

CG&D lIBRi'RY
CATEGORY: 6'.
OATE: s/'''I

PICTURE THIS!
PILOT TURTLE
GEOMETRY
An Introduction to Computer
Graphics for Kids of All Ages

DAVID D. THORNBURG

ADDISON-WESLEY PUBLISillNG CO:MPANY
Reading, Massachusetts • Menlo Park, California
London • Amsterdam • DonMills, Ontario • Sydney

Other Microbooks from Addison-Welsey . . .

BASIC AND THE PERSONAL COMPUTER by Thomas Dwyer and Margot
Critchfield

A BIT OF BASIC by Thomas Dwyer and Margot Critchfield
COMPUTER CHOICES byH. Dominic Covvey and Neil Harding McAlister
COMPUTER CONSCIOUSNESS
Surviving the Automated 80s by H. Dominic Covvey and Neil Harding
McAlister

EXECUTIVE COMPUTING
How To Get It Done On Your Own by John M. Nevison

THE LITTLE BOOK OF BASIC STYLE
How to write a program you can read by John M. Nevison

PASCAL
A Problem Solving Approach by Elliot B. Koffman

PROGRAMMING A MICROCOMPUTER
6502 by Caxton C. Foster

REAL TIME PROGRAMMING
Neglected Topics by Caxton C. Foster

81-20548
AACR2

2. Pilot (Computer program)

Library of Congress Cataloging in Publication Data
Thornburg, David D.
Picture this!

Includes index.
1. Computer graphics.

I. Title.
T385.T497 001.64'43
ISBN 0-201-07768-X

Copyright © 1982 by Innovision and David D. Thornburg. Philippines
copyright © 1982 by Innovision and David D. Thornburg.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada. Library of Congress Catalog
Card No. 81-07768

Second Printing, November 1982

BCDEFGHIJ-HA-898765432

Preface
THIS BOOK is devoted to one basic idea: that everyone-children and
adults alike-is capable of making a computer do what he or she
wants it to do. Most people with access to a computer use programs
written by others. While this is satisfying for many people, it is quite
exciting to create programs of one's own.

To learn programming is to gain true mastery over the computer.
There are no age limits, educational requirements, or special skills
needed. If you can read these words and are willing to experiment
with your computer, this book will help you to create beautiful pic-
tures on your display screen.

The reason such bold claims can be made is due to the decision of
Atari, Inc. to incorporate "turtle graphics" in their version of
PILOT-a user-friendly computer language. PILOT is exceptional in
that it is one of the easiest computer languages to learn, and yet al-
lows the programmer to create extraordinary programs.

For the benefit of those readers who want to know about turtle
graphics before reading this book, a brief explanation may suffice. In
familiar coordinate geometry, the location of a point in a plane is
specified by its coordinates (usually denoted by the letters x and y).
The x coordinate measures the point's distance from a vertical refer-
ence line, and the y coordinate measures the point's distance above
(or below) a horizontal reference line. This representation system has
been in use for hundreds of years, and it works just fine.

Another way of describing the properties of a point is to specify its
orientation as well as its x and y coordinates. There are several rea-
sons why this additional piece of information is valuable. First, it al-
lows simple representation of a graphic object through a procedure
that, when followed, will generate the object. For example, if our
point (which we will call the turtle) is pointing straight up, we can
describe a 50-unit square by the set of instructions:

3

DRAW 50 (units)
TURN 90 (degrees)
DRAW 50

TURN 90
DRAW 50
TURN 90

DRAW 50
TURN 90

4

Aside from the utility of this type of representation in developing an
intuition for analytical geometry, an even more compelling reason to
be interested in this descriptive process is that it makes sense to kids.

Consider the following two responses to the question, "Where do you
live?"

Response 1: "I live at 1234 Upsey Lane."

Response 2: "You go down this street for two blocks, turn right, and
go down three houses to the one with the blue door and the oak tree
in front."

The first response, an address measured against a fixed reference, is
typical of adults. The second response, typical of many youngsters,
describes the procedure by which you would get to the house, given
your present position and orientation. If you were in a strange city,
you probably would find the second answer more useful than the
first. Because each instruction is given with respect to the position
and orientation of the participant at the end of the previous instruc-
tion, this descriptive procedure is identical to that used in turtle
graphics.

Just as descriptive procedures make sense to children, so does the ex-
ceptional power of turtle graphics make it most valuable for illus-
trating important properties of geometrical figures (for example,
curvature). Its similarity to natural descriptive language has made
turtle graphics a most powerful vehicle in allowing children to dis-
cover important geometrical principles on their own.

My first exposure to turtle graphics came when I worked at Xerox's
Palo Alto Research Center-the home of the language SMALLTALK.
While SMALLTALK supports an exceptional turtle-graphics environ-
ment, it was implemented on computer systems that were far too ex-
pensive for the average consumer. LOGO, an earlier language that

incorporates turtle graphics, was also designed to operate on large
computers, although versions of this language for small machines
are now becoming available. It was the publication of the book Mind-
storms-Children, Computers, and Powerful Ideas by Seymour Pap-
ert (of LOGO fame) that finally convinced me a practical book should
be written focusing on the actual use of the turtle-graphics environ-
ment as it exists on affordable computers.

To be useful, such a book must be written with a specific machine in
mind. This version of the book is written for those who have access
to an Atari 400 or Atari 800 personal computer with the PILOT car-
tridge. As turtle-graphics environments become available on other
computers, we will endeavor to support these machines with books
tailored to their specific capabilities and commands.

I have used several turtle environments over the years, including
computer languages such as WSFN (Which Stands For Nothing) and
"toys" like Milton Bradley's Big Trak. My experience has shown that
whatever the form-whether it's an actual robot or a graphic dis-
play-turtle environments are especially liked by children.

I have been encouraged to write this book by many members of the
research, product design, and development community who are ac-
tively generating user-friendly languages. I am especially indebted
to Harry Stewart, who implemented the Atari version of PILOT (with
its excellent turtle-graphics environment), and to Ted Kahn and oth-
ers at Atari who got me involved in their effort to make this lan-
guage a reality.

I am also indebted to Seymour Papert, Alan Kay, John Starkweather,
and their colleagues and coconspirators in the quest for user-friendly
computer languages.

But most of all I am indebted to those many children who have
worked with portions of this book and who have experienced the util-
ity of this language themselves. Were it not for the joyful inquisitive-
ness of children, this book would not exist.

5

6

Contents
PREFACE / 3

1. INTRODUCTION-WHY A BOOK? / 8
Why teach programming? / 9

2. GETTING STARTED / 11
How to get a computer / 11
How to get a kid / 12

3. TURNING PILOT ON / 13
A little surprise / 14

4. LET'S DRAW A SQUARE / 15
Undoing our first mistake / 22

5. LET'S DRAW SOME MORE / 25
How clear is CLEAR / 27
A sudden storm / 31
The turtle's TURNTO turn / 31
How big a number can PILOT handle / 34
And now for more on TURNTO / 36
Some even better shorthand / 39
Going beyond squares / 39
Grand finale / 43

6. MODULES: BUILDING THE TURTLE'S
DICTIONARY / 44

And now for something really different ... / 45

Building a dictionary-our first experience with modules / 50
Bigger modules for fancy pictures / 55

7. MODULES USING MODULES / 67

8. MODULES USING VARIABLES / 75
The turtle's windmill / 82

9. THE VARIABLE VARIABLE / 89
The turtle's star performance / 93
The turtle asks a question / 104

10. SQUARES AND SPIRALS / 108
The growing square / 112
Squirals and spirals / 11 7

11. DRAWING CURVES / 131
The turtle draws a circle / 131
Parts of circles-the turtle's arc / 141
Spirals / 152

12. THE LAST ONE / 159
The turtle has its FILL / 159
A flower for our turtle / 168

APPENDIX: Module Listings / 179

7

1
introduction
-w,hya
book?

THIS IS A book about tools and people. Now that is a pretty broad
topic, so, just to keep things manageable, I am restricting the tools
to computers (specifically the Atari 400 or 800 running PILOT), and
the people to kids.

The reason for picking the computer as the tool is that digital com-
puters are fast becoming affordable items. They are showing up in
schools and homes, with applications ranging from bookkeeping to
games. But the most important property of the computer is that it
can be made to do what you want it to do.

In order for you to make the computer perform the desired tasks,
you must learn a special language that translates your desires into
the machine's actions.

The computer language PILOT is a good one to start with because it
is both powerful and easily mastered by a very important group of
users-kids.

8

Introduction-Why a Book?

Now some folks have the wrong idea about what constitutes a kid.
You might be a decade past retirement but still satisfy my definition
of a kid by being curious about things and eager to learn and tinker
and even do things wrong once in a while. Of course, there are lots
of young people who are kids too; I think everything that goes on in
this book should be understandable to them. If you are an adult and
you don't understand something in this book, you could do worse
than have a child explain it to you.

Why teach programming?
There comes a point in the life of most computer enthusiasts when
the realization hits that there is more to this technology than escap-
ing from mythical caves, blasting spaceships (or bricks), plotting
biorhythms, or keeping holiday mailing lists. This is the point where
the topic of "programming" comes up. There are probably more than
one zillion books (give or take a few) on computer programming-
most of which deal with a language called BASIC, and most of which
try to teach you something without giving you the chance of seeing
if you really want to know it.

PILOT is at least as powerful as BASIC, and in some areas it is much
more powerful. But most important, PILOT programs are easily read
and understood. This makes it possible for lengthy PILOT programs
to be written by a team of authors who are virtually guaranteed of
being able to read one another's "coding."

Most of the people I know who want to learn about computers want
to use the machine to solve problems, or to create pictures, or to in-
vent games, or to do useful things like that. What they don't want to
do is learn about variable types, loop structures, string arrays, and
the like in full detail.

Now, if you already are a computer whiz who wants to learn about
PILOT, you've accidentally picked up the wrong book. On the other

9

PICTURE THIS!

hand, if you want to learn something about making the computer
into a useful tool, this just might be the right book for you.

Our approach to teaching PILOT is to have you pick it up as you use
it. This is how young children learn language, and it works rather
well. Most youngsters learn to express themselves just fine without
ever knowing about verbs, subjects, clauses, and the like.

By now it is probably pretty clear that this is a learning-by-doing
book. One problem with learning by doing is that you are likely to
make some mistakes-the equivalent of, for example, "Throw my
mother from the train a kiss."

If you look at mistakes properly (that is, without being anxious about
them), you can learn more from making some than you can from
everything's always working.

People who work with computers make mistakes all the time--they
call the mistakes bugs. A program that has a few bugs in it can usu-
ally be fixed. The fixing process is called debugging. So don't feel bad
about making mistakes when you're using the computer; it's how
you will learn a lot of handy things.

Q: What is a computer language, anyway?

A: Whoops! I guess I forgot to talk about that. Well, a computer
language is a special piece of 'software' that acts like a trans-
lator between instructions that are easy for you to under-
stand and instructions that the computer carries out. If we
didn't have computer languages, it would be hard for most of
us to make computers do anything useful at all.

Q: If the language is "software," that means it is a computer
program itself, doesn't it?

A: Yes-and that means it might have some bugs in it too!

10

2
getting
starteCJ

TO GET STARTED with this book you will probably need two things:

1. An Atari 400 or 800 computer with the Atari PILOT language
cartridge.

2. A kid.

How to get a computer ...
If you don't have an Atari computer handy, you might check your
local library or pizza parlor to see if they have one. If they don't, tell
them to write to ComputerTown, USA! (c/o People's Computer Com-
pany, Box E, 1263 EI Camino Real, Menlo Park, CA 94025) right
away-your community is missing out on a lot of fun! You might
want to call your neighbors to see if they can help out. As a last re-
sort, you could always buy a system and help your local computer
store stay in business.

11

PICTURE THIS!

How to get a kid. • •

Look around the house. If you see a bundle of pure energy wrapped
in sand with some marbles and a frog in his or her pocket, congrat-
ulations, you've got yourself a kid.

You might also check yourself out to see if you are a kid-if you are,
then you're all set.

A final note on kids and computers. You should be sure you're help-
ing your kids keep their priorities straight. If your kid is playing in
the sand or making mudpies with a friend, he or she is doing the
kinds of things that are far more important than anything you are
going to do with the computer. In general, kids shouldn't be inter-
rupted--especially when they are busy with other kids.

On the other hand, you might sometimes hear:

"Gee, I'm bored! There's nothing to do around here."

When this happens, you know the time has come for your Robin or
Tracy or Johnny to discover (with you) the power of a truly neat
tool-the computer.

12

3
turning
pilot on

I AM GOING to assume that you already have your Atari computer
hooked up and have been using it for a while. If you haven't used the
computer before, you should use the Atari instruction books to check
everything out.

Most of the things we will do don't require a tape recorder or a floppy
disk system for saving programs, but both of these are handy acces-
sories. You, very likely, will want to save some of your work later on.

First turn on your television. (I will assume you are using a color set,
although you can use black and white just as well.) Make sure the
Atari PILOT cartridge is plugged into the left cartridge slot on the
Atari 800 or into the only cartridge slot on the Atari 400 computer.
Close the cartridge lid until it "clicks" shut, and then turn the com-
puter on. If everything is working all right, there will be a slight
pause and then-Ta Daa/-the TV screen will show:

ATARI PILOT (C) COPYRIGHT ATARI 1980
READY

13

PICTURE THIS!

If you don't see this message, or if you see ATARI MEMO PAD in-
stead, turn the computer off and make sure the cartridge is pressed
properly into place before trying again.

As you look at the image on the TV screen, you might notice a white,
solid rectangle just under the R in READY. This rectangle is the cur-
sor. It always shows where the next letter will appear on the screen
when something is typed into the computer. You can move the cursor
around on the screen using the cursor control keys. By using this
feature you can even correct incorrectly-typed words. To learn how
to do this you should read the instructions on using the "Screen Ed-
itor" that came with your PILOT cartridge.

A little surprise ...
Let's say everything has gone according to plan this far, and then
the phone rings. It is your Aunt Mabel from Minneapolis, and she
hasn't spoken with you for ages. If, when you return from your little
talk, you have been away from your computer for more than a few
minutes, you might be quite surprised to see what is happening on
the TV screen. The screen is changing color every few seconds! Atari
makes their computers do this so your TV screen won't be damaged
if you, for instance, accidentally leave the computer on overnight.

To make the computer go back to displaying the nice, blue back-
ground, just press any key (the SPACE bar, for example).

Now that you know everything is working, we are ready to give the
computer something to do. Of all the things we can do with Atari
PILOT, I have picked graphics as the area of concentration for this
book. The reasons for this are:

1. It is easy to see what is going on in a graphics program, and
you learn a whole lot about programming in the process.

2. It looks pretty.

14

4
let's draw
a square

IN ORDER FOR the computer to draw some pictures, we first have to
"clear" some space on the TV screen. To do this, you should type the
following:

GR: CLEAR

Notice how the white, rectangular cursor moves along as you type.
The cursor shows you where the letters are going to appear when
you type something. If you make a mistake in typing, you can fix it
by pressing the backspace key and retyping over the error (fancier
ways of fixing typing mistakes are shown in the PILOT manual that
came with your cartridge).

After you type GR: CLEAR, you should press the RETURN key. Ac-
tually, you should press the RETURN key after you type any com-
mand to the computer since this lets the machine know you are ready
for it to do something.

15

PICTURE THIS!

Once you press RETURN, the display on the TV screen changes quite
a bit. In fact, it should be divided into two areas like this:

I
I
!

..
IN rHE: WIHl>O
SI-IOHN OOHH HERE

p .rcr AIf:tE DRAHH
ABOVE. AND TEMT IS

I
!
I

i
I
1
i

I
i

i

Notice that the screen now has two "windows." The big black area at
the top of the screen is where our pictures will be drawn. The smaller
blue area at the bottom is where our typed instructions to the com-
puter can be seen.

Q: I think I know that CLEAR cleans up the screen, but what
does GR: mean?

16

Let's Draw a Square

A: The PILOT language is set up so that the very first item on
each line is an instruction telling the computer what kind of
operation is going to be performed. GR, for instance, means
we are using a GRaphics instruction. The colon (:) separates
this operation from the specific task we want to have accom-
plished. (In this case, CLEAR the screen.)

So far all we have done is get a clear screen-not terribly exciting.
Next we want to draw some lines on the screen. Every computer-
graphics language has its own way of drawing lines. The method
chosen for Atari PILOT uses something called a turtle.

You should think of the turtle as a computer creature that carries a
pen with which it can draw lines as it moves along. When you tell the
turtle where you want it to go, it goes there in a straight path. If you
wish, the turtle can hold the pen down and leave a mark on the
screen as it moves. Or, if you don't want it to draw a line, it can pick
the pen up. Our turtle even has three different-colored pens to choose
from as well as an erase pen.

(Please realize that even though we use phrases like "tell the turtle to
draw a line," we don't want you to think that the turtle, or the com-
puter in which "it" resides, really understands anything. It is not our
object to give human capabilities to the computer. Instead, we use
this type of language as a convenient shorthand for more cumber-
some ways of saying the same thing. The turtle does not really ex-
ist-it is just a useful model for describing how the PILOT graphics
commands work.)

When you first clear the screen and set up the graphics window, the
turtle is located near the middle of the screen, is pointing straight
up, and is holding a yellow pen.

Now let's watch the turtle draw a line. Type the following (then press
RETURN):

GR: DRAW 25

17

PICTURE THIS!

As soon as you press RETURN, you should see a yellow line appear
on the screen like this.

GR: DRA'.... 2:5

You may not actually see the line being drawn because, for a turtle,
our friend is very fast.

Here's what happens when you issue the command. GR: tells PILOT
you are issuing a graphics command. DRAW tells the turtle to move
with the pen down, and 25 tells the turtle to move 25 screen units.

The Atari screen is set up to be 78 units high and 158 units wide.
You can have the turtle walk off the edge of the screen, but it's easy
to lose it this way, so keep the screen boundaries in mind when send-
ing the turtle off on a trip.

