN
1 + RANDOM 100 ) /

op «
END

V)]
¥ )]
HAVED |
1Y )1
"YU ITEM

TO SET.AT.START :N
IF :N > 3 STOP

MAKE WORD " :N [L
SET+AT.START :N +

END

TO ASK :N :CMD

PU SETPOS FIRST THING
SETHEADING LAST THING

(

V2 V3 )

1 + FIRST RC )

-120 01 901

1

DRAW,TURTLE [PENCOLOR 01

PD
RUN

:CMD

DRAW.TURTLE CPENCOLOR 11

MAKE WORD "

PU
PD
END

TO DRAW,TURTLE :CMD

PD

RUN :CMD

WORD " =N
WORD " :N

:tN LIST POS HEADING

sVLLIST
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LT 45

REPEAT 4 [FD S RT 901
RT 45

END

7O HOME.ALL

LOCAL "N

MAKE "N O

REPEAT 4 [MAKE :N [L[O 01 01 MAKE "N THING WORD " :N
+ 11

END

A

TO RAD.DECAY

HOME ., ALL

CLEARSCREEN HT

PRINT [PROBABILITY OF DECAY IS ONE CHANCE IN ¢ ? )]

MAKE "CHANCE FIRST REQUEST

MAKE “NUMBER 30

MAKE "TIME ©

MAKE "N.DECAY 0

MAKE "N.SCALE 4 MAKE "T.SCALE 6

MAKE “X.BOX ( - 130 ) MAKE "Y.BOX ( - 50 )

MAKE "SIZE 4 MAKE "SEPARATION 9

BOXES :¥.BDX :Y.BOX :SIZE :SEPARATION :NUMBER

BOXES :X.BOX :Y.BDX + :SIZE + 1 0,75 % :8IZE
:SEPARATION :NUMBER

MAKE .STATE :NUMBER

DRAW.AXES

ASK 1 [HT PU SETPOS LIST :X.BOX :NUMBER % N.SCALE
PD1

ASK 2 [HT PU SETPDS LIST :X.BOX :NUMBER % N,SCALE
PD1 '

STEP :NUMBER

END

TO STEP :N

CYCLE ©

MAKE "TIME :TIME + 1

ASK 1 [SETXY ( :X.BOX + :T.SCALE % :TIME ) (
:N.SCALE % ( :NUMBER - :N.DECAY ) )1

ASK 2 [SETXY ( :X.BOX + :T.SCALE » :TIME ) ( YCOR -
( YCOR / :CHANCE ) )1

( PRINT [TIME =1 :TIME [NO.DECAYED =1 :N.DECAY )

STEP :N

END
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TO MAKE.STATE :N

MAKE "“STATE 1]

REPEAT :N [MAKE "STATE FPUT "R :STATE]
END

TO DRAW.AXES

PU SETXY :X.BOX :N,SCALE % :NUMBER
PD SETXY :X.BOX 0

RT 80 FD 300

END

TO CYCLE :N

IF :N = :NUMBER THEN STOP

IF ALLOF ¢ FIRST :STATE ) = "R ( RANDOM :CHANCE ) =
0 THEN MAKE "STATE ( LPUT “S BF :STATE ) ( EMIT :N
) ELSE MAKE “STATE ( LPUT ( FIRST :STATE ) ( BF
$1STATE ) )

CYCLE :N + 1

END

TO EMIT :N

BOX ( :X.BOX + :N % :SEPARATION ) ( :Y.BOX + :SIZE
+ 1) ( 0.75 % :5IZE ) [PD PENCOLOR 01

PENCOLOR 1

PD SETH ( - 30 + RANDOM 61 ) FD 40 PU

MAKE "N.DECAY :N.DECAY + 1

END

TO BOXES :X :Y :S5IZE :SEP :N

IF :N = 0 THEN STOP

BOX :X :Y :SIZE L[PENDOWN]