Now let's make the line a little longer. Type the following:

GR: DRAW 5

18

Let's Draw a Square

Did the yellow line get a little longer? (Did you remember to press
RETURN?)

The turtle always stays where you last left it-it doesn't walk off on
its own.

Perhaps you would like to change the turtle's direction. If you now
type:

GR: TURN 90

the turtle turns 90 degrees to the right, as soon as you press RE-
TURN. (The amount you turn when you go around a corner is 90 de-
grees.) You don't see anything happen on the screen because the tur-
tle is invisible. You can see that it has turned, however, by having it
move some more:

GR: DRAW 30

Now your screen should look like this:

GR ORt'.-Il--I '5
'ii1R TUftN:JrO
GR 30

19

PICTURE THIS!

As you can see, by turning the turtle 90 degrees, we made it ready to
go around a corner.

If you know that a square has four sides of the same length and has
four 90-degree corners on it, you probably have already figured out
how to make your turtle draw a square. Here is one way. First, press
the SYSTEM RESET button (in the upper right corner of the key-
board) to reset PILOT. This also takes us out of the graphics "mode,"
so you should see an all blue screen with the word READY in the up-
per left corner.

Next, type:

GR: CLEAR
GR: DRAW 25
GR: TURN 90
GR: DRAW 25
GR: TURN 90
GR: DRAW 25
GR: TURN 90
GR: DRAW 25

If you have typed all these things into the computer correctly, on the
screen you should now see a yellow square like this:

20

GR
':i R
GR

TURM
OPIj::b1i....

2:'5
'3'0
<j. It':"
.£1"

Let's Draw a Square

Congratulations! You just made the turtle draw a square.

Next, without erasing the screen, draw another square (with sides 10
units long) on top of this one. For our first command let's type:

GR: DRAW 10

Oh-oh! What happened? Does your screen look like this?

II
.......J

GR TUHN 90
GR ORc:.H 2'5
GR IDRAW .1.0

Hmmm, it looks as if this new square is starting off in the wrong
direction. Why do you suppose this happens?

Well, if you look at the instructions for our first square, it appears
that we became so excited with finishing our square that we forgot
to TURN the last corner!

An easy way to see this is what happened is to pretend you are the
turtle. Try walking in a square following the same instructions we
gave to the turtle (but you might want to walk fewer than twenty-five
steps on each side). Did you notice that, although you ended up in
the same place you started, you were pointing in the wrong direc-
tion? This was our mistake.

21

PICTURE THIS!

Undoing our first mistake • • •

At this point we could start all over, but as you will soon see, we don't
need to do that. If you were drawing this square on paper with a pen-
cil and you made a mistake, you could erase the wrong line. Well,
our versatile turtle has an eraser too! To get the turtle to use it we
just type:

GR: PEN ERASE

and then press RETURN. This instruction tells the turtle to change
its present pen to the special ERASE pen it keeps handy for
emergencies.

Next we need to make the turtle go back 10 units, erasing its line as
it goes. Do you think the turtle understands BACKWARDS? Let's
find out:

GR: BACKWARDS

Oh boy, now what? Your screen probably shows:

GR: BACKWARDS

WHAT'S THAT

with the B in BACKWARDS shown in reverse field (blue on a white
background). This is PILOT's way of telling you it doesn't under-
stand the command you gave it. As usual, no harm is done, so we can
proceed with our task.

One way of going backwards is to turn a 90-degree corner twice. So
if we type:

GR: TURN 180

this should work since 180 is twice as large as 90.

22

Let'5 Draw a Square

Next, let's type:

GR: DRAW 10

Since this is how far we went in the wrong direction, and -TaDaa!-
the wrong line is (almost) erased. There seems to be one dot left to
remind us of our original error. The reason for this is that when we
turned the turtle around and started it moving, it missed the last
point. We needn't worry about it now, though; we will fix this prob-
lem later.

If you are keeping notes (or playing turtle), you probably notice we
still aren't pointing the right way. To do this we can type:

GR: TURN -90

The minus sign in front of the 90 means to turn left instead of right.
If everything has gone according to plan, the turtle should be point-
ing straight up, just as it was when we first started.

To draw our smaller square, we must remember that the turtle is still
holding the eraser. Since this isn't too useful to us, let's change the
pen again:

GR: PEN RED

Now the turtle has a red pen. Let's see if you can make the turtle
draw a square with sides 10 units long.

If you typed this:

GR: DRAW 10
GR: TURN 90
GR: DRAW 10
GR: TURN 90
GR: DRAW 10
GR: TURN 90
GR: DRAW 10

23

PICTURE THIS!

you should have a picture that looks like this:

6J
GR DRAW.1..0
GR TURN "9'0
GR ;l)Rl-i1H ..11..0

Now let's clean up that last trace of the mistake:

GR: PEN ERASE
GR: DRAW 10

And we're all done. Not bad for your first session with the turtle!

24

5
let's draw
some
more

SO FAR WE have learned quite a bit about our graphics turtle. We
know how to make it DRAW, TURN, and change pens. We even
found out that it has a special pen that works like an eraser.

Now I don't know about you, but I'm getting a little tired of having
the turtle do only one thing for each line we type. Of course we, too,
sometimes do only one thing per sentence ("Go home"), but we also
use sentences that have us do more than one thing ("Go home and eat
dinner"). Well maybe we should see if the turtle knows how to under-
stand longer "sentences." Let's try one out.

Press SYSTEM RESET and type:

GR: CLEAR
GR: DRAW 20 AND DRAW 5

Whoops! That didn't do any good, did it?

25

PICTURE THIS!

Since your screen probably shows

GR: DRAW 20 AND DRAW 5
*** WHAT'S THAT ***

with the A in AND reversed, I guess the turtle doesn't understand the
word AND. Hmmm, there must be a solution to this.

In English there is another way of connecting several ideas in the
same sentence, and that is with the semicolon (;). Maybe our turtle
friend will understand this symbol. Let's try it!

GR: CLEAR
GR: DRAW 15; PEN RED; DRAW 15

Wow! Did you see that? Your screen should show a line that changes
colors halfway along it like this:

p,
,I

I

GR:
GR: DRAW 15; PEN RED; DRAW 15

See, the turtle is really quite accommodating after all-once we fig-
26 ure out how its language works.

Let's Draw Some More

How clear is CLEAR ...
Let's do a little experiment. Repeat the previous two commands:

GR: CLEAR
GR: DRAW 15; PEN RED; DRAW 15

Are you surprised at the result? The first thing you probably notice
is that, instead of getting a two-colored line, the line is entirely red.
If you look a little closer you might notice that this line starts in a
different place than the previous line. It seems that

GR: CLEAR

erases everything on the screen without changing the turtle's pen
color or location at all.

You already know that

GR: PEN YELLOW

will "reset" the turtle's pen to the original color. It would be equally
nice to move the turtle into its original home near the middle of the
screen and to make sure it is pointing straight up without our hav-
ing to push SYSTEM RESET (which accomplishes the same thing).

Now that you are thoroughly expert at DRAW and TURN, you prob-
ably have already figured out how to accomplish it turtle's homecom-
ing using these two commands-so long as you remember how far
the turtle is away from its home, you should have no trouble. I can
never remember these things myself, so it's lucky for me (and per-
haps for you) that there is a command that lets us "pick up the tur-
tle" to move it and another command that lets us "point" it in some
specific direction.

If you type

GR: GOTO 0,0
27

PICTURE THISI

you are instructing PILOT to pick the turtle up from wherever it is
and to move it into its home. (When you type the command GOTO, be
certain there is no space between the GO and the TO.) The numbers
0,0, which follow the command, tell PILOT where the turtle should
be moved. The first number determines its horizontal location, and
the second number determines its vertical location.

Q: Why is home at 0,0. What do these numbers really mean?

A: In the last chapter we said the graphics screen is 158 units
wide and 78 units high. By putting "home" near the middle
of the screen and calling these home positions °(for the hor-
izontallocation) and °(for the vertical location), we can move
the turtle to any place on the screen simply by using num-
bers larger than ° for locations to the right of, or higher
than, home and by using negative numbers for locations to
the left of, or lower than, home.

Let's do some experimenting to see how this works. First type the
following:

GR: CLEAR
GR: PEN YELLOW
GR: GOTO 0,0

You should now see a yellow dot near the middle of the screen. This
is where the turtle is located. Next type:

GR: GOTO 10,20

Where did the turtle move to? Do you see a new yellow dot a little to
the right and a little higher than the first one? We have picked the
turtle up and moved it to this new location.

Now let's try some more locations:

GR: GOTO-20,0

28

Let's Draw Some More

The turtle is in the home "row," but it is 20 units to the left of home.
Try this:

GR: GOTO 0, - 10

Another yellow dot now shows that we are in the home column, but
10 units below the home row. (Remember that columns go up and
down and rows go sideways.)

The figure below shows the dots you should have on the screen along
with the limits to which you can use to move the turtle in each direc-
tion and still have it on the screen.

Conduct an experiment to find the limits for the row and column
coordinate values which still create visible points.

GR GOTO
GR GOTO -20#0
GR GOTO 0#-.1.0

29

PICTURE THIS!

Now that you know how GOTO works, why don't you use this com-
mand to give your screen a case of the yellow polka dots! Here are a
few dots to get you started:

GR: GOTO 5,5; GOTO - 20,10; GOTO 17,20

Well, now you are an expert on GOTO, right? Maybe? Hmmm, let's
see. Try the following:

GR: CLEAR
GR: GOTO 0,0
GR: TURN 45; DRAW 25

You should now have a yellow line going off to the right at a diago-
nal. (Don't worry about the "jaggies"; all lines at angles other than
vertical or horizontal will have this bumpiness to some extent.) Next
type:

GR: GOTO 0,10

Now, before you type anything, try to guess what will happen if you
give the command

GR: DRAW 25

.... ..II

.,.." ..".
or""

,."
.,,"

GR rURM 45: DRAW 25
GH <GiOTfJI o,i.o

:;;::5

30

Let's Draw Some More

What is your guess? Will you get a vertical line, a diagonal line, or
what? Is the suspense getting to you? Give up? OK, try it:

GR: DRAW 25

Well, well-it appears that when PILOT moves the turtle in response
to a GOTO command, the "mover" (the PILOT software) is very care-
ful not to turn the turtle around at all. Unless we TURN the turtle,
each line we draw will run in the same direction as the previous line,
no matter where we locate the turtle first.

A sudden storm . . .
Have you ever looked out a window on a very rainy day and seen the
rain coming down in streaks? If the wind is blowing, the rain streaks
down at an angle. Now that you know about GOTO, DRAW, TURN,
and parallel lines, I'll bet you can make a nice picture of a yellow (or
red or maybe even blue) rainstorm on your TV screen.

The turtle's TURNTO turn ...
So far we have learned how to pick the turtle up and set it down any-
where on (or off) the screen. As you've seen though, moving the tur-
tle doesn't cause it to turn one bit. If it is facing northeast before the
move, it stays pointing in that direction afterwards as well.

Fortunately, PILOT gives us another tool to help us get the turtle
headed in any direction we want. Try the following:

GR: GOTO 0,0; TURNTO 0; CLEAR
GR: DRAW 25

31

PICTURE THIS!

No surprises, right? Next, type:

GR: GOTO 0,0; TURNTO 90
GR: DRAW 25

Do you understand what happens? When you draw the first line, you
put the turtle in its home and make certain it is pointing straight up.
The TURNTO command turns the turtle to any angle you want, with
the reference point (0 degrees) being straight up. When you type
TURNTO 90, you tell the turtle to face the right side of the screen.
This is why the second line goes to the right. Now you know what
this command will do:

GR: GOTO 0,0; TURNTO-90; DRAW 25

How about this one:

GR: GOTO 0,0; TURNTO 180; DRAW 25

By now you probably have a big yellow plus sign on your screen that
looks something like what you see in the figure below.

GR DRtiiW 25
GR GOTO 0.0; TURNTO -'0; DRAW 25
GR GOTO 0,0; TURNTO 180: DRAW 25

32

Let's Draw Some More

What do you suppose happens when you use bigger numbers in the
TURNTO command? Let's try some to see.

First we should change the pen to RED (to show we are about to em-
bark on a dangerous mission):

GR: PEN RED

Now type (but don't press RETURN):

GR: GOTO 0,0; TURNTO 360; DRAW 25

Before you press RETURN, can you guess what is going to happen?
Now press RETURN to see if you were right.

If everything went according to plan, your screen should show the
image below.

r-
GR GOTO 0.0= TURNTO 180; 25
GR PEN RE:D
GR GOTO 0.0: TURNTO 360; URAW 25

The first yellow line we drew (when we said TURNTO 0) has been re-
placed by a red line. This must mean that when we TURNTO 360 we 33

PICTURE THIS!

have gone in a complete circle and ar-rived. at the same place we
would get to with TURNTO 0. Now that is a pretty useful discovery
(even if you already knew it).

We can check this out some more. Since 360+90 equals 450, you
probably have already figured out what will happen when you type:

GR: GOTO 0,0; TURNTO 450; DRAW 25

No surprises? Good! Next let's try some even bigger numbers:

GR: PEN BLUE
GR: GOTO 0,0; TURNTO 720; DRAW 25

Wow! Our vertical red line is replaced by a blue one. If you guessed
this is because 720 equals 360+360+0, you are right. Each time we
add (or subtract) 360 to the turn, we end up where we started from.
This property of TURNTO is quite important, as we will see later.

How big a number can
PILOT handle ...

If you have played around with PILOT very much, you might have
tried using some really big numbers and come up with a surprise
rather than the expected result. For example, let's suppose you want
to make the turtle spin many times before settling down. Try this:

GR: CLEAR
GR: GOTO 0,0; TURNTO 0; PEN YELLOW
GR: DRAW 25
GR: GOTOO,O
GR: TURNTO 36000

34

Let's Draw Some More

This last command should make the turtle turn around one hundred
times. Next type:

GR: PEN RED
GR: DRAW 25

Oh boy! Something sure went wrong. We should have seen a red line
pointing straight up, but instead we saw a line going off at an angle
to the left.

GR TURHTO;:S:if...OOO
GIR PEN RED
G R o R A 5

The reason for this error is that we asked PILOT to handle a number
that's too large. How large is too large? The Atari PILOT can't handle
single numbers larger than 32767 or smaller than - 32768.

Q: What is so magical about these numbers?
A: This is going to be a fairly technical answer, so feel free to

skip it if you wish. Still here? OK-Here goes.

Unlike human beings, computers cannot work with numbers
containing an arbitrary number of digits. Imagine how con-
fused you would become if someone asked you to calculate

35

PICTURE THISI

something with the number 86436 and you didn't know how
to count past 100. While we work with decimal numbers (and
each of our digits can have any value from a through 9), the
Atari computer-when running the PILOT language-only
works with numbers of fewer than sixteen binary digits, (and
its digits can have only two values, a or 1). We humans can
count as high as we wish, but PILOT can only work with
numbers of sixteen or less binary digits. Each place in the
computer's numbering scheme is called a bit, so we can talk
of sixteen-bit numbers. Now, it so happens that if you decide
you're going to have a range of numbers balanced around
zero, the largest decimal number you can make with sixteen
bits is 32767. When PILOT comes across a number larger
than 32767, it subtracts 65536 from the number as many
times as it needs to in order to bring the number within the
- 32768 to 32767 range. Sorry to have to be so technical, but
at least you know why you should keep your numbers within
the range from - 32768 to 32767.

If you skipped the explanation (or didn't understand it), don't worry.
Just remember to keep your numbers in the correct range and every-
thing will be just fine.

And now for more on
TUANTO ...

36

Q: What is the difference between TURN and TURNTO?

A: The command TURNTO always turns the turtle to a specific
angle, while the command TURN always turns the turtle by
a specific angle. The TURNTO command is absolute-always
turning against a fixed or absolute reference. In our case the
reference is that 0 degrees corresponds to straight up. The
TURN command, on the other hand, is relative-always
turning by some amount relative to or dependent on the tur-
tle's present location.

Let's Draw Some More

I have an idea, let's have the turtle show us the difference.

First try this:

GR: CLEAR
GR: GOTO 0,0; TURNTO 0; PEN YELLOW
GR: DRAW 25; TURN 90
GR: DRAW 25; TURN 90
GR: DRAW 25; TURN 90
GR: DRAW 25; TURN 90

I don't know about you, but I just saw a yellow square that looks like
this:

GR DRAW 2.'5
liFt TURN
GR DRAH 25

Next let's try:

GR: CLEAR
GR: DRAW 25; TURNTO 90
GR: DRAW 25; TURNTO 90

So far so good?

GR: DRAW 25; TURNTO 90

37

PICTURE THIS!

What happened? Instead of turning, the turtle continued to move to
the right like this:

I
•

GR DRAW 25
GR 25
GiR DRAW 2'5

TURNro9U
TURNTO '3'0
TURNT(!I 9U

Now you are probably thinking that if you added 90 to each
TURNTO, you would get a square. This would make each TURNTO
command different (the first one would be 90, the second 180, and so
on). So as you can see, both TURN and TURNTO are quite useful, al-
though they behave quite differently.

Q: If the turtle understands TURN and TURNTO, does that
mean it understands GO (since it understands GOTO)

A: Yes. (My but you are learning fast!) Just as TURNTO and
GOTO are absolute, TURN and GO are relative. This means
that GO will make the turtle move (without drawing any-
thing) by a certain amount in whichever direction it was
originally pointing. The only difference between GO and
DRAW is that the turtle lifts its pen up before GOing and
puts it down before DRAWing.

Q: Aha!

A: Now what?
Q: Does this mean that the turtle understands DRAWTO?
A: Why don't you try it and find out?

38

Let's Draw Some More

Some even better shorthand. . .
Are you getting tired of typing the same things over and over again
just to draw a square? Fortunately, PILOT allows another bit of
shorthand that will help us here. To figure it out, think about how
you would tell a turtle to draw a square.

Would you say-

"Draw a line 25 units long, turn right, draw another line 25 units
long, turn right again, draw yet another line 25 units long, turn
right, draw still another line 25 units long, turn right and stop."

I'll bet you're far more likely to say something like-"OK, turtle, I
want you to do this four times: draw a line 25 units long and turn
right."

Now I must admit that neither of these approaches worked very well
when I tried them on a live turtle, but we should see how the PILOT
turtle likes them before passing judgment. First clear the graphics
screen and make sure the turtle is home and pointing up. Next type:

GR: 4(DRAW 25; TURN 90)

Hey! How about that! The turtle drew a square. Can you see what
happened by looking at the line you typed? This command tells the
turtle to do something four times. Whatever you want the turtle to
do is typed between the two parentheses. In this case, it was told
(with only one command) to repeat DRAW 25 and TURN 90 four
times. That sure is a handy way to get the turtle to do something a
whole bunch of times.

Going beyond squares • • •

Squares are useful and pretty, but there are other closed figures that
you might want to draw. A closed figure whose sides are each of

39

PICTURE THIS!

equal length is called a regular polygon. A square is an example of
a regular polygon. Let's find some more.

Clear the screen, and put the turtle home and facing up. Now let's do
an experiment. Type:

GR: 4(DRAW 15; TURN 90)

You now have a square. Next try this:

GR: 5(DRAW 15; TURN 72)

Wow! You just added a five-sided polygon to your picture. (A five-
sided polygon, as you may know, is called a pentagon since penta is
the Greek root for "five.") Next type:

GR: 6(DRAW 15; TURN 60)

The new figure on your screen is called a hexagon.

GR
GR
R

4{DIRAW
'5{I)oRAH 25;
6(ORAH 25;

TURN 90)
TURN 72)
TURN 611-))

Q: If you are going to put confusing words in this book, why
don't you just give us a table of names so we can find the
right word when we need it?

40

Let's Draw Some More

A: OK, here goes:

Number of sides
3
4
5
6
7
8
9
10

Name of the figure
triangle
square
pentagon
hexagon
heptagon
octagon
nonagon
decagon

Q: Not bad for starters, but what do you call a polygon with 137
sides?

A: Freddy.

Now if you look closely at the three sets of instructions we gave, you
may see two things. First, the difference between drawing a square,
drawing a pentagon, and drawing a hexagon, is the number of times
you draw lines and turn (four for the square, five for the pentagon,
and six for the hexagon). Secondly, the square is made by turning 90
degrees at each turn, the pentagon by turning 72 degrees, and the
hexagon by turning only 60 degrees.

From this we may gather that the more sides there are to a polygon,
the fewer the degrees of each turn.

Whenever you come across an observation like that, you should try
to discover if there is a rule that could tell us how to make any reg-
ular polygon.

Let's try adding the angles as we go around each of these three poly-
gons to see what that might tell us.

Square:
Pentagon:
Hexagon:

90+90+90+90 = 360
72 + 72 + 72 + 72 + 72 = 360
60+60+60+60+60+60 = 360

41

PICTURE THISl

This looks promising. It looks as though We are on the road to dis-
covering a rule that says the sum of all the turns in a regular poly-
gon is equal to 360 degrees. Now that is an easy rule to test out. Let's
pick a number (Did you say ten?) and try the rule out. If we want ten
turns to equal 360 degrees, each should be 36 degrees. Clear the
screen and try this:

GR: 10(DRAW 15; TURN 36)

15; TURN 36)

Now that's encouraging! We seem to have found a rule. Let's call it
"Turtle Rule # 1."

TURTLE RULE #1: The sum of the turns made while drawing a reg-
ular polygon equals 360 degrees.

Later on we might see if this rule holds true for other polygons as
well, but for now let's be content with what we have.

Q: I have a problem. If I try to draw a polygon with seven sides,
I need an angle of 360 divided by 7, or 513/7 degrees. How
do I do that in PILOT?

42

Let's Draw Some More

A: Well, this is one area where Atari PILOT isn't going to be of
much help. Unfortunately, you can tell PILOT to use only
whole numbers. If you turn 51 degrees each time, you will
fall a little short, and 52 degrees will be a little too much. If
you are careful, you should be able to get the turtle to come
pretty close to drawing anything you want, though.

Grand finale ...
Before ending this chapter, let's take Rule #1 and use it to make a
general-purpose, regular-polygon plotter (or GPRPP for short). Each
time we draw a polygon, we have to figure out the needed angle by
dividing 360 by the number of turns we want to make-unless, that
is, we can persuade PILOT to do the dividing for us. And so we can,
simply by using the PILOT symbol for divide, the slash (I). (I could
tell you that this mark is called a solidus, but would you really care?)
To draw a square we could type:

GR: 4(DRAW 15; TURN 360/4)

To draw an octagon we could type:

GR: 8(DRAW 15; TURN 360/8)

and so on.

I think you have the idea, so treat yourself to a picture with a
triangle, square, pentagon, hexagon, octagon, nonagon, and a
decagon in it. Change the colors once in a while too!

43

modules:
bUilding
the turtle's
dictionary

6

WE HAVE DISCOVERED quite a few interesting things about the
turtle. We know how to make it move, draw, and turn, how to pick it
up, orient it, and make it change pen colors. Now these are all pretty
terrific things, but we aren't done yet! How would you like the turtle
to look up procedures in a dictionary? Think about the number of
possibilities this might allow. Suppose you wanted the turtle to draw
lots of pentagons in different places on the screen. You already know
how to do this by typing:

GR: 5(DRAW 25; TURN 72)

Suppose we could tell the turtle to use a command procedure that we
have defined by the name PENTAGON. This could save a lot of
typing.

As it turns out, we can build a dictionary for the turtle to use. Each
entry in the dictionary is called a module. Each module has three
parts: its name, the things we want the module to perform, and a
command to let PILOT know when the module is finished.

44

Modules: Building the Turtle's Dictionary

When you first turn on PILOT, there are no modules in your diction-
ary. You have to create the modules, and you can create as many as
you like. However, they will disappear when you turn off the com-
puter unless you save them on a tape or disk memory. The Atari
PILOT manual shows you how to save your programs, so you might
want to get familiar with this feature soon.

And now for something
really different ...

In order to create dictionary entries, we first need to learn some new
PILOT commands.

So far, our experience with PILOT has been that everything we typed
caused something to happen right away. Because PILOT has been
obeying each command immediately, we can call our usual way of
doing things the immediate mode.

To build a dictionary, we need to find a way of postponing commands
until we need them later; this we can call the deferred mode. To see
how this works, turn on your computer and type:

AUTO

As soon as you press RETURN, you see some astounding changes,
right? The pretty blue background is replaced by a yellow back-
ground, and the white letters turn to dark brown. This isn't all that
happens, though, as we shall soon see.

Next type:

GR: CLEAR

Hmmm-nothing seems to happen. Well, let's try something else:

GR: 4(DRAW 25; TURN 90)

45

PICTURE THIS!

Hmmm-still nothing. Is PILOT broken? Where did these instruc-
tions end up?

To see what happens, press RETURN without typing anything else.
Aha! we are now back in our familiar blue immediate mode. To check
this out, type:

GR: CLEAR
GR: DRAW 25

Yup! We are in our familiar mode again. Now let's find out what hap-
pened to those other lines we typed. To go back to the big blue screen
type:

GR: QUIT

(I'm sure you can figure out what this does) Next type:

LIST

Here are the missing lines!

LIST
.:10 a:ioR:
20 GR: 4(DRAH 25; TURN

46

Modules: Building the Turtle's Dictionary

What do the numbers in front of each command mean? First things
first. The command LIST gives us a way of seeing our deferred in-
structions. This is quite useful since we'd probably have a hard time
remembering them ourselves. The difference between a deferred and
an immediate instruction is the presence of numbers in front of each
line of PILOT commands. We can test this out by typing:

30GR: DRAW 7

Nothing happens, right? Now type LIST again and notice that line 30
is added to the deferred commands.

Q: Does this mean that AUTO AUTOmatically places numbers
before each line of deferred instructions?

A: Yes. In fact, AUTO will assign the number 10 to the first line
you type and will make each line number larger by 10 until
you press the RETURN key without typing anything else.

The numbers on each line serve two purposes. First, they tell PILOT
to store these commands for later use, rather than obey them right
away. Second, they determine the sequence in which the commands
are to be stored by the computer. To see the value of this second func-
tion, try the following.

First type:

NEW

This command erases all deferred instructions from the computer. If
you type LIST at this point, you will see only the word READY-all
the numbered commands have been erased. (This means you must be
very careful when using NEW!) Next type AUTO (and then press RE-
TURN) and enter the following lines:

GR: TURN 45; DRAW 10
GR: TURN -90; DRAW 10
GR: TURNTO 180; DRAW 10

47

PICTURE THIS!

(These lines aren't part of anything of interest right now, I just
wanted to create some sample commands so I picked these at ran-
dom.) Press RETURN a second time in order to leave the AUTO mode.
Now if you type LIST, you will see these commands on the screen
with the number 10 in front of the first one, 20 in front of the second
one, and 30 in front of the third one.

Suppose you want to change the pen color to red between statements
10 and 20. How do you suppose you would do this? One way would
be to type:

15 GR: PEN RED

since 15 is between 10 and 20. Type LIST to see if this works. It does?
Great! You see how line numbers can help us put commands in the
right order.

Before we show you how to get these deferred commands to do some-
thing, we have one last bookkeeping chore to handle.

Suppose you have already written some deferred instructions using
AUTO, and you now want to write some more. If you type AUTO
again, your new commands will cause old ones (those that have line
numbers identical to the newer ones) to be erased. The first new line
will AUTOmatically be assigned the number 10, the second line, 20,
and so forth.

There are several ways to fix this. For our application, my favorite is
to RENumber the existing lines with the REN command. Here is how
it works.

Type.

REN 1000

then type

LIST

48

Modules: Building the Turtle's Dictionary

and see what happens.

LIST
JlO GR:
.15 GR:
2:0
30 GR;

"rURN 45; DRAH .1.0
PEN RED
TURN -90; DRAW 10
TURMTO Jl80; DRAW 10

READV
;REN 1000

READ· v
LIST
1000 GR:
.10Jl..O GR:
.1.020 (DR:
..1030 GR
READY

TURN 45, DRAW 10
PEN RED
TURN -90: DRAW JlO
TURNTO 180; DRAW 10

Our deferred instructions have been given new numbers, starting
with 1000, and increasing by 10 for each line of commands. The se-
quence of instructions (which is all that PILOT uses the numbers for)
is left unchanged. Now if we type AUTO and then type:

GR: PEN BLUE

and leave the AUTO mode, you'll see (when you type LIST) that the
new line has been given the number 10 and that none of the old lines
has been erased.

Q: What would happen if I typed REN 250?

A: All the deferred statements would be renumbered in their
original order, but the first line number would be 250.

Q: What if I just type REN by itself?
A: Try it and type LIST to see what happens.

49

PICTURE THIS!

Q: Another question-I know how to add new lines, but how do
I erase a line I don't want?

A: Just type the number of the line you want erased and press
RETURN. Try this and type LIST to see how it works.

The reason we have spent so much time on AUTO, NEW, LIST, and
REN is that these PILOT commands will make it easy for us to build
dictionary entries.

Building a dictionary our
first experience with

modules ...
As mentioned before, the turtle can be made to "look up" procedures
in a "dictionary." We have complete control over the dictionary en-
tries. This means that we can have as many or as few of them as we
wish.

Please understand that there is no magic in the name of a dictionary
entry. Ifwe create a module called *SQUARE that tells the turtle how
to draw a triangle, then a triangle is what we will get every time we
use *SQUARE. The turtle cannot think; it can do only what we tell it
to do. I guess this means the turtle isn't terribly smart after all!

Let's make our first dictionary entry and then try it out to see how it
works. For starters, let's make an entry called *SQUARE.

The asterisk (*), by the way, must precede the name of every diction-
ary entry. Labeling all of our entries this way makes it easier for
PILOT to find them. Just to help us understand what is going on, we
will make this module draw a square each time we use it.

50

Modules: BUilding the Turtle's Dictionary

Type AUTO and then enter:

*SQUARE
GR: 4(DRAW 25; TURN 90)
E:

Press RETURN again to leave the AUTO mode. As mentioned before,
each dictionary entry has a beginning, a middle, and an end. The be-
ginning is always the name of the module, preceded by an asterisk
(*SQUARE, in our case). The middle is one or more lines of com-
mands that tell PILOT (or the turtle) what to do each time this partic-
ular module is used. The end of the module is represented by the End
oommand (E:).

Now let's see what it means to have created the module *SQUARE.
Make sure your screen is blue (which indicates you're in the imme-
diate mode) and type the following:

GR: CLEAR
U: *SQUARE

If everything works, you should see a yellow square on your screen.

D I

u: *s.nUARiI:.-=:

51

PICTURE THISI

Here's what happened. When you typed U:, you gave PILOT a com-
mand to use a module. The name of the module to be used
(*SQUARE) is to the right of the colon. The Use command (U:) is one
of the ways we can have the turtle find procedures in our dictionary.
We will learn other ways later.

Let's try some more:

GR: GOTO - 20, - 5
U: *SQUARE
GR: PEN RED; TURN 45
U: *SQUARE
GR: PEN BLUE; GOTO 0,0
U: *SQUARE

., ,....,." ' ...'..... i..'.' "., ..

I,

.'
.'

U: :1IE-5QUARE

READY

Now we have a picture with both squares and (somewhat jaggy) dia-
monds in it. Do you see how we used *SQUARE to make the red and
blue diamonds? By turning a square on its corner (45 degrees) we get
a diamond shape-now that's worth remembering!

52

Modules: Building the Turtle's Dictionary

Next let's try some other figures. Type the following:

U: *PENTAGON

Oh-oh! It appears that we have made a mistake. When I typed this
line I got the message:

U: *PENTAGON

*** WHERE? ***

with the P in PENTAGON reversed. Our poor turtle tried to find the
module *PENTAGON in the dictionary but couldn't locate it. Do you
suppose this is because we haven't yet defined it? Let's fix this over-
sight. First type:

GR: QUIT

to bring us back to the full text window (the blue screen). To create
a new module, you might think we should first type AUTO. But wait
a minute! Let's see what kind of trouble we would get into if we did
that. Type LIST to see what we already have in the dictionary. As you
can see, we have the entry *SQUARE, which starts at line number
10. We need to move this existing entry somewhere to make room for
a new module. Do this by typing:

REN 1000

This will move all existing entries so that the lowest line number now
reads 1000. This means that when we type AUTO, we can define a
new procedure with as many as one hundred lines in it before we
need to worry about its running into an existing definition.

You should always remember to clear some workspace with REN be-
fore typing AUTO. This procedure will save you from many surprises
later on.

53

PICTURE THIS!

To define our new module, enter the AUTO numbering mode and
type:

*PENTAGON
GR: 5(DRAW 25; TURN 72)
E:

and press RETURN again to exit from the AUTO mode and to enter
the immediate mode.

Now type:

GR: CLEAR
U: *SQUARE
GR: PEN RED
U: *PENTAGON

Hooray! The turtle now is able to look up two procedures in its dic-
tionary. When I type these commands I get both a yellow square and
a red pentagon. They look like this:

..............-.... ":
jI.....M....'I

.
; A.U

U: *PENTAGOH
HEAU)V

54

Modules: BUilding the Turtle's Dictionary

Bigger modules for fancy
pictures ...

So far we have made very small modules, so it is not yet obvious that
modules can save a lot of work. In our next example, we will do
something quite ambitious just to show how useful the turtle's dic-
tionary can be. Let's create a module to draw a stick figure of a
person.

HI! I AM YOUR FRIENDLY
''].1·1(;:11(PERSON

In creating this module we will go through three stages. First, we
will decide what a figure of a person ought to have on it. Second, we
will try having the turtle draw each part of the figure in the imme-
diate mode. Third, we will create the module *PERSON and use it to
draw some nice pictures.

Look at the figure above and decide just what sorts of things we need
to have the turtle do to draw a convincing stick person. Our friend
seems to have a head, a body, two arms, and two legs.

Let's determine how to draw the head first.

55

PICTURE THIS!

Clear the graphics screen and make sure the turtle is in its home and
pointing up. Let's next make the square we will use for the person's
head;

GR: 4(DRAW 7; TURN 90)

D

4CDRAW 7; TURN 90)

Next, add two eyes to the head by moving the turtle 5 units up the
left side of the square, turning it to the right, and making two dots:

GR: GO 5; TURN 90; GO 2; GO 3

o

GR: 4CDRAH 7; TURN 90)
GR: GO S; TURN 90; GO 2;

GO 3"

56

Modules: BUilding the Turtle's Dictionary

Do you see how we get the turtle to make the dots for the eyes?

Now-a very important question-Do you know where the turtle is
and in which direction it is pointing? If you have any doubts, you
should play turtle yourself and draw as much of the head as we have
drawn so far.

Did you say that the turtle is at the right eye and is pointing to the
right? Very good! Now we have to draw the person's mouth. Since
each side of the square is 7 units long, and since we have moved 5
units up from the bottom to draw the eyes, we should move back
down 3 units to draw the mouth. Let's make the mouth this way:

GR: TURN 90; GO 3; TURN 90; DRAW 3

GR
(:iiR
GR

4 CD.:;':AH 7: TURN
GO '5; TURN "5'0;
TURN 90; G03;

"5'():)
GO 2:; GO
":rUR"

:!
3:

Hooray! we now have a "blockhead" for our person.

57

PICTURE THIS!

Next we need to draw the body. I don't know about you, but I sure
would like the neck to come out the middle of the bottom of the
square. Since we are at the left edge of the mouth pointing to the left,
we need to back the turtle up a little and move it down a bit. Suppose
we try this:

GR:GO -1; TURN -90;G02

Do you think the turtle can manage all of its movements backwards?
Let's see how well it did drawing the body:

GR: DRAW 10

GR TURN GO 3; TURN 90; DRAW 3
GR GO -1; TURN GO 2
fiiR DRAIIr,;l :fLO

Well, well! It isn't fancy, but at least the turtle drew the body in the
right place. Since the turtle is at the bottom of the body, we should
probably draw the legs next.