BOXES :X + :SEP :Y :SIZE :SEP :N - {
END

TO BOX :X :Y :SIZE :CMD

SET 0

PU SETXY ( :X - :SIZE / 2 ) ( :Y - :SIZE / 2 )
RUN :CMD

REPEAT 4 [FD :SIZE RT 801

END

TO START
RAD.DECAY
END

A

TO HALF.LIFE
MAKE "P GET.P
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DRAMW.AXES
SETXY 0 0 PD
STEP 0 100
END

70 GET.P

PRINT [DECAY PROBABILITY = ?1]
0P FIRST REQUEST

END

TO STEP :TIME :N

SETXY XCOR + 1 :N

IF :N < 50 THEN ( PRINT [HALF LIFE =1 :TIME ) STOP
STEP :TIME + 1 ::N - :P » :N

END

A

70 BRIDGE :M

€S PU HOME

MAKE "DEN :W / 200
MAKE "HOR S50

MAKE "DX 10

MAKE "Y0 ( - 350 )
MAKE "INC.S5LOPE :DEN % :DX / :HOR
SETXY 0 :YO

PD STEP 0 1 1

STEP 01 ¢ - 1)
END

TO STEP :SLOPE :COUNTER :SIGN

SETXY ( XCOR + :DX % :SIGN ) ( YCOR + :DX » :5LOPE
)

MAKE "HEIGHT YCOR - :YO

BK :HEIGHT FD :HEIGHT

IF :COUNTER = 10 THEN BK :HEIGHT SETX O STOP

STEP :SLOPE + :INC.SLOPE :COUNTER + 1 :SIGN

END

TO START
BRIDGE 200
END

A

TO CAT :M
PU
MAKE "DEN :W / 200
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MAKE "HOR 50

MAKE “DX 10

MAKE "Y0 ( - 50 )
SETXY 0 :Y0

PD

STEP.CAT 0 1 1

STEP CAT 01 ( - 1)
END

TO STEP.CAT :SLOPE :COUNTER :SIGN

SETXY ( XCOR + :DX % :5IGN ) ( YCOR + :DX * :S5LOPE
)

IF :COUNTER = 10 THEN PU SETXY 0 :Y0 PD STOP

MAKE "DS SQRT ( SQ :DX ) + S0 :DX x :SLOPE

MAKE "INC.SLOPE :DEN % :DS / :HOR

STEP.CAT :SLOPE + :INC.SLOPE :COUNTER + 1 :SIGN

END :

T0 START
CAT 200
END

A

TO ARCHER :DEPTH :R
C8 PU HT HOME

MAKE "N 1.33
DRAW.WATER

SETY - :DEPTH

SETH :R

PD FD DIST,TO.WATER
FD 100 BK 100

SETH 1

FD 100

END

TO DRAW,WATER
PD RT 90 FD 100 BK 200 HOME PU
END

TO DIST.TO.WATER
OP :DEPTH / COS :R
END

T0 I

MAKE "SINE.I :N % SIN :R

OP ATAN :SINE.I SQRT ( 1 - SO :SINE.I )
END
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TO START
ARCHER 70 40
END

A

TO APPARENT.DEPTH :DEPTH

ARCHER .NEW :DEPTH 20

ARCHER NEW :DEPTH ( - 20 )

{ PRINT [APPARENT DEPTH =1 ( - YCOR ) )
( PRINT [ACTUAL DEPTH =1 :DEPTH )

END

TO ARCHER.NEW :DEPTH :1I

PU HOME HT

MAKE "N 1.33
DRAMW.WATER

SETY - :DEPTH

SETH :1

PD FD DIST.TO.WATER
SETH R

FD 100 BK 100
BK DIST.TO.Y.AXIS
END

TO DRAW WATER
PD RT 90 FD 100 BK 200 HOME PU
END

TO DIST.TO.WATER
OP :DEPTH / COS :1I
END

TO R

MAKE "SINE.R :N % SIN :1I

OP ATAN :SINE.R SQRT ( 1 - S0 :SINE.R )}
END

TO DIST.TO.Y.AXIS
OP :DEPTH % ( TAN :I ) / SINR
END

TO TAN :X
0P ( SIN :X ) / COS :X
END

TDO 8Q :X

OP X % :X
END
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TO START
APPARENT .DEPTH 70
END