58

Modules: Building the Turtle's Dictionary

We can draw the left leg this way:

GR: TURN 45; DRAW 8

To draw the right leg, we need to go back to the body, turn the turtle
by 90 degrees (so the right leg will point in the correct direction) and
then draw this leg. Let's see how this works:

GR: GO -8; TURN -90; DRAW 8; GO -8

cr'".".-I

a
.-",_" 1

1
.....

.." .,.

DRAW.1.eJ1
GR TURN 45; DRAW 8
GR GO -90; DRAW 8; GO -8

We are getting close to completing our person. Unless we want to call
our friend *VENUS-DE-MILO, we should probably add some arms. If
you have been paying attention (or playing turtle, which is much
more fun than paying attention), you might have noticed that the
turtle is back at the bottom of the body (Did you see the GO - 8 com-
mand at the end of the last set of instructions?) and we now have to

59

PICTURE THIS!

turn it around to go up the body. Since the body is 10 units long, we
will put the arms 7 units up from the bottom of the body so that our
person has a neck:

GR: TURN 225; GO 7

Do you know why we had to turn 225 degrees? When you typed this
line of commands, the turtle was pointing down the right leg. If we
turned it only 45 degrees it would be pointing straight down, but by
turning it an additional 180 degrees it is pointing straight up the
body. Since 45 + 180 is equal to 225, I combined both turns in one
command. Now for the arms.

GR: TURN 90; GO 7; TURN 180; DRAW 14

GR GO -8= TURN -90: DRAW 8; GO -8
GR TURN 225; GO 7
GR TURH 90; GO 7; TURN 180; DRAW 14

60

Modules: Building the Turtle's Dictionary

Ta Daa! Our friendly stick person is finished. The only problem we
have now is that each time we want to draw this figure, we have to
type these commands all over again. Now you see why modules can
be so handy. Let's repeat our effort, but this time do it by adding
*PERSON to the turtle's dictionary. Type:

REN 1000
AUTO

and, when you see the yellow screen, enter the following:

*PERSON
GR: 4CDRAW 7; TURN 90)
GR: GO 5; TURN 90; GO 2; GO 3
GR: TURN 90; GO 3; TURN 90; DRAW 3
GR: GO - 1; TURN - 90; GO 2
GR: DRAW 10
GR: TURN 45; DRAW 8
GR: GO -8; TURN -90; DRAW 8; GO -8
GR: TURN 225; GO 7
GR: TURN 90; GO 7; TURN 180; DRAW 14
E:

[draw head
[draw eyes
[draw mouth
[move to neck
[draw body
[draw left leg
[draw right leg
[move to arms
[draw arms

Press the RETURN key again to go back to the blue screen. If you are
planning to save your work on tape or magnetic disk, this is a good
time to do it.

Q: What is the meaning of the words after the square bracket
CD? Am I supposed to type that too?

A: The left square bracket is a signal to PILOT that you are
making some comments to yourself, and that PILOT shouldn't
try to figure out what they mean. It is purely up to you if you
want to use them or not. I put them in so that we wouldn't
forget what each line of commands was. doing.

Q: When I turned the turtle around to move him up the body, I
typed TURN 225. Couldn't I have done this another way?
What is the correct way to have the turtle do things?

61

PICTURE THIS!

A: You will find that there are many many ways of getting the
turtle to accomplish the same result. There is no one right
answer. As long as the turtle ended up drawing what you
wanted it to, you did things the right way.

Q: Another question-Why didn't we use TURNTO 0 whenever
we wanted the turtle to point straight up?

A: Aha-you noticed that *PERSON was created by using only
relative commands like GO, DRAW, and TURN, instead of ab-
solute commands like GOTO, DRAWTO, and TURNTO. There
is a very good reason for making most modules this way. It
allows you to place the figure described by the module any-
where on the display screen-not just where you defined it.

Now let's reward ourselves for our heroic effort by using *PERSON
to draw some pictures on the screen.

First, set up a clear graphics screen and type:

U: *PERSON

If everything works according to plan, you should now have a pic-
ture of a yellow person standing in the middle of the screen. If you
have something else (or if the arms are on crooked, or a leg is miss-
ing, or something else is wrong), you should type

GR: QUIT

and then type

LIST

to see what you typed earlier. Compare each line of the module *PER-
SON with the lines shown on page 60, and repair any errors you
might discover.

Because we have defined *PERSON, we can use this module any time

62

Modules: Building the Turtle's Dictionary

we want to draw a person on the screen. Let's try using this module
again:

U: *PERSON

U: '-PEw-SoON

Hmmm-now that's interesting! The second time we used *PERSON,
the turtle laid the person on its side. Do you suppose this is because
it is tired of being used? No? Just thought I'd ask.

Actually, you probably realize that the reason for *PERSON's new
orientation is that we finished the module with the turtle in a direc-
tion and location different from the one in which it was at the begin-
ning of the module. While we won't bother to fix this now, we can
make a new rule (let's call it a suggestion) to keep this from happen-
ing in the future:

A TURTLE SUGGESTION: When making a module, make sure the
turtle ends up in the same place and direction that it was in at the
beginning.

This should make your modules much easier to use.

63

PICTURE THIS!

In any event, we can draw some nice designs with *PERSON-for
example:

U: *PERSON
U: *PERSON

: - DD-"
" "

I D •

- - D,... u: "._:1

U: *PEiRSON
READY

Now let's make a row of persons. Clear the screen, move the turtle to
its home and point it straight up. Next type:

GR: GOTO -50,10
U: *PERSON
GR: GOTO -30,10; TURNTO 0; PEN RED
U: *PERSON
GR: GOTO -10,10; TURNTO 0; PEN BLUE
U: *PERSON
GR: GOTO 10,10; TURNTO 0; PEN YELLOW
U: *PERSON
GR: GOTO 30,10; TURNTO 0; PEN RED
U: *PERSON
GR: GOTO 50,10; TURNTO 0; PEN BLUE
U: *PERSON

64

Modules: Building the Turtle's Dictionary

GlJfLT l....-,,- ".""" ,'.:' "'......
,,"

U: '*PER50N

READV

I""",, "
i.: ::.\

I...... '•• II.... ,I

.'

Isn't it neat to be able to draw figures as complicated as *PERSON
using just one command? I think so!

Next let's make *PERSON do a cartwheel:

GR: CLEAR
GR: PEN YELLOW; GOTO -50,10; TURNTO 0
U: *PERSON
GR: GOTO -30,10; TURNTO 72
U: *PERSON
GR: GOTO -10,10; TURNTO 144
U: *PERSON
GR: GOTO 10,10; TURNTO 216
U: *PERSON
GR: GOTO 30,10; TURNTO 288
U: *PERSON
GR: GOTO 50,10; TURNTO 360
U: *PERSON

65

PICTURE THIS!

--i• • • _a
I • •

- I ..-I"', ••·...... ".,-r- I ...- .: . :.a
" '.-.........11._ a.

'L-
'.'. " .':-", II,'_.rI'.. rl.. '10+ _ --- -...... ----. .-.," . 1-',
a_.1 • I.

._ a •
• _ a•
.a a.

I think that *PERSON really looks funny at some angles, don't you?

This would be a good time for you to modify *PERSON so that it
obeys our suggestion of having the turtle end up in the same
place and direction it had at the beginning of the module.

Why don't you spend some time building modules of your own.
You might want to start with simple ones and then progress to
more complex designs. When you use a new module, try it out at
different angles to see how strange it can look. Remember that
we discovered how to make a diamond from a square in this way!
Have fun!

66

7
modules

•uSing
modules

AND THEN THERE was Rose.

Rose was her name and would she have been Rose if her name had
not been Rose. She used to think and then she used to think again.
Would she have been Rose ifher name had not been Rose and would
she have been Rose if she had been a twin.

(from The World is Round by Gertrude Stein)

We have now seen that our graphics turtle can look up procedures in
a dictionary and that it isn't hard to get some pretty pictures on the
display screen. One of the things we will do in this chapter is find
out just how much the turtle can look up.

Is it, for example, possible for one dictionary entry to use another
one? Can *ROSE be *ROSE if it has another name? We sometimes
find this sort of thing in the dictionaries you and I use, where one
word is defined by referring you to another word (e.g., labor union-

67

PICTURE THIS!

see trade union). These kinds of definitions are just ways of giving
another name to something that is defined somewhere else. Let's see
how the turtle handles this. Enter:

NEW
AUTO

and then type:

*STAR
GR: TURN 90
GR: 5(DRAW 25; TURN 144)
GR: TURN -90
E:

Now press RETURN again in order to leave the AUTO mode. (Did you
notice that the statement GR: TURN - 90 puts us back in our start-
ing direction before leaving the module? The Turtle Suggestion
(p. 63) is quite helpful.)

Next let's tryout this module:

GR: CLEAR
U: *STAR

:/J:

:READV

68

Modules Using Modules

Are you surprised at the result? We just drew a five-pointed star. In
a later chapter we will try to figure out why this module gave us a
five-pointed star, but we have other things to tryout first.

Next let's define a "new" picture module. Type:

REN 1000
AUTO

and then enter:

*PICTURE
U: *STAR
E:

Press RETURN to leave the AUTO mode. Let's now see what happens
when we use *PICTURE by trying the following:

GR: CLEAR
GR: GOTO -30,0
U: *STAR

This should put a nice, yellow star on the left side of your screen.
Next type:

GR: GOTO 10,0
U: *PICTURE

.'.I I

U: *P:I: G T U IE-:

RE(.JIOV

69

PICTURE THIS!

Well, what do you know! When we asked the turtle to use *PICTURE,
all it saw there was an instruction to use *STAR, so that means *PIC-
TURE and *STAR give the same result. We can check on this by
changing *STAR and seeing what then happens to *PICTURE. To do
this type:

GR: QUIT
LIST

Your screen should now show:

10 *PICTURE
20 U: *STAR
30 E:
1000 *STAR
1010 GR: TURN 90
1020 GR: 5(DRAW 25; TURN 144)
1030 GR: TURN -90
1040 E:

As you can see, the module *STAR starts at line 1000 and runs to
line 1040. To make a noticeable change, let's alter line 1020 to read:

1020 GR: 9(DRAW 25; TURN 160)

Now type:

GR: CLEAR
GR: GOTO - 30,0
U: *STAR

We now have a nine-pointed star. Next type:

GR: GOTO 10,0
U: *PICTURE

By now you should have two nine-pointed stars on your screen. *PIC-
TURE is a perfect copycat-whatever we do to *STAR shows up each
time we use *PICTURE as well!

70

Modules Using Modules

Q: Aha-we can have all kinds of definitions that refer to each
other, right?

A: Almost. You could have a module called *COPY that uses
*PICTURE , and each time you use *COPY you will get a star.
(Try it out.) As we shall soon see, there is a limit to this
process.

Let's see what limits the turtle has on looking things up.

First type:

GR: QUIT
REN 1000
AUTO

and enter:

*PING
U: *PONG
E:

This defines the module *PING. Now, to define *PONG, type:

*PONG
U: *PING
E:

and press RETURN to leave the AUTO mode. Do you see anything
strange about these definitions? Do you think the turtle might find it
strange to see *PING defined in terms of *PONG and *PONG defined
in terms of *PING? How would you handle this if you were the
turtle?

Let's see what the turtle does with these definitions:

GR: CLEAR
U: *PING

Oh-oh, something went wrong.
71

PICTURE THIS!

When I tried this my screen showed:

20 U: *PONG

*** U: TOO DEEP ***

Now that sure looks like a pretty cryptic message to me; maybe we
can do some experiments to find out what it means.

To start with, neither *PING nor *PONG drew anything on the
screen (which I find rather boring). Let's start over again by having
the turtle make some "footprints" each time it uses *PING or *PONG.
Type:

GR: QUIT
NEW
AUTO

and then enter:

*PING
GR: PEN YELLOW
GR: 3(DRAW 10; TURN 120)

GR: TURN 90; GO 15; TURN -90

U: *PONG
E:
*PONG
GR: PEN RED
GR: 3(DRAW 10; TURN 120)
GR: TURN 90; GO 15; TURN - 90
U: *PING
E:

[*PING has a yellow pen
[the turtle has triangular
feet
[it steps 15 units to the
right
[now we use *PONG

[*PONG has a red pen
[it still has triangular feet
[another step for turtle
[now we use *PING

After typing these things, press RETURN again to leave the AUTO
mode and enter:

72

Modules Using Modules

GR: CLEAR
GR: GOTO -70,0
U: *PING

II·· .. ':"" __l"'-·· (-<, " • oL ..' ".,......-,..) -_.. ,I L ,
""........... .- u," - ... til.

J1. J_O U :;,]of;'p ING
1Hl:",il!f.--jIf- U: 11' 0 I) c E E:P

Now we have some footprints on the screen to help us see how far the
turtle got before PILOT gave us the error message (*** TOO DEEP
***). By counting the marks the turtle drew on the screen, it appears
that it took nine steps before running into trouble.

Hmmm, nine small steps for turtle, one large crash for PILOT.

If you look at *PING and *PONG closely, you'll see that the turtle was
trying to use a module for the ninth time when it ran into trouble.
There is a limit to the number of references that the turtle can keep
track of at one time, and that limit is eight.

The reason for this limit is that neither *PING nor *PONG was ever
able to finish; they always were interrupted before getting to the end
(E:) statement.

73

PICTURE THIS!

When PILOT uses a module, it makes a reference to it in something
called a stack. If another module is used before the first one is fin-
ished, then PILOT saves a reference to both the first and second mod-
ules. This is so that when the second one finishes, PILOT knows that
it should go back to the first module to see if it needs to do anything
else before stopping. This process continues every time another mod-
ule is used, with each _new reference being put on top of the former
one. Computer folk say the references are being "pushed down the
stack" (have you noticed that computer folk talk funny sometimes?).
Our problem came when we tried to "push the stack too deep." Now
you know the origin of the words TOO DEEP in the error message
you received.

Don't worry if you don't understand all the fine points mentioned
above; just remember that you're going to get in trouble if you try to
use modules more than eight times before letting any of them finish.

Later on we will find ways of getting around this limitation.

74

8
modules

•usmq
variables

THERE ARE LOTS of terrific things you can do once you start hav-
ing modules use each other. Next we will learn how to create a mod-
ule that uses another module a certain number of times. This not
only will give us some pretty pictures but also will let us understand
more about computer programs.

We already know one way of getting the turtle to do something sev-
eral times. For example, when we type

GR: 4(DRAW 25; TURN 90)

we are instructing the turtle to do something four times-namely, to
draw a line 25 units long and to turn right by 90 degrees. This short-
hand is quite useful. Let's see if we can use it with modules in the
same way. Press SYSTEM RESET and type:

NEW
AUTO

75

PICTURE THIS!

Now enter the following:

*STAR
GR: 5(DRAW 25; TURN 144)
E:

Press RETURN again to leave the AUTO mode and type:

GR: CLEAR
U: *STAR

And you'll see we have created a module that draws a five-pointed
star.

Next let's see if we can convince the turtle to use *STAR a few times.
Enter the following and watch what happens:

U: 4(*STAR)

Oh-oh! That didn't work at all, did it? Does your screen show

U: 4(*STAR)

*** WHAT'S THAT ***

with the 4 shown in reverse field? Apparently we can't use modules
the same way we can use graphics commands. We have to find an-
other way of doing this.

Q: Wait a minute. Even if the command had worked, how would
you know? The module *STAR finishes where it started, so
each time you use it you will get the same thing unless you
move the turtle somewhere else in between uses, correct?

A: Hey! That's right! In fact it wouldn't be very useful for our
command to work if we obeyed the Turtle Suggestion (p. 63)
and always had the module end where it started. That must

76 be why we need to find another way of doing this task.

Modules Using Variables

Now, if I wanted to do a series of things several times, I could count
the number of times I had done it so far, compare this number with
the total I wanted, and either go on or stop depending on the condi-
tion of the comparison.

You may be pleased to learn that PILOT lets us count things, allows
us to compare numbers with each other, and allows us to do things
depending on a condition. Aren't we lucky!

First, let's learn about the counter. If you are counting to five, you
might use the fingers of one hand. Your hand becomes the place
where you temporarily keep track of how high you have so far
counted. Since this number will vary during the counting process,
we can call the hand a variable. Just remember that a variable is a
place where you can keep a number stored for safekeeping. Each
time you count, you extend one more finger on your hand. This
means you look at the present value of the number in the variable
and you add 1 to it. Finally, when you reach 5, you notice that the
number in the variable is the same as the limit you had picked, so
you stop.

Now let's look at this process in a way that your computer might do
it. We already know how to do some things, such as create labels
(these are words with asterisks before them that we use to name
modules like *SQUARE). Here is a rough outline of a counter that
counts to five:

(Don't type this in-we aren't quite ready for it yet)

*COUNTER
set the counter to zero
*ADDl
add one to the number that is in the counter
jump (if the counter is less than five) to *ADD 1
E:

You may have noticed that there are three lines in this module for
which we don't have PILOT statements. Let's take them one by one:

"set the counter to zero" 77

PICTURE THIS!

OK, first we have to know what to call our counter. Atari PILOT al-
lows you to use up to twenty-six numeric variables, each of which is
identified by a letter of the alphabet placed after the number sign (#).
So # A is the name of one PILOT variable, #B is another one, and so on
up to #Z. The number sign in front of each letter tells PILOT (and us)
that the variable contains a number (rather than some letters, for ex-
ample). Each numerical variable can hold any whole number between
- 32768 and 32767. You probably aren't surprised by this since we
already found out that PILOT has a hard time dealing with numbers
outside this range.

By now you are probably wondering how we get to pick the value of
the number stored in a variable. This is done with the Compute com-
mand (C:). Let us take the variable #A as our counter. To set the
counter to zero we would enter

C: #A=O

The command C: is an instruction that tells PILOT to do whatever
computations are called for on the right side of the colon. In this
case, the instruction is to replace whatever number was already
in the variable #A with the number O. It is very important to realize
that in PILOT (as in BASIC and many other computer languages) the
equals sign (=) means "take whatever is on the right side of the
equals sign and place it in whatever variable is on the left side of
the equals sign." When the equals sign is used in this manner, it is
called a replacement operation.

We now have a PILOT command that is the equivalent of "set the
counter to zero," namely,

C: #A=O

Not bad for starters.

Q: What number is in each variable when we first begin?
A: When PILOT is first started, all the numerical variables con-

tain zero (0).

78

Modules Using Variables

Q: If that is the case, why do we have to set #A to zero in our
counter?

A: Well, the main reason is that we might find ourselves using
the counter module several times, and the counter will start
at zero only the first time we use it. The second time it will
start with whatever number happens to be in it when it
reached the end of its last use. It is always a good idea to set
variables to zero in order to be sure they calculate the right
value each time you use them. This prevents many unwel-
come surprises later on.

Next we need to figure out how to perform the second undefined line
of our counter program:

"add one to the number that is in the counter"

Since you know that the replacement operation works in a special
way, can you figure out how to write the correct command? Here is
the way I do it:

C: #A=#A+1

Of course, if you think about the equals sign in the usual way, this
statement will look like total nonsense. After all, nothing can be
equal to itself plus one. But once we think of the equals sign as the
replacement operation, everything becomes much clearer. What this
command says to PILOT is "replace the present value of the variable
#A with the present value of #A plus 1." This command will increase
the number in #A by one, just as you might extend one more finger
when counting on your hand. If you think about it, you might recog-
nize this command to be the heart of our counter.

Our counter is set up to add by ones. Can you figure out how to
change the counter so that it adds by twos?)

Finally, we come to the last undefined line of our counter program:

"jump (if the counter is less than five) to *ADD1"

79

PICTURE THIS!

To write this in PILOT, we need a command that will "jump" to a label
(in other words, to a name with an asterisk in front of it) and that
will do this only if the value of the number in #A is less than five. The
PILOT command that does this looks like this:

J (#A<5): *ADDl

J: is the PILOT Jump command. If we had written

J: *ADDl

PILOT would jump to the label that is to the right of the colon
(*ADD1) every time the program came to this command. By placing
a condition between the J and the colon, PILOT will obey the jump
command only if the condition is true. For the kinds of things we are
likely to be doing, the condition is always placed inside parentheses.
Our condition is that the value of #A is less than five. The symbol for
"less than" is <, so we write this condition as # A< 5. Ifwe wanted the
jurnp to take place when the counter was less than ten, we would
write:

J (#A<10): *ADDl

Now let's put everything together and see what the counter looks
like. Type:

GR: QUIT
REN 1000
AUTO

and then enter:

80

*COUNTER
C: #A=O
*ADDl
C:#A=#A+l
J (#A<5) : *ADDl
E:

[set the counter to zero
[label the place to jump to
[make # A larger by one
[jump to *ADDl if #A is less than five
[end of the module

Modules Using Variables

Press RETURN again to leave the AUTO mode and then type:

LIST 0,60

This command will list only those instructions with line numbers be-
tween 0 and 60.

If everything is typed correctly, you will see the following lines on
the screen:

10 *COUNTER
20 C: #A=O
30 *ADD1
40 C: #A=#A+ 1
50 J (#A<5) : *ADD1
60 E:

Let's pretend we are using this module and see what happens. First,
we see that #A is set to zero in line 20. Next #A is increased by 1, so
that #A is now equal to 1. In line 50, #A is checked to see if it is less
than 5. If it is less than 5 (which it is), the PILOT jumps back to
*ADD1 in line 30 and the process is repeated. Each time the process
is repeated, 1 is added to the value in #A until that value equals 5.
Once that happens, the condition (#A<5) in line 50 won't be true any
more, and PILOT will skip to the next command, which, in this mod-
ule, is end (E:).

We can tryout this module to see what happens by typing:

U: *COUNTER

Hmmm-When I try it all that happens is that the screen displays
the word READY. I guess everything works all right; after all, we've
simply told PILOT to count very quietly to itself. To make things
more interesting, let's add two commands to *COUNTER. Type the
following:

42 U: *STAR
44 GR: TURN 72

81

PICTURE THIS!

Now, each time the counter passes between the label *ADD1 and the
jump command, it will use the module *STAR and turn the turtle by
72 degrees. Let's see what this looks like:

GR: CLEAR
U: *COUNTER

U: *COUNl'EIR

R E: t:1i o Y

How pretty! We just drew five stars in a circle! By changing the in-
structions in *STAR we can draw five copies of anything we want by
just using the module *COUNTER.

The turtle's windmill • • •

Now that we know all about counters, we are ready to make some
really pretty pictures that I call the "turtle's windmill." These pic-
tures are made by taking a simple object and repeating it at eight an-
gles around the center of the screen. The main part of this picture-
drawing module is called *WINDMILL. A second part of the program

82

Modules Using Variables

will use a module called *PICTURE, which will be set up to use any
of several simple figures we have defined elsewhere (such as *STAR).

To get started, type

REN 1000
AUTO

and then enter

*WINDMILL
GR: GOTO 0,10; CLEAR

C: #A=O
*JUMPHERE
C:#A=#A+l
U: *PICTURE
GR: TURN 360/8
J (#A<8): *JUMPHERE
E:

Then type:

*PICTURE
U: *STAR
E:

[move the turtle up a little and clear
the screen
[set the counter to zero
[label for the jump command
[increase the counter by one
[use the picture definition
[turn one-eighth of a circle
[do it all again if #A is less than eight
[stop

[use *STAR since we already defined it

When you have typed in these lines, press RETURN again in order to
leave the AUTO mode.

Q: Just a quick question-why did you use the label *JUMP-
HERE instead of *ADD1 as we did before?

A: While there are many ways of making PILOT programs do
things you wouldn't expect them to do, there are few ways
worse than using a label more than once. When we entered
the *WINDMILL module, we already had used the label
*ADD1, which we did not erase in the module *COUNTER. If

83

PICTURE THIS!

we were to use *ADD1 again, PILOT would have to figure out
which *ADD1 we wanted. PILOT's rule in cases like this is to
look through all the statements in numerical order until
it finds the first appearance of the label. Since *WINDMILL
has lower line numbers than *COUNTER (as you can see by
typing LIST), PILOT would use the correct version of
*ADD1 whenever *WINDMILL is used. However, if we later
decide to use *COUNTER, we would be quite surprised at the
result since that module's jump command would send us to
the *ADD1 label in *WINDMILL rather than send us to the
*ADD1 label in *COUNTER.

I think it is time for a PILOT rule:

A PILOT RULE When several modules are in the computer at the
same time, make sure all the labels are different.

You might want to break this rule a few times to see just how con-
fusing the results can be. If you don't mind, I will probably try to
keep this rule in mind for the rest of this book!

Now let's see what we have accomplished. Type:

GR: CLEAR
U: *WINDMILL

U: *WTNI:>H":CLL

;REf-_O

84

Modules Using Variables

Considering the small amount of effort it took to draw this picture,
I think it looks kind of nice. To try the windmill out on other figures,
we first need to build other modules. Let's enter the following:

GR: QUIT
REN 1000
AUTO

Next type:

*SQUARE
GR: 4(DRAW 25; TURN 90)
E:
*PENTAGON
GR: 5(DRAW 20; TURN 72)
E:
*HEXAGON
GR: 6(DRAW 15; TURN 60)
E:

and then change the module *PICTURE to tryout each of these fig-
ures. In order to make the right changes in *PICTURE, we first have
to press the RETURN key so that we can leave the AUTO mode and
then we have to type LIST. After you press RETURN you will see all
the deferred instructions displayed on the screen. As the screen fills
up, lines with lower line numbers move off the top of the screen and
lines with higher numbers are added at the bottom. When the listing
is finished, you should see this on the screen:

1020 C: #A=O
1030 *JUMPHERE
1040 C: #A=#A+ 1
1050 U: *PICTURE
1060 GR: TURN 360/8
1070 J (#A<8) : *JUMPHERE
1080 E:
1090 *PICTURE
1100 U: *STAR

85

PICTURE THIS!

1110 E:
1120 *COUNTER
1130 C: #A=O
1140 *ADD1
1150 C: #A=#A+ 1
1160 U: *STAR
1170 GR: TURN 72
1180 J (#A<5) : *ADD1
1190 E:
1200 *STAR
1210 GR: 5(DRAW 25; TURN 144)
1220 E:

To make the windmill draw a different picture, all we have to do is
change the label in line 1090 to one of the new figures we just de-
fined (*SQUARE, *PENTAGON, or *HEXAGON). To change *PIC-
TURE so that it depicts the square, for example, we would type:

1100 U: *SQUARE

and then type:

",

,"",-

,-.. .
"'...-: .. ' ...,' " .", ..-....,. •" ,'-. ,"", .':--.....-

"
,
ft""'l\1,,'.

;.... '" -
"."

...
" "

,, ..
I ,," .

"
,

".:, .. ","

GR: CLEAR
U: *WINDMILL

U:*WINOMILL
iR E ,(.ld)Y

86

Modules Using Variables

to see the result. The following three figures show the pictures we
get when we use the square, the pentagon, and the hexagon in this
way.

",....--...._..-
......-" l -··"-iLotI.--:Jr··I -,

..!J---!-\ 9·. I -.r -. .._. • ..' ""\- "I I ". II I ..' ,- .---4•.I 1.::::.:-.-- .,l "

l'I,(I;--;:---_"il Ii.; ·--t-- I "I <, I"'. ..' ,I ... L....!r-I, • -r - ,··'c··t--"'····_ / ...-....-_...,.'I-.ft . · -

U: *WINDMILL
READV

U: -IJI'WINDHJ:LIl..

87

PICTURE THIS!

Can you think of any other shapes that might make interesting
starter patterns for *WINDMILL? Add some of your own patterns, be
sure you type REN 1000 before you type AUTO. If you neglect to do
this, you might accidentally erase some of the modules you have al-
ready defined.

If you have a cassette recorder or a floppy disk drive, this would be
a good time to save these modules so you don't have to enter them
again some other time.

88

9
the

variable
variable

IN THE LAST chapter, we explored the use of variables to help us
build a counter. Another powerful use of variables is in place of num-
bers we aren't ready to specify when we write a module.

To illustrate this, let's take a look at our general-purpose, regular-
polygon plotter (GPRPP), which we discovered back in Chapter Five.
You may recall that we discovered an important property of regular
polygons-the sum of the angles turned while drawing a polygon al-
ways equals 360 degrees. We expressed this for the turtle by saying
that a polygon of, for example, four sides would result from the
command

GR: 4(DRAW 15; TURN 360/4)

a polygon with eight sides would result from the command

GR: 8(DRAW 15; TURN 360/8)

and so on.

89

PICTURE THISl

Suppose we want to make a polygon module that we could use to
draw many different polygons, the kinds of which depend on the
value of a number we place in a variable. Let's do some experiment-
ing to see how we would do this. First type:

NEW

to clear the computer's memory of old modules, loose bits, and old
bottle caps. Then type:

AUTO

to get us ready to enter a new module. Since our variable for this
module will be the number of sides in the polygon, let's use the vari-
able #S. As far as the computer is concerned, we could have picked
any letter, but the letter S might help us remember that it refers to
the number of sides in the polygon.

Next enter:

*POLYGON
GR: GOTO 0,0; TURNTO 0

GR: #S(DRAW 25; TURN 360/#S)

E:

[start with the turtle at
home
[try this out to see how it
works

and remember to press RETURN again to leave the AUTO mode.

What we are about to learn is whether we can replace two numbers-
the number of times we are to repeat something and the number to
be divided into 360-by variables.

To find out, we should first type:

GR: CLEAR

and then make sure that #S contains the number of sides we want.

90

The Variable Variable

Let's start with a hexagon:

C: #8=6
U: *POLYGON

Wow! That works perfectly!

...".--.....-._-.-.-_.-_.- -,.,.

.....-. ..--- ..-_.-.,...-- ,---.-

U:-"POLYGON
IRE:AOV

Next let's add some more polygons to the picture:

C: #8=3
U: *POLYGON
C: #8=4
U: *POLYGON
C: #8=5
U: *POLYGON
C: #8=7
U: *POLYGON

91

PICTURE THIS!

(Notice that 360 divided by 7 has a fractional part, so we return the
turtle to its home at the start of each polygon in order to take care of
round-off errors.)

C: #8=8
U: *POLYGON
C: #8=9
U: *POLYGON

U: *POLy'GON

You probably notice that the last figure we drew (a nonagon) has a
small piece missing at its top. This is because we sent the turtle a lit-
tle beyond its range for drawing pictures. We could fix this either by
making the sides of the polygons shorter or by changing the turtle's
starting location.

92

The Variable Variable

The turtle's star performance ...
In Chapter Seven we learned how to draw a five-pointed star. Just to
refresh our memory, type:

GR: GOTO 0,0; TURNTO 0; CLEAR
GR: 5(DRAW 25; TURN 144)

You should now see a five-pointed star on your screen. Next let's
draw another figure closely associated with the number 5-a penta-
gon. Enter:

GR: 5(DRAW 25; TURN 72)

_- II

{

:-_ - - - '0•••,.

:J.,:,,-:f' -".__ I.,." If.-- . . ".-, ,
u....-4.. . ,", It 1\

, ,I

------__1'·'·

GR: TURN
GR: 5(DRAH Z5; TURN 72)

93

PICTURE THIS!

Do you ggg any interesting differences between our instructions for
a star and our instructions for a pentagon? The only difference I see
is that we turn 144 degrees each time we draw a line on the star and
only 72 degrees each time we draw a line on the pentagon. Hmmm-
144 for a star and 72 for a pentagon-what can this mean? Do you
know that 144 is 72 + 72? Now that looks interesting. It means
there is a very simple difference between a five-pointed star and a
pentagon. To draw a five-pointed star, you double the angle you
would use to draw a pentagon.

Multiplying a number or a variable by 2 is something PILOT can
handle for us. PILOT uses the asterisk (*) as the symbol for multipli-
cation. While you probably use an x or a dot for this purpose, most
computer languages use the asterisk. If we wanted to tell PILOT to
multiply "two times three", we would write 2 * 3. So remember that
there are two uses for the asterisk-as the first character in a label
and as a symbol for multiplication.

If we write the instruction for a pentagon this way:

GR: 5(DRAW 25; TURN 360/5)

then we can write the instruction for a five-pointed star this way:

GR: 5(DRAW 25; TURN 360*2/5)

Clear the screen and try both of these commands to see how this
works.

Q: Do we now have a rule telling us that we double the angle
turned to convert a polygon into a star?

A: I don't know about that. Maybe we should try another figure
to see how it works.

Let's see if we can change the instruction for a hexagon into that for
a six-pointed star. Type:

94

The Variable Variable

GR: GOTO 0,0; TURNTO 0; CLEAR
GR: 6(DRAW 25; TURN 360/6)

which is the instruction for drawing a hexagon. Next let's see if this
is the way to draw a six-pointed star:

GR: 6(DRAW 25; TURN 360*2/6)

[
'.
.-...>
----.. .-.,--_....

'Wl.... .. __

GR: 6CDRAW 25; TURN 360/6)
GR: 6CDRAH 25; TURN 360*Z/6J

Hmmm. This second command doesn't give us a star at all-it draws
a triangle instead! Are you confused by this? Let's try a nonagon
next to see what that gives us. Type:

GR: GOTO 0,0; TURNTO 0; CLEAR
GR: 9(DRAW 25; TURN 360/9)

to see our nine-sided polygon. Now try this:

GR: 9(DRAW 25; TURN 360*2/9)

95

PICTURE THIS!

GR: 3CDRAH 25; TURN 360/9)
GR: 9CORAH 25; TURN 360*2/9)

Aha! This gives us a nine-pointed star. Just for fun, let's try using a
multiplier of 3 instead of 2 and see what happens.

GR: 9(DRAW 25; TURN 360*3/9)

96

GR
GR

9 ([,'>RA».·,j .2:'5
9 25
9 i(OiRtiH 2':;;

TURN
TURN

360/9'J
360*:2:/9)
360*3:;11)

The Variable Variable

Hmmm. There's that triangle again.

If we are ever going to figure out this star business, I think we need
to be able to draw lots of figures based on lots of different polygons.
Let's make a star module that will be as general purpose as possible.
To do this we will make a module that looks a lot like *POLYGON,
but that has one additional variable. This extra variable is the angle
multiplier. We can call this variable #M to remind us that it is a mul-
tiplier. As we said before, PILOT will accept any letter for the variable
name, but M reminds us that it is a multiplier. Just to be consistent,
again we will use #8 for the number of sides. Enter the following:

GR: QUIT
REN 1000
AUTO

and then type

*TRY8TAR
GR: GOTO 0,0; TURNTO 0; CLEAR
GR: #8(DRAW 25; TURN 360*#M/#8)
E:

and press RETURN again to leave the AUTO mode.

To use this module, we must put numbers into variables #M and #8.
Let's set #M equal to 1 and see if *TRY8TAR then gives us regular
polygons:

GR: CLEAR
C: #M=l
C: #8=4
U: *TRY8TAR

80 far so good-I have a square on my screen, how about you? Next
enter:

C: #8=5
U: *TRY8TAR

97

PICTURE THIS!

This gives us a pentagon. Next try:

C: #M=2
U: *TRY8TAR

Before pressing RETURN, guess what this will give us. If you re-
membered that #8 was set to 5, you probably guessed that it will draw
a five-pointed star. Press RETURN to see if you were right.

This process of trying out new modules on things we already know
about is a most important part of programming. This is how we can
find out if we made any mistakes in writing the module. Computer
folk call this process debugging; but, as I said before, computer folk
talk funny sometimes.