A

TO MAG :HEIGHT :DEPTH :ANG.RAY

HT CS HOME

MAKE "EYE LIST 0 :HEIGHT

DRAW.WATER

MAKE "N 1,33

SETPOS :EYE

PD

DRAW.RAY :ANG.RAY

PU SETPOS :EYE PD

DRAW.RAY - :ANG.RAY

( PRINT [ANGLE IN AIR =1 HEADING )

( PRINT [ANGLE IN WATER =1 :ANG.RAY )
( PRINT [MAGNIFICATION =1 :ANG.RAY / HEADING )
END

TD DRAW.WATER
PD RT 90 FD 100 BK 200 HOME PU
END

TO DRAW,RAY :ANG

SETH ( 180 - :ANG )

FD DIST.TO.WATER

SETH ( 180 - 1)

FD DIST.TO.FISH

SETH TOWARD FIRST :EYE LAST :EYE
END

TO DIST.TO.WATER
0P :HEIGHT / COS I
END

TO DIST.TO.FISH
OP :DEPTH / ABS COS 1
END

T0 1
MAKE "SINE.I ( SIN :ANG ) / :N
OP ATAN :SINE.I SORT ( 1 - SO :SINE.I )

END

TO ABS :X

IF :X > 0 THEN OP :X ELSE OP - :X
END
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TO START
MAG 100 60 20
END

A

TO RAINBOW :D :DD
CLEARSCREEN FULLSCREEN
MAKE "R B0

MAKE "N 1.33

CIRCLE :R

DRAW.RAY.AT :D

END

TO DRAW.RAY.AT :D

IF ( ABS :D ) » :R STOP
START.RAY.AT :D
REFRACTION :N
CROSS.DROP
REFLECTION
CROSS.DROP
REFRACTION 1 / :N
EXIT.RAY

PRINT HEADING - 80
DRAW.RAY.AT :D + :DD
END

TO START.RAY.AT :D

PU

SETXY ( 40 + SQRT ¢ ( SQ :R ) - 8Q :D ) ) :D
SETH 270

PD

FD 40

END

TO REFRACTION :N
SNELL :N
END

TO SNELL :N

FIND.ANGLE

MAKE "ANG ARCSIN ( ( SIN :ANG ) / :N )
SETH ( HEADING + :ANG )

END

TO FIND.ANGLE

MAKE "HEAD HEADING

SETH TOWARDS 0 0

IF ( ABS ( :HEAD - HEADING ) ) » 90 THEN RT 180
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MAKE "ANG :HEAD - HEADING
END

TO REFLECTION

LT 180

MAKE "HEAD HEADING
SETH TOWARDS 0 ©

RT ( HEADING - :HEAD )
END

TO CROSS.DROP

MAKE "L 2 % :R % COS :ANG
FD L

END

TO CIRCLE :RAD

MAKE "PI 3.14159

HT PU HOME

FD :RAD RT 80 PD LT 15

REPEAT 12 [RT 30 FD 2 % :PI % :RAD / 121
LT 75

END

TO START
RAINBOW 30 2
END

A

TO ELEC.FIELD :Q1 :X1 :02 :X2

HT FULLSCREEN CS

MAKE "P0S.01 LIST :X1 0

MAKE "POS.0Q2 LIST :X2 0

PU CHODSE.LINE 0 330 :P0S.Q1 10

IF ( :Q1 % :02 > 0 ) THEN CHOOSE.LINE 0 330 :P0S.Q7Z
10 ELSE CHOOSE.LINE ( 380 - :ANGLE + 20 ) ( - 180
+ :ANGLE - 30 ) :P0OS.Q2 ( - 10 )

END

TO CHOOSE.LINE :ANG :FINAL.ANG :Q.,P0OS :LENGTH
PU '
SETPOS :0.POS

SETH :ANG
PD FD 10
STEP ©

IF :ANG > :FINAL.ANC STOP
CHOOSE.LINE :ANG + 20 :FINAL.ANG :0Q,PDS :LENGTH
END
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TO STEP :N