When we were experimenting with different polygons and multi-
pliers, we found that sometimes we got stars and sometimes we
didn't. It would be nice if we could know if there are certain combi-
nations of multipliers and sides (values of #M and #8) that give stars
and other combinations that do not. One way of keeping track of this
is to make, on a sheet of paper, a table that looks like this:

TRYSTAR TABLE

#M

1
2

#S

4
4

Star?
(Yes or No)

NO

In each column we will list different values of #M and #8, and then see
what happens when we use them. For example, if #M = 1 and #8 = 4,
we get a square. Try the second line of values (#M = 2 and #8 = 4) to see
what you get. Put your answer in the third column.

Q: How high can we go in choosing values for #M?

98

The Variable Variable

A: Well, if #M is equal to #8, then the turtle turns 360 degrees
each time, and we never get a closed figure at all. 80 I rec-
ommend that #M always be less than the value of #8.

As it turns out, we don't even have to use values of #M that are more
than half as large as #8. To see why, let's do the following experi-
ment. Type:

C: #8=7
C: #M=l
U: *TRY8TAR
C: #M=2
U: *TRY8TAR
C: #M=3
U: *TRY8TAR
C: #M=4
U: *TRY8TAR
C: #M=5
U: *TRY8TAR
C: #M=6
U: *TRY8TAR

[set up for seven sides
[set up for heptagon
[heptagon is drawn on the screen
[try for a star
[hooray! we got one
[try for another star
[we just got another one
[try another pattern
[this is the same star as #M = 3
[try again
[this is the same star as #M = 2
[try one more
[heptagon (#M = 1) is drawn on the screen

....- ...------Ifl
..-- "

I
....'"' I.

II

..>
...._,.•.,•..._ __,oil

- --'--

HUMBER OF SIDES (S) = 7

ANGLE MULTIPLIER (M) = 1

99

PICTURE THIS!

""'u U'1IiBE: R o F 5:1: DE '5

llt H 1[;. L E Hili t T:r iF' L,.J[iE::

(5) 7'

.HUMBER OF SIl>ES (5,) -= 7'

100

M(,j L E HU L 'if I P L J[:E R c

The Variable Variable

HUMBER OF SIDES (5) = 7

NUMBER OF SIDES (5)
AHf;LIE ;HUL T 1:PLIER

..,...

101

PICTURE THIS!

HUMBER OF SIDES CSl

ANGLE MULTIPLIER (Ml = 6

Do you notice anything interesting when you draw these figures?
Once we reach values of #M that are greater than 3, each new figure
becomes a mirror image of a figure we drew before. The new figure
is drawn to the left of the home position, and the old one is drawn to
the right of this position. We could spend many hours working with
the properties of mirror images, but I want us to concentrate on
drawing stars for awhile longer.

Ifyou try other combinations of # M and #8, you'll soon convince your-
self that once the number stored in #M is more than half as large as
that in #8, you'll be repeating an earlier figure.

We are now ready (at last!) to fill in our table of #M and #8 values to
see if we can discern why some patterns give stars and others don't.
You should make a table of your own and see if your results agree
with mine on page 103.

(We did not include #M= 1 in this table because we already know that
this value will give us a polygon.)

102

The Variable Variable

TRYSTAR TABLE

Star?
#M #S (Yes or No)

2 4 NO
2 5 YES
2 6 NO
3 6 NO
2 7 YES
3 7 YES
2 8 NO
3 8 YES
4 8 NO
2 9 YES
3 9 NO
4 9 YES
2 10 NO
3 10 YES
4 10 NO

(5 pointed)
5 10 NO
2 11 YES
3 11 YES
4 11 YES
5 11 YES

As we look at this table we see responses in the "yes" column and
many in the "no" column. Let's look more closely to see if there is a
pattern to these results. First let's see if there are any values of #8 for
which all values of #M (which are greater than 1) give a star. You can
see that when #8 is equal to 5,7, or 11, all values of #M produce stars!
It turns out that 5, 7, and 11 belong to a special set of numbers called
prime numbers.

Prime numbers have the property of not being able to be formed by
the multiplication of two whole numbers, both of which must be
greater than 1. The number six is not a prime number because it can
be written as 2 * 3. We call 2 and 3 the factors of 6. The number
seven, however, cannot be written as the product of two whole num-
bers, so it is a prime number.

103

PICTURE THIS!

80 far we have discovered that polygons, the sum of whose sides
equals a prime number, can be turned into stars without any prob-
lems whatsoever. But what about numbers like eight? When we set #
8 equal to 8, we find that some values of #M give stars and others
don't. Let's look at this more closely. When #M is equal to 2 or 4, we
don't get a star; and when #M is equal to 3, we do get a star. Now it
so happens that 8 is 2 * 4, so both 2 and 4 are factors of 8. We do get
a star when we use 3, but 3 is not a factor of 8. If you look at the case
when #8 is equal to 9, you'll see the same sort of thing. If, in any par-
ticular case, #M and #8 have a common factor, we will not get a star
with #8 points.

Now, at long last, we can create a rule for stars:

TURTLE RULE #2: A polygon with #8 sides can be turned into a star
with #8 points by increasing each turning angle by #M times when #
M is a whole number that shares no factors with the value of #8.

Wow, did that get technical!

At this point you might want to:

1. Go over this last section again;

2. Decide that stars are made by magic and that you don't need
any other explanation;

3. Decide that you don't really care about stars anyway.

For a polygon with #8 sides, what values of the turning multi-
plier #M give stars with less than #8 points?

The turtle asks a question .. •

Now that we know how to get the turtle to use variables for all sorts
of things, it might be nice to find out if we can have the turtle stop

104

The Variable Variable

in the middle of a module and ask us for some information before
proceeding. Up till now we have pretty much set things up so that
when the turtle does something, we just sit back and watch. We can
make our modules, interactive.

The interactive mode occurs when you are in direct communication
with the computer and are able to get immediate responses to your
messages. This is possible through the use of two PILOT commands,
T: and A:.

Let's do an experiment to see what the T: command does. Press the
SYSTEM RESET key and type

NEW

to erase old modules. Next type:

T: HELLO FRIEND, HOW ARE YOU?

When you press RETURN you should see

HELLO FRIEND, HOW ARE YOU?

neatly printed on the screen. Next type

T: I THINK YOU ARE NICE.

and press RETURN to see this sentence typed on the screen.

T: is the Type command. Any words that appear to the right of the
colon will be displayed on the screen when this command is executed.
The type command has lots of useful features. To see one of them,
enter the sentence below. As you approach the edge of the display
screen, just keep on typing and the computer will automatically shift
you to the next line. Do not press RETURN.

T: NOW IS THE TIME FOR ALL GOOD PROGRAMMERS TO TRY
OUT THEIR SKILLS WITH PILOT.

105

PICTURE THIS!

As you were typing PROGRAMMERS, you probably noticed that the
PROGRA ended up on the first line and the MMERS showed up on
the next line. At the end of the second line, the word PILOT was bro-
ken between the L and the O.

Now press RETURN. Your screen should show:

NOW IS THE TIME FOR ALL GOOD
PROGRAMMERS TO TRY OUT THEIR SKILLS
WITH PILOT.

As you can see, one of the nice features of PILOT is that it avoids
breaking words in the middle , which keeps things easy to read.

So far we have figured out how to have the computer put words on
the screen. Next we have to figure out how to have the computer ac-
cept information from us while it is running a module. PILOT accom-
plishes this task with the Accept command (A:).

Let's say that we created a module in which we want to change the
value of the number stored in the variable #C. To do this we might
write (in the AUTO mode),

T: PLEASE ENTER A NEW VALUE
A:#C

What do you think happens when the second command is executed?
When PILOT comes across the A: command, it stops everything and
waits for something to be typed from the keyboard. Whatever you
type is stored in something called the accept buffer. The accept buffer
is a special memory location where the computer keeps track of any-
thing you have typed from the keyboard. When you press the RE-
TURN key, the things you typed are placed in any variable (in our
example, the numeric variable #C) appearing to the right of the colon
in the Accept command.

Let's tryout a simple example to see how this works. Type:

AUTO
106

The Variable Variable

and then enter

*POLYGON
T: HOW MANY SIDES DO YOU WANT?
A:#S
GR: GOTO 0,0; TURNTO 0; CLEAR
GR: #S(DRAW 25; TURN 360/#S)
J: *POLYGON
E:

Next, let's tryout this module. Type:

GR: CLEAR
U: *POLYGON

Do you see the question in the bottom window?

HOW MANY SIDES DO YOU WANT?

Type the numeral 4 and press RETURN. Do you see a square on your
screen? Good. You also probably notice that the lower screen repeats
the question. This time type the word FOUR and press RETURN.
Hmmm. That doesn't accomplish anything at all. Now type 5 and
press RETURN to get a pentagon on the screen.

This little exercise showed us two useful things:

1. We now know how to have PILOT accept information from us
in the middle of running a module.

2. We know that the accept buffer can put only numbers Inside
numeric variables; it can't put words inside numeric variables.

Later on we may explore T: and A: some more, but now we are ready
to draw some more pretty pictures!

107

squares
and
spirals

108

SO FAR WE have done a lot of experimenting with modules that
draw things and that make lots of copies of other pictures at differ-
ent angles on the screen. In this chapter we will explore ways of
making objects that "grow." To do this we will use many of the
things we learned in the last chapter: using variables, typing ques-
tions on the screen, and accepting information from the user.

But before we get started, we are going to learn a way of finding the
turtle's location on the screen.

Have you ever wondered what the screen position of the turtle was
after you moved it somewhere? PILOT has two special variables that
give us this information. These are the variables %X and O/OY. The
percent sign (0/0) in front of these letters lets PILOT know that the
values stored in these variables are put there by the turtle and not by
you.

Squares and Spirals

Contrast this with the properties of those variables that start with the
number sign. You can put any number you want (within the limits
we described before) into the variables #X and #Y, and you can use
these variables for anything you want.

The turtle, however, has exclusive use of the variables %X and %Y.
The variable %X always contains the horizontal location of the turtle
on the screen. If the turtle is in its home position, the value of %X is
O. If the turtle is to the right of the home location, the number in %X
will be larger than 0 but less than 80. If the turtle is to the left of the
home position, the number in %X will be smaller than 0 but greater
than - 80. The variable %Y always contains the vertical location of
the turtle on the screen. If the turtle is in its home position, the value
of %Y is O. If the turtle is above the home location, the number in %Y
will be larger than 0 but less than 48. If the turtle is below the home
position, the number in %Y will be smaller than 0, but greater than
-32.

Let's build a module that we can use any time we want to know where
the turtle is located. First be sure you are not in the graphics mode,
and then type:

NEW

to clear out any clutter we left behind. Next type:

AUTO

to enter the deferred instruction mode. Now enter:

*WHERE
T:
T: THE HORIZONTAL LOCATION IS %X
T: THE VERTICAL LOCATION IS %Y -,
E:

109

PICTURE THIS!

Press RETURN again to leave the AUTO mode.

Let me explain a couple of things about this module before we go on.
First of all, if you type T: by itself, you get a blank line. (I tell you
this now because it may make the display look prettier later on.)
Also, you might not understand that the reversed slash ("'-) in the
third line has a very special purpose. It keeps PILOT from advancing
to the next line after finishing the type (T:) command. The reason we
need this is that when a module comes to an end, PILOT types a
blank line, the word READY on a second line, and puts the cursor on
the next line. This uses three of the four lines that the text display
can show in the graphics mode. Unless we do something special, we
would see only the turtle's vertical location displayed on the screen
since the line displaying the horizontal location would have "scrolled"
off the top. By putting the reverse slash at the end of the line, we see
one less blank line, so both the horizontal and the vertical turtle po-
sitions can be seen on the screen.

If you are confused by any of this, you should try the module
*WHERE both with and without the reversed slash after %Y.

Now let's see how all of this works. Type:

GR: CLEAR

You and I know that the turtle is at its home location. Let's see how
our new module works. Type:

U: *WHERE

When I did this I got the following two lines on the screen:

THE HORIZONTAL LOCATION IS 0
THE VERTICAL LOCATION IS 0

Q: Excuse me, but I am confused. When I created the module
*WHERE, I used the name %X and the name %Y in the type
commands. When I use this module, the screen shows the
numbers contained in the variables %X and %Y. Why?

110

Squares and Spirals

A: When a T: command is being used, PILOT looks at each char-
acter to see if it finds any special symbols. If it comes across
a letter with a "#" or a "0/0" in front of it, PILOT recognizes it
as a variable and prints its content rather than its name.

Let's do some more experiments. First type:

GR: DRAW 25
U: *WHERE

THE HORIZONTAL LOCATION IS 0
THE VERTICAL 15 25

READY

Since the turtle is pointing straight up after it draws this line, we
see that the turtle is now at a new vertical location (25), but at the
same horizontal one. You already knew that, of course, so this ex-
ample probably doesn't make it any more obvious why %X and O/OY
are useful. Let's try something else:

GR: TURN 155; DRAW 38

Now where do you think the turtle is located? You can see its location
on the screen, but do you think you could use the GOTO statement

111

PICTURE THIS!

right now to put a different-colored dot on the end of this new line?
Write down your guess for the present values of O/OX and O/OY and then
type:

U: *WHERE

How close was your guess?

THE I5 16
THE IS

iREiC.-O'1"

As you can see, %X and %Y are really handy for finding the turtle's
location when we have drawn lines that are neither altogether hori-
zontal nor altogether vertical. Now let's get on with the main topic of
this chapter!

The grow ing square . • •

In the last chapter we used variables to change the number of times
we did something or to change the amount the turtle turned. Now
let's see what happens when we use them to change how far the tur-

112

Squares and Spirals

tle draws a line. To start out, we will use our recipe for drawing a
square, but instead of drawing a line of fixed length (such as 25
screen units), we will use a variable for this value. Type:

GR: QUIT
REN 1000
AUTO

and then enter:

*SQUARE
GR: 4(DRAW #A; TURN 90)
E:

and press RETURN again to leave the AUTO mode.

If you now type:

GR: CLEAR
C: #A=25
U: *SQUARE

you should see a familiar, yellow square on your display. To refresh
your memory, we can build an interactive square-drawing module in
the following way. Type:

GR: QUIT
REN 1000
AUTO

and then enter:

*TELLSQUARE
T: HOW BIG A SQUARE DO YOU WANT? -,
A: #A
U: *SQUARE
E:

113

PICTURE THIS!

and press RETURN again to leave the AUTO mode. Notice that we
used the reverse slash in this module. This will let you enter the an-
swer to the question on the same line. Let's see how it works:

GR: CLEAR
U: *TELLSQUARE

Type a number (I used 37) and press RETURN. Voila! A nice square
is drawn on the screen.

HOH BIG A SQUARE DO YOU WANT? 37

Now we will make another module that will do something really dif-
ferent. We will learn how to make a square grow in front of your
very eyes! Type:

GR: QUIT
REN 1000
AUTO

114

Squares and Spirals

and then type:

*GROWSQUARE
C: #A=O
*JUMPHERE
U: *SQUARE
C: #A=#A+ 1
J (#A<31) : *JUMPHERE

E:

[start with zero length
[come here for the next round
[draw a square with length #A
[make the sides longer by one
[draw another square if # A is
less than thirty one

Now, let's try it out. Again press RETURN to leave the AUTO mode
and then type:

GR: CLEAR
U: *GROWSQUARE

U: *GiROWSOUAiRE

Wow! That's interesting. We seem to have a square blob instead of a
growing square!

In order to make a growing square, we need to erase the square that
we previously drew and then draw a new one that is larger. If this
happens quickly enough, the square will appear to grow on the
screen.

115

PICTURE THISI

We will now make a new module, *GROW, which should do this for
us. First type:

GR: CLEAR
REN 1000
AUTO

and then enter:

*GROW
C: #A=O
*HERE
GR: PEN ERASE
U: *SQUARE
C: #A=#A+l
GR: PEN YELLOW
U: *SQUARE
J (#A<31) : *HERE
E:

Now, after you press RETURN again to leave the AUTO mode and
type:

GR: CLEAR
and then

U: *GROW

you should see a yellow square growing on the screen. You probably
noticed some flickering while this was going on. This is because our
poor turtle can't do everything quite fast enough to prevent the
flicker, but I think the result looks pretty good anyway.

We can make other objects grow as well. If you next make a new
module that looks like this:

*STAR
GR: 5(DRAW #A; TURN 144)
E:

116

Squares and Spirals

and change the references from *SQUARE to *STAR in the module
*GROW, you will have a star growing instead of a square. This star
starts from nothing in the center of the screen and ends up like this:

IU =*GRO!....

Squirals and spirals ...
The objects we have experimented with so far pretty much have
grown without leaving a record of their growth on the screen. If we
stop the growth process at any time and look at the image, we don't
really have a way of knowing that the object grew to its present
shape. This is rather similar to the way we view our own growth as
persons. When we are children, we get a little bit bigger every day,
but we don't grow rings as trees do.

There is another way that some plants and animals grow-a way
that leaves a record of their growth in the form of spirals. Have you
ever looked closely at snail shells? When the snail is a tiny baby, its
shell is very small. As it grows, its shell gets a little bigger and a
spiral starts to form. By the time a snail is fully grown, its shell will
have spiraled around itself many times. If you look at the arrange-

117

PICTURE THIS!

ment of the petals on many flowers (daisies, for instance), you can
also see spirals that are related to growth. Still another good place to
look for spirals is on the top of pine cones.

In fact, most of the spirals found in nature come from living things.
Two exceptions are the spirals in tornadoes and whirlpools. I can't
think of any other exceptions, can you?

In the remainder of this chapter we are going to explore some ex-
tremely interesting spirals that we can have the turtle draw for us.
Let's start out with a really simple pattern-a "square spiral", which
we will call a squiral. Suppose we want to draw a picture that looks
like a square, except that each side is longer than the previous side.
To do this we can create a module called *SQUIRAL. First type:

GR: QUIT
REN 1000
AUTO

and then enter:

*SQUIRAL
GR: CLEAR; GOTO 0,0; TURNTO 0
C: #A=O
*DRAWLINE
GR: DRAW #A; TURN 90
C: #A=#A+ 1
J (%Y<48) : *DRAWLINE
E:

[clear the screen
[set starting length to zero
[come here on next round
[draw one line and turn
[make the side longer
[if picture isn't at the top
of the screen , draw
another line

Press RETURN again to leave the AUTO mode. Notice that we're us-
ing the number stored in the variable %Y to tell us when the squiral
has grown too big. Now let's try this out. Type:

GR: CLEAR
U: *SQUIRAL

Wow! That is a rather impressive spiral. Because we turned 90 de-
grees each time, each corner is nicely nested with the one preceding

118

Squares and Spirals

it. As it turns out, we can draw some even more fantastic pictures by
changing this angle somewhat.

We need to make some changes in *SQUIRAL that will let us specify
our own angle each time we use the module. To do this, type:

GR: QUIT
LIST 0, 100

Your screen should now show the following listing:

10 *SQUIRAL
20 GR: CLEAR; GOTO 0,0; TURNTO 0
30 C: #A=O
40 *DRAWLINE
50 GR: DRAW #A; TURN 90
60 C: #A=#A+ 1
70 J (%Y<48) : *DRAWLINE
80 E:

119

PICTURE THIS!

To change this program so that it's more interactive, use the variable
#B as the angle you want to specify. Then type:

32 T: WHAT ANGLE WOULD YOU LIKE? '"
34 A: #B
50 GR: DRAW #A; TURN #B

Now we are ready to draw some more pictures. Type:

GR: CLEAR

and then enter:

U: *SQUIRAL

In response to the question "WHAT ANGLE WOULD YOU LIKE?" en-
ter 90 and press RETURN. If your screen shows the same square spi-
ral we saw before, you know everything is still working properly.

Use *SQUIRAL again, but this time enter 89 instead of 90. This is
what I saw when I did it:

120 Now this is an interesting picture. By making the turning angle a
little different from 90 degrees, we drew a picture that shows four

Squares and Spirals

spiral arms radiating out from the center. The arms are turning to
the left. Do you know why this happens? We do not quite make a
square on the screen because we turn 89 degrees each time. By the
time we have turned four times, we are off by 4 degrees. And by the
time the turtle has gone around again, we are off by 8 degrees. As a
result of this shift in angles, the corners of our almost-squares do
not nest as nicely as they did when we used 90 degrees for the angle.
The four spiral arms that we see are formed by the corners bumping
into one another as each turn of the squiral deviates farther and far-
ther from the 90-degree angles of our first squiral.

As it turns out, this same type of thing will happen if we turn a little
too much. Can you guess what will happen if we use *SQUIRAL with
an angle of 91 degrees? Try it and see if your guess is right!

WHAT

This time we got four spiral arms that went off to the right instead
of to the left. Do you find it amazing that such a big difference in the
picture can be formed by such a small change in the angle?

You probably have seen examples similar to this if you have ever seen
two window screens stacked together. There is no extra pattern pro-
duced if both screens are held at the same angle. If one screen is an- 121
gled ever so slightly, you begin to see light patches and dark

PICTURE THIS!

squares. As you increase the angle between the two screens, the
patches get smaller and closer together. If you don't have two screens
handy, you can see this same sort of effect by holding two identical
combs together and looking through the teeth. When one comb is ro-
tated at an angle different from the other one, you should see light
and dark lines.

These extra patterns that are superimposed on the finer pattern of
two interfering images are called moire patterns. You might want to
be on the lookout for them.

Q: You said that if I held two screens together the light and
dark patches would get closer together as I turned the screen
more. Does that mean the spiral arms will turn faster in
*SQUIRAL if we use angles that are farther away from 90
degrees?

A: I know of only one good way to find out. Let's try it!

The following two figures were produced by using *SQUIRAL with
angles of 88 and 92 degrees, respectively. It looks as though every-
thing went according to plan.

122

Squares and Spirals

LIKE"'? ::iI'2

Now let's try some other angles that we know about. For example, 72
degrees should give us a pentagonal spiral. The following set of fig-
ures came from using angle values of 70, 71, 72, 73, and 74 degrees,
respectively.

123

PICTURE THIS!

124

Squares and Spirals

125

.11.. 1.6;

PICTURE THIS!

Next let's try using angles near 120 degrees and see what happens:

WHAT WOULD LIKE? J13

126

Squares and Spirals

WHAT ANGLE WOULD YOU LIKE? 128
IE: 1.:>':1'

}.II ,,,3 (-il Wi(" it I;;:

RiEAD' '{

127

PICTURE THIS!

Finally, let's try a pattern with which we are already familiar-the
five-pointed star. Since you know that an angle of 144 degrees will
give us a star shape, we will try using *SQUIRAL with angles from
142 to 146 degrees:

LIKE? J.42

128

WI-Ill! 1- tJi N (" L E

iRlI:.:.Ail)V

Squares and Spirals

LIJlot::E·'? JL43:

HH T H 'C;; IL. '1:: WO IIJL I) ''I'' () U L I IE.? .1.44

lR IE: iAJ ii) "'I"

129

PICTURE THIS!

l,11
I .. I
ill!! a •

WHAT ANGLE WOULD yOU

You should look closely at all of these turtle drawings to be sure you
understand both the number of spiral arms you see and the direction
in which the arms are turning.

Try some angles of your own. You might be very pleasantly sur-
prised by the results!

130

11
drawing
curves

SO FAR ALL of our pictures have been made with straight lines even
though some of the squirals appeared to have curved arms. One of
the things we will do in this chapter is learn how to make the turtle
draw curved lines.

The turtle draws a circle ...
Let's start with a very important curved figure-the circle. Do you
know how to draw a circle? I know at least three ways:

1. We could trace around the edge of a circular object, such as a
coin. Since this requires that we have a circle to start with, I
don't find this a terribly interesting way of drawing a circle.

2. We could use a special tool called a compass that will help us
draw a circle centered around a point of our choosing. This is
the usual method for many of us when drawing circles, and it
works just fine if we have a compass.

131

PICTURE THIS!

Quite often we don't have any special tools handy, and we still want
to draw a circle. So at these times we just draw a circle without any
tools. The approach we use then is:

3. Draw a little bit, turn a little bit, and repeat this process until
we get a circle.

Tryout this approach by walking in a circle. If you take little steps
and turn just a little bit after each step, your path will trace out a
pretty big circle. If you turn a little more after each step, the circle
will be smaller. You should try this yourself until you are convinced
that the more you turn with each step, the smaller your circle will
be.

If you walked in such a way that you turned by 1 degree with each
step you took, how many steps would it take you to draw a circle?

Do you remember Turtle Rule # 1? If your answer is 360 degrees you
are to be congratulated because this is exactly right! To get back
where it started, the turtle has to turn a total of 360 degrees. If the
turtle turns only 1 degree with each step, it needs to take 360 steps
to get back to its starting place.

Now let's tryout this process with the turtle and see how it does. We
will make a module that lets the turtle take a little step (1 is the
smallest step it can take), and then turn by 1 degree after each step.
Be sure you are not in the graphics mode and then type:

NEW
AUTO

and then enter:

*BIGCIRCLE
GR: 360(DRAW 1; TURN 1)
E:

132

Drawing Curves

and press RETURN again to leave the AUTO mode. Turning by 1 de-
gree each time is turning by the smallest amount we can. Let's see
what this module gives us. Type:

GR: CLEAR
U: *BIGCIRCLE

.,r'

U I 4::;; C ::I: iR C L E

Hmmm. This ends up drawing a circle so big that only part of it
shows up on the screen. Maybe we should make a new module that
lets us change the amount we turn after each step. Type:

GR: QUIT
REN 1000
AUTO

and then enter:

*DRAWCIRCLE
T: HOW MUCH WOULD YOU LIKE TO TURN? '"

133

PICTURE THIS!

A:#A
GR: GOTO 0, - 30; TURNTO - 90 [this starts the circle in a con-

venient place and starts the
turtle drawing at the left of
the screen instead of toward
the top

U: *CIRCLE
E:

This interactive module uses another module called *CIRCLE. In de-
fining *CIRCLE, we want to have the turtle draw one step and then
turn by the amount we enter from the keyboard. This amount is
stored in the variable #A. The number of times we need to repeat this
step-and-turn activity is given by dividing 360 by the number stored
in #A. For example, if that number is 1, we need to repeat the process
360 times to get a closed circle. If the number is 2, then we need to
take 360/2, or only 180 steps to draw our circle.

Without leaving the AUTO mode, let's try typing this:

*CIRCLE
GR: 360/#A(DRAW 1; TURN #A)

Whoops! That didn't work did it! My screen shows

GR: 360/#A(DRAW 1; TURN #A)

*** WHAT'S THAT ***

with the number sign shown in reverse field. My guess is that this
means the quantity in front of the left parenthesis needs to be either
a number or a variable (we already know that these work) but cannot
be anything that uses an operation (such as dividing a number by a
variable). We can fix this problem by defining a new variable, #B, this
way. Enter

C: #B=360/#A
GR: #B(DRAW 1; TURN #A)
E:

134

Draw ing Curves

Well, at least PILOT accepted everything we typed; now let's try it all
out to see how it works. Press RETURN again to leave the AUTO
mode and then type:

GR: CLEAR
U: *DRAWCIRCLE

When you see the question HOW MUCH WOULD YOU LIKE TO
TURN? you might first enter 1 and then press RETURN to see if you
get a circle the same size as the one you got with *BIGCIRCLE. You
can see more of the circle now since we moved the turtle down to give
it more room. But we still don't have the circle completely on the
screen.

I used *DRAWCIRCLE several times, with angle values of 1,2,3,4,
5, 6, 7, 8, and 9 degrees. You should do this too. Does your picture
look like this:

135

PICTURE THIS!

As you can see from this picture, it isn't until you use angles of 2 or
more degrees that the circle fits entirely on the screen.

We now know that the larger the turning-angle, the smaller the cir-
cle. You already know that if we take larger steps each time, we will
get larger circles. Next, let's do some experiments with both step size
and turning-angle so we can determine if there is any special rela-
tionship between these two numbers.

Let's type the following:

GR: QUIT

and then enter:

LIST 0,100

to see the modules *DRAWCIRCLE and *CIRCLE. The following lines
should be displayed on the screen:

10 *DRAWCIRCLE
20 T: HOW MUCH WOULD YOU LIKE TO TURN? "'-
30 A: #A
40 GR: GOTO 0, -30; TURNTO -90
50 U: *CIRCLE
60 E:
70 *CIRCLE
80 C: #B=360/#A
90 GR: #B(DRAW 1; TURN #A)
100 E:

In order to control both the step size and the angle in these modules
we have to make three changes in the program. Can you figure out
what they are? Here is one way to make the changes. First, let's pick
the variable #S to be the place where we will store the step size. We
have to set up a way of entering a number into this variable from the
keyboard. We can do this by adding the following two lines to
*DRAWCIRCLE:

136

Drawing Curves

34 T: WHAT STEP SIZE WOULD YOU LIKE? ""
36 A: #S

Finally, we have to fix line 90 so that the distance the turtle moves
with each step is given by the number stored in #S. To do this we just
type:

90 GR: #B(DRAW #S; TURN #A)

and we are done.

Now we are ready for some more experiments.

We already know a good deal about what happens to circles made
with a step size of 1 and turning-angles between 1 and 9 degrees.
Let's see what happens when we make circles with steps equal to 2
units. Type:

GR: CLEAR
U: *DRAWCIRCLE

When the display shows "HOW MUCH WOULD YOU LIKE TO
TURN?" enter 1 and then press the RETURN key. Next the display
will show "WHAT STEP SIZE WOULD YOU LIKE?" Now enter 2 and
press RETURN. Wow! That circle is so big that very little of it fits on
the display. Let's use *DRAWCIRCLE a few more times with angles
of different degrees and with a step size of 2. The next figure shows
what I saw when I did this for angles between 1 and 9 degrees.

This figure looks similar to the one we made with different turning-
angles and a step size of 1, but this time each circle is larger than
those we made with that step size.

Since we know that larger turning-angles make smaller circles, and
that larger step sizes also make larger circles, let's do an experiment
to see if these numbers balance each other.

137

PICTURE THIS!

WHAT STEP SIZE WOULD YOU LIKE? 2

Let's start with a circle made with a turning-angle of 2 degrees and
a step size of 1. Then double the step size as well as the angle and
repeat the process. First type:

GR: CLEAR

and then enter:

U: *DRAWCIRCLE

For our first circle, enter 2 for the angle, press RETURN, and enter
1 for the step size. When you press RETURN again, a familiar, yel-
low circle should appear on the screen. Next, let's double both the
turning-angle and the step size. Type:

GR: PEN RED
138 U: *DRAWCIRCLE

Drawing Curves

This time enter 4 for the angle and 2 for the step size. When I did
this I saw a red circle sitting on top of the yellow one!

,..-

(
....-.

...
...r-J"

STEP SIZE WOULD YOU LIKE? 2
REf-d)"lJ"

Next let's double things again and see what happens. Type:

GR: PEN BLUE
U: *DRAWCIRCLE

and enter 8 for the angle and 4 for the step size. Now we have an-
other circle of the same size. The only difference between this circle
and the earlier ones is that it is shifted to the left a little bit. It is also
a little bumpier than our other circles because of the larger step size.

It may have occurred to you that none of these pictures show a true
circle, since these figures were each drawn by taking straight steps
and then turning. A "circle" made by taking 1 step and turning 1 de-
gree each time is really only a polygon with 360 tiny sides. A true
circle isn't made with any straight sides-no matter how small they
are. 139

PICTURE THIS!

We seem to be on the road to another of our famous discoveries. As
long as we double both the angle and the step size, all the figures we
get seem to be the same size overall. It is almost as if the size of the
figure is determined by the ratio of the turning-angle to the step size,
and the detailed shape of the figure, by the value we choose for the
step size (or angle). So far we have looked at different figures made
with an angle-to-step--size ratio of 2. (We turned 2 degrees for a step
size of 1, 4 degrees for a step size of 2, and so on.) Let's make some
big changes in angle and step size (keeping the ratio the same) and
see where this leads.

First, let's clear the screen and draw our smoothest circle. Type:

GR: CLEAR
GR: PEN YELLOW
U: *DRAWCIRCLE

Enter 2 for the angle and 1 for the step size. Next type:

GR: PEN RED
U: *DRAWCIRCLE

This time, enter 45 for the angle and 23 for the step size (we should
use a step size of 22.5, but, as you know, we must use whole num-
bers, so we picked 23 instead). This newest figure is an octagon of
approximately the same size as our first circle. Next type:

GR: PEN BLUE
U: *DRAWCIRCLE

and enter 60 for the angle and 30 for the step size. This will add a
blue hexagon to the picture.

Each of these three figures is quite different from the others in
shape, yet they all have the same overall size.

You might want to try other shapes to see what happens. Generally,
the sizes will all be similar if the ratio of turning-angle to step size is
kept the same.

140

Drawing Curves

Parts of circles-the turtle's arc
While circles are useful figures for us to know how to draw, some-
times we need only part of a circle. A curve that is made from part of
a circle is called an arc. We know that to draw a circle we have to
turn a total of 360 degrees. And it now should be clear that if we stop
drawing before turning a full circle, we will get an arc. Let's make a
module for drawing arcs that turn 2 degrees for each step we take.
First exit from the graphics mode and type:

NEW
AUTO

and then enter:

*ARC
T: HOW BIG AN ARC DO YOU WANT? '" [prompt for angle

141

PICTURE THIS!

A: #A
C: #A=#A/2

GR: #A(DRAW 1; TURN 2)
E:

[accept angle
[divide this number
by two and put the
result back into # A
[draw the arc

Press RETURN again to leave the AUTO mode and then type:

GR: CLEAR
U: *ARC

What number should we type in response to the question "HOW BIG
AN ARC DO YOU WANT?" Let's try making an arc that is one-fourth
of a circle in size. Since one circle is 360 degrees, we should enter
one-fourth of that, which is 90, and press RETURN.

HOW BIG DO YOU HnHT? 90
RE DV

We now have a quarter-circle arc on the display screen.

142

Drawing Curves

Let's now extend the arc in a new color. Type:

GR: PEN RED
U: *ARC

Again enter 90 for the angle, and press RETURN.

HOW BIG AN ARC DO YOU WANT? 90

Now we have two 90-degree arcs-one yellow and one red. Together
these arcs make a half circle. This makes sense since 90 + 90 is 180,
and 180 is half of 360-the number of degrees we need to turn a full
circle. Let's check this out. Type:

GR: PEN BLUE
U: *ARC

This time enter 180 for the angle. When you press RETURN, you will
get a blue half circle that closes the figure to give us a full, multi-
colored circle. Not bad work for starters!

143

PICTURE THIS!

HOW BIG AN DO YOU WANT?

Next let's use our arcs to draw some pictures. Can you think of any
pictures you could draw with arcs? How about a bird? Have you no-
ticed, when a bird is flying a good distance from you, how its wings
form two arcs? Let's try to make a bird that will fly across the screen!

To start with, we should plan our course of action. We need a module
to draw a wing, a module that uses the wing to draw a bird, a module
to move the bird, and a module (called *CARTOON) to make every-
thing happen properly.

Let's start with the wing. I think we know how to handle that! Exit
from the graphics mode and type:

NEW
AUTO

144

Draw ing Curves

and enter:

*WING
GR: 30(DRAW 1; TURN 3)
E:

This module constructs our wing out of a gO-degree arc. Press RE-
TURN again to leave the AUTO mode, and let's try to determine how
to use this module to build our bird. First type:

GR: CLEAR

and then type:

U: *WING

U: *WTHG
RE ..

Hmmm, this looks like a good wing, but I think it ought to be more
horizontal. Let's try this:

GR: CLEAR
GR: TURNTO 45
U: *WING

145

PICTURE THIS!

..""..---
," "11_

*WING
nEtH)'(

Now that's much better! All we need to do is repeat this and we will
have a bird. Type:

GR: TURNTO 45
U: *WING

Now we have a bird on the display screen.