FIND.FIELD.DIREC

FORWARD :LENGTH

IF ANYOF ( ABS XCOR ) » 110 ( ABS YCOR ) » 110 THEN
STOP

IF ANYOF ( ABS :5Q.,DIST.1 ) < 80 ( ABS :8G.DIST.Z )
< 90 THEN MAKE "ANGLE HEADING STOP

STEP :N + 1

END

TO FIND.FIELD.DIREC

MAKE "OLD.POS POS

PU SETH TOWARDS FIRST :P0S.01 LAST :PO5.01
MAKE "HEAD.1 HEADING

MAKE "S50Q.DIST.1 SQ.DIST :P0S.01

SETH TOWARDS FIRST :POS.02Z LAST :P0S.02
MAKE "80.DIST.Z S5Q.DIST :P0S.02

BACK :92 / :8Q.DIST.1

SETH TOWARDS FIRST :0LD.POS LAST :0LD.POS
SETPOS :0LD.POS

PD RIGHT 180

END

70 SR.DIST :POSITION

pDP ¢ ¢ 8@ ( ( FIRST POS ) - FIRST :POSITION ) ) +
50 ( LAST PDS ) - LAST :POSITION )

END

TO START

ELEC.FIELD 20 ¢ - 50 ) ( - 10 ) 50
END
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Acceleration, 22
ACCURATE.PROJ, 35
Air friction, 36
Alexander’s dark band, 178
APPARENT.DEPTH, 160
Apparent depth, 159
Arch, perfect, 141
Archer fish, 156
ARCHER, 157
Asteroids, 67

ASK, xix

Big Bang, 125
BIG.BANG, 127
Bouncing turtle, 27, 30
BEST.FREE.FALL, 29
BETTER.FREE.FALL, 28
BRIDGE, 144

Carbon dating, 136
Cartesian ray, 172, 173
Catenary, 146, 151
CAT, 150

Cathode ray tube, 37
Chain, 141

CIR.ORBIT, 81

Index

Communication satellite, 87
COMPONENTS, 8

CRT, 38

Cycloid, 97

Dead Sea scrolls, 136
Dip angle, 186
Dipole, electric and
magnetic, 185
DRAW.ORBIT, 84
DRAW.TURTLE, xxi

Einstein’s principle of
equivalence, 54
ELEC.FIELD, 184
Electric field lines, 183
EQUILIB, 15
Escape velocity, 61
ESCAPE, 62
ESCAPE.SCALE, 65

Fields
electric, 181
magnetic, 181
Free fall, 23
FREE.FALL, 25
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Geosynchronous orbit, 87
Gravitational forces, 57

Half life, 135
HALF.LIFE, 135

Harmonic motion, 111, 112,
120

HOME.ALL, xx

Horizon, 158

Hubble, Edwin, 125

Hubble’s Law, 125, 126

Index of refraction, 156

JET, 106
Jets, 103

Lissajou figures, 120

MAG, 163
Magnification, 161, 163
Midpoint approximation,
27
Mirror, concave, 176
Momentum
and Newton’s second law,
102
definition, 101
conservation of, 102
Moon, 95
MOON.ORBIT, 96

Newton, 58
Newton’s law of motion, 59,
70

0OSC, 113
OSC.TIME, 114
ORBIT, 71
ORBIT.NEW, 74

Perfect arch, 146
Period, 111, 115, 119
Planets, 79, 84
PLANETS, 84

Predator-Prey theory, 116
Projectile motion, 33
PROJECTILE, 34
PROJECT.DT, 44

PROJECTILE.FRICTION, 36
PROJECT.SCALE, 46

RAD.DECAY, 132
Radioactive decay, 131
Rainbow, 167 ff
RAINBOW, 171

Range, 40

Resolving vectors, 73
Retrograde orbit, 88
ROCKET, 106
ROCKET.AND,JET, 107
Rockets, 67, 103

Scalars, 2

Scaling, 43, 45, 66, 86, 138

Snell’s law, 155, 156

Solar system, 79

St. Louis arch, 146, 151

Suspension bridge, 141, 142,
151

TOWARDS, xviii
Turtle unit, 45

Universal law of gravitation,
58, 69

VECTOR.ADDING.
MACHINE, 8
Vectors
addition, 3
components, 6, 8
definition, 2
polygon method, 4, 12
subtraction, 8
Velocity
addition, 9
definition, 21
VOYAGER, 93
VOYAGER, 11, 91
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