..,.--- -,.,....----
oa'''- ''ff....- a ••

IU: *WING
REi:'.iDY

146

Drawing Curves

I don't know about you, but I would like another picture of a bird
with its wings high in the air so they look as though they were flap-
ping. To draw this bird, let's try the following:

GR: GOTO 0,0; CLEAR
GR: TURNTO 90

U: *WING
GR: TURNTO 0

U: *WING

U: *WING

[this starts the first wing out
horizontally

[this starts the second wing straight
up

Wow! Now we can make two pictures of a bird. The only problem is
that to show the bird flapping its wings we need to erase one picture
before drawing the second, and then erase that one before redrawing
the first. We know that changing the PEN from YELLOW to ERASE
can help us solve this problem, but we may not know exactly how it
will help us. There are lots of ways of dealing with this, and one of
them is to make a new module, *ANTIWING, which traces backwards
over our wing and (if we have made the pen change first) erases it.

Well, let's give this a try. Type:

GR: QUIT
REN 1000
AUTO 147

PICTURE THIS!

and enter:

*ANTIWING
GR: 30(TURN -3; DRAW 1)
E:

Press RETURN again to leave the AUTO mode. Do you notice any-
thing interesting about *ANTIWING? Not only is the direction re-
versed, but so is the order of our graphics command. Perhaps you
should play turtle to see if you can convince yourself that this is the
correct way of doing this.

Let's try things out to see how this all works. First type:

GR: CLEAR
U: *WING

and you see that we have one yellow wing on the screen. Next we
want to erase this wing. To do this we have to get the turtle pointing
in the correct direction. Since the turtle ended up pointing to the
right, we have to get it pointing back to the left. Type:

GR: TURNTO - 90
GR: PEN ERASE
U: *ANTIWING

Presto! The wing disappeared (except for one dot that we'll have to
take care of later).

Now we are ready for a real challenge-drawing a bird with flapping
wings! To do this requires our drawing the bird in one wing position,
erasing that picture, then drawing the bird in the second wing posi-
tion, and erasing that picture of the bird as well. Type:

GR: QUIT
REN 1000
AUTO

148

Drawing Curves

and enter:

*FLYBIRD
GR: PEN YELLOW
GR: TURNTO 45
U: *WING
GR: TURNTO 45
U: *WING
PA:#P
GR: PEN ERASE
GR: TURNTO 90; DRAW 1;
DRAW -1
GR: TURNTO -45
U: *ANTIWING
GR: TURNTO - 45
U: *ANTIWING
GR: TURNTO 0; GO 20;
TURNTO 90; GO 8
GR: PEN YELLOW
GR: TURNTO 90
U: *WING
GR: TURNTO 0
U: *WING
PA:#P
GR: PEN ERASE
GR: TURNTO 90; DRAW 1;
DRAW -1
GR: TURNTO - 90
U: *ANTIWING
GR: TURNTO 0
U: *ANTIWING
GR: TURNTO 0; GO - 20;
TURNTO 90; GO -8
E:

[set pen to yellow
[turn for first position
[draw first wing
[position turtle
[draw second wing
[pause before erasing
[set pen to erase
[take care of extra dot

[position turtle
[erase second wing
[position turtle
[erase first wing
[move turtle for second bird

[set pen to yellow
[position turtle
[draw first wing
[position turtle
[draw second wing
[pause before erasing
[set pen to erase
[take care of extra dot

[position turtle
[erase second wing
[position turtle
[erase first wing
[move turtle back for first
bird

Press RETURN again to leave the AUTO mode.

149

PICTURE THIS!

You probably noticed that you used a new command in this module,
the Pause command (PA:), which will stop PILOT from executing any
subsequent commands for as long as the number stored in variable #
P indicates. (We could, of course, use any variable we care to, but #P
reminds me of pause.) The length of time that PA: waits is measured
in "jiffies." One jiffy is the same as one-sixtieth (1160) of a second. If
we pause for 60 jiffies (#P=60), each picture will stay on the screen
for one second before being erased.

Now let's get on with the show! First, let's see the bird all by itself.
Type:

GR: CLEAR
C: #P = 60 [set the delay for one second
U: *FLYBIRD

If everything worked correctly, you should see each picture of the
bird drawn and on the screen for one second before being erased.
Good work so far!

If you didn't have this happen, you should first try to find the error.
To make things easier, you might want to temporarily change PEN
ERASE to PEN BLUE so you can see what the erased lines look like.
If guessing doesn't help and you are still stuck, go back over the pro-
gram listing carefully and see if you can isolate your error.

Next let's build a module to move our bird across the screen. Type:

GR: QUIT
REN 1000
AUTO

and enter:

*MOVE
GR: TURNTO 90; GO 10
E:

150

Drawing Curves

and press RETURN to leave the AUTO mode. Each time this module
is used it will move our bird to the right by ten units. Now we are
ready to make a cartoon! Type:

REN 1000
AUTO

and enter:

*CARTOON
GR: GOTO -70,0
C: #P=30
*FLY
U: *FLYBIRD
U: *MOVE
J (O/OX<60) : *FLY
E:

[start bird to left of screen
[set up for 30-jiffy delay

[flap-flap!
[move
[keep going if bird is still on the screen

And now we are finally ready for the flight of the century. Type:

GR: CLEAR
U: *CARTOON

- ---....... _.... ,......
a •',.

.....------...--

151

PICTURE THIS!

There it goes! Our bird is slowly flapping its way across the screen!
The previous figure shows a few "snapshots" of the bird in flight.

You should do some experiments with *MOVE to see if you can
make the bird fly all over the screen. Can you make the bird fly
in a circle? Try it and see what happens!

Spirals ...
In Chapter Ten we learned how to make "squirals." When we made a
squiral, we kept the turning-angle the same and increased the length
of the line with each step . Because we increased the step size each
time, our squiral became larger as time went on.

Now what do you suppose would happen if we kept our step size the
same and increased the turning-angle with each step. Why don't you
try to find out by playing turtle. Take a step, turn a little bit, take
another step, turn by a little bit more, and so on. Do you see what
happens? Do you find yourself curving into a spiral? Well, let's let
the turtle do some work by seeing how it handles our attempt to
draw a spiral.

I will make two modules. One that resets everything, and another
that draws the figure we want to study. In this manner we can draw
a few steps, think about what is happening, and then keep on going
without having to start again.

Be sure you are not in the graphics mode and type:

NEW
AUTO

Once the screen changes color, enter:

*RESET
GR: PEN YELLOW

152

Drawing Curves

GR: GOTO 0,0; TURNTO 0; CLEAR [put the turtle home and
clear the screen

VNEW: [reset all variables
E:

Next enter:

*SPIRAL
T: HOW MANY STEPS DO YOU WANT? ""
A:#S
C: #C=o
*DRAWSPIRAL
GR: DRAW 3; TURN #A
C: #A=#A+l

C: #C=#C+ 1

J (#C<#S): *DRAWSPIRAL
E:

[reset step counter

[draw line and turn
[increase turning-
angle by 1 degree
[increase counter by
one

Press RETURN again to leave the AUTO mode.

Q: Before we get too much further, can you tell me what VNEW:
is all about?

A: Of course. I was just about to explain that VNEW: can be
used any time you want to reset all the variables in PILOT.
This means that all twenty-six numeric variables will be reset
to zero (0).

Now, to move right along, let's try these modules out. First type:

U: *RESET

and then

U: *SPIRAL

When the question, "HOW MANY STEPS DO YOU WANT?" appears
on the screen, enter 45 and press RETURN. 153

PICTURE THIS!

When I did this, I saw a line start out vertically and then bend over
to the right like this:

.-.--"'...- _ l
.1l

HOW MANY STEPS DO YOU WANT? 45

Let's keep this process up to understand what is happening. Use
*SPIRAL again, but this time let it draw an additional 45 steps. Now
the spiral is starting to form quite clearly. What do you think will
happen if we go an additional 90 steps? Do you think the turtle will
spiral itself right into the center of its arc? Try it and see if you get
this figure:

HOW MANY STEPS DO YOU WANT? 90
:RE d::Ji II) Y

154

Draw ing Curves

Wow! There is sure a lot of congestion in this spiral. Do you know
where the turtle is? Is it in the center of the blob? We can find out by
typing the following lines:

GR: PEN RED
GR: GO 0

We didn't actually move (the command GO 0 doesn't take us any-
where), but we did succeed in getting the turtle to show us where it
is. Do you see the red dot inside the blob? That is the present location
of the turtle.

Before typing anything else, let's try to figure out how the turtle got
where it is and what will happen when we continue.

First, we know that when we started, the turtle was pointing
straight up. As we kept going, the turtle turned by 1 degree, then by
2 degrees, and so on. By the time we reached 90 steps, the turtle was
turning by 90 degrees with each step. If we look at the first four
steps the turtle took, we see that the total turning-angle was 1 + 2
+ 3 + 4, which is only 10 degrees. This isn't much of a turn. Now
let's look at how much turning the turtle did during the four steps
starting at step 89. The turning that took place during these four
steps was 89 + 90 + 91 + 92, which is 362 degrees. In other words,
by the time we reached step 90, the turtle was turning more than one
complete revolution for every four steps. This is quite a change from
the way things started out.

As we kept turning and drawing, we found ourselves homing in on
an area that we see as a circular blob. What happens as we draw step
180? At this point the turtle is simply going back and forth, which
means that our spiral has pretty much stopped growing.

What do you suppose happens for steps larger than 180? Which are
accompanied by angles greater than 180 degrees. Can you guess
what will happen? Why don't you draw a picture of what you think
the turtle would do.

155

PICTURE THIS!

Now that you have done that, let's allow the turtle to keep going so
we can see what it really does. Since we have already changed the
pen to red, we will be able to see the new line no matter where it is
drawn. Type:

U: *SPIRAL

and enter 180 for the number of steps. Initially, we see the yellow
blob turn to red, and then the turtle traces its path back to the center
of the screen. Now, instead of yellow, we have a red spiral on the
screen.

HOW MANY STEPS DO YOU WANT? LBO

156

Drawing Curves

If you have been keeping track, you'll know that we now have taken
360 steps and, except for one major difference, have ended where we
started. Do you know what is different about the turtle now com-
pared to when it started out? Yes, it is holding a red pen instead of a
yellow one. It is also pointing down instead of up.

Now let's use *SPIRAL again to see what happens. This time enter
360 for the number of steps.

HOW MANY STEPS DO YOU WANT? 360

157

PICTURE THIS!

Our figure is now complete since we are back at the starting point
and facing straight up. You should test this by typing:

GR: PEN YELLOW
U: *SPIRAL

and entering 720 for the number of steps taken. Since 720 is the
same as 360 + 360, this should draw both arms of the spiral in
yellow.

By now you should be an expert at getting the turtle to draw curves.
In the next chapter we will bring together many of the things we
have learned so far, as well as introduce a few more tricks before
finishing.

158

12
the last
one

AS YOU MAY have noticed, we are just about finished with this book.
By this time you have acquired most of the skills you need for draw-
ing all sorts of designs and pictures with PILOT. We will draw one
last picture in this chapter as a celebration of our progress through
this book-after all, you have much to be proud of!

First we will learn about another graphics command.

The turtle has its FILL ...
So far the pictures we have drawn were all made with open figures.
When we drew a square, we drew the outline of a square. Sometimes
it is more pleasing to draw objects that are filled with color than it is
to draw outlines.

159

PICTURE THIS!

One way of filling an object with color is to move to the bottom left
edge of the object and draw a line to the right until we hit a bound-
ary. We repeat this process with the lines above until we reach the
top of the object that we're filling with color. We could build a module
to do this for us, but we don't have to. The turtle has two commands
that do this job for us. Let's see how they work.

First you should enter the graphics mode making sure the screen is
clear and the turtle is pointing straight up. Next type:

GR: 4(DRAW 30; TURN 90)

This (as you most certainly have noticed by now) will draw a square
on the screen. At this time the turtle is in its home location and
pointing straight up. Now type the following instruction:

GR: FILL 30

Wow! The last command completely filled in our yellow square!

GR: 4(DRAW 30: TURN 30)
GR: F-XILL ;XO .

The FILL command (as well as its counterpart, FILLTO) is an easy
way to fill in open figures. There are a few simple properties of FILL
that you need to know in order to use it effectively. First, FILL al-

160

The Last One

ways works from left to right. When a FILL command is given, a
number of horizontal lines are drawn to the right from each point
along the turtle's path. Each horizontal line runs until it bumps into
another line or the right edge of the screen. If it hits the right edge
of the screen, it reappears at the left edge and keeps moving to the
right until it bumps into a line or itself.

Let's tryout some more uses of FILL to get a better idea of how it
works. Type:

GR: GOTO 0,0; CLEAR
GR: 4(DRAW 40; TURN 90)

We now have a yellow square on the screen. Next we will fill in this
square along one diagonal. Type:

GR: TURN 45

to turn the turtle toward the direction of the diagonal. Next, let's fill
in the square from its lower left corner (where we are starting) to its
upper right corner (where we are ending). How far do you think we
should go to get from the bottom left corner to the upper right cor-
ner? Should we go 40 units? More? Let's find out by trying! Enter the
following:

GR: FILL 40

GR 40; TURN 90)
Gi--.r TURH .45,
GP FJCLI.... ,40

161

PICTURE THIS!

Well, that got us going in the correct direction, but it didn't take us
far enough, did it? Next, enter:

GR: FILL 10

This brings us closer, but not quite close enough. If we type:

GR: FILL 5

we see that the job is finally complete.

r-'--'
f
I•

F][LL 40
Gn FTLR. .a_o
GP U'TLiL

We just discovered that to fill a diagonal in a square with 40 units on
a side, we must FILL for a distance of 40+ 10+5, or 55 units. Ac-
tually, if you are very observant, you might notice that we could go
one more unit so the turtle sits on top of the upper right corner.
However, if we used the FILL command to move us to that position,

162

The Last One

we would have a most unpleasant surprise. FILL would look to the
right of the turtle's position and start drawing. Since there is no
boundary to the right of this point, we would get a horizontal line
running completely across the screen. (You should type GR: FILL 1
if you want to see this.)

Q: What is so special about the number 55 (or 56)? How can I
tell in advance how far I need to go without using trial-and-
error methods?

A: The answer to this question is buried in something called the
Pythagorean theorem. Basically, it says that in any triangle
formed with one gO-degree angle, the square of the length of
the side opposite this angle is equal to the sum of the squares
of the other two sides. In our case, the triangle we formed
had two equal sides. This means that the square of the long
side is twice as long as the square of either of the shorter
sides. Since our short side is 40 units long, the square of our
long side should be exactly 2 x 40 x 40, which is 3200. It so
happens that there is no whole number that, when multiplied
by itself, gives 3200. However, 56 x 56 is equal to 3136,
which is as close as we can get. Because of the special way
that FILL works, we need to stop one position short of this.
As you see, it worked out perfectly.

Now that we have filled in half of the square along the diagonal, we
should fill in the other half with another color. Before doing this,
let's think for a minute. Where is the turtle? In which direction is it
pointing? If you know that the turtle is in the upper right corner of
the square and that it is pointing along the diagonal, then you are to
be congratulated. All we need to do now is move the turtle back to its
home, get it to point straight up, and instruct it to FILL the square
to the top. To do this just type:

GR: PEN BLUE
GR: GOTO 0,0; TURNTO 0
GR: FILL 40

163

PICTURE THIS!

Now we have a fancy, filled square on the screen!

GR PEN BLUE.
GR GOTO 0,0; TURHTO 0
GR Fl:LL 40

As you can see, FILL is a very useful command.

However, FILL does have some limitations. Let's draw a big square.
Type:

GR: QUIT
NEW
AUTO

and then type:

*FIRSTSQUARE
GR: GOTO - 15, - 15; TURNTO 0; PEN YELLOW; CLEAR
GR: 4(DRAW 60; TURN 90)
GR: FILL 60
E:

164

The Last One

Press RETURN to leave the AUTO mode and type:

U: *FIRSTSQUARE

This gives us a solid, yellow square on the screen. Next, let's draw a
solid, blue square in the middle of this square. First type:

GR: GOTO - 10, - 10; PEN BLUE
GR: 4(DRAW 50; TURN 90)

So far there have been no surprises, right? Next enter:

GR: FILL 50

GOTO -10. -10; PEN BLUE
4(DRAH 50; TURN
F.I:LL ':50

Hmmm-nothing seemed to happen! The reason for this is that FILL
works only when the open space has the black background color. So,
if we are going to have a solid square inside a second solid square,
we will have to make it ourselves.

165

PICTURE THIS!

To do this, type:

GR: QUIT
REN 1000
AUTO

and then enter:

*SOLIDSQUARE

C: #B=O

*KEEPGOING
GR: TURNTO 90; DRAW #A; DRAW-#A

C: #B=#B+ 1

J (#B>#A) : *EXIT

GR: TURNTO 0; DRAW 1

J: *KEEPGOING
*EXIT
E:

Now let's use this module. Type:

GR: GOTO - 10, - 10

and

C: #A=50

[this module
draws a solid
square whose
length is stored
in the variable #A
[set counter to
zero

[draw out and
back
[increase
counter by one
[stop if square is
done
[move up one
line
[keep going

to set the size of our solid square, and then type:

U: *SOLIDSQUARE
166

That worked perfectly didn't it!

The Last One

U:"*SOLTOSnUtlIRE

Next, let's use this module again to draw a smaller red square. Type:

GR:GOTO -5,-5; PEN RED
C: #A=40
U: *SOLIDSQUARE

167

PICTURE THIS!

Do you see what we are doing with each square? We are moving the
turtle by 5 units along each axis and then drawing a square that is
smaller than the previous one by 10 units.

Using this method, draw three more solid squares with the colors
yellow, blue, and red. This will give you a square bull's-eye.

168

U: *SOLID50UAr..tE

RE':ADV

Each time you constructed a new square it covered up the previous
colors. The Atari computer system builds color pictures from the
back to the front and has no prebuilt mechanism for keeping track
of which color was under the one you just used. This means that you
must be careful when building your pictures. Colors are always laid
on top of other colors; they are never mixed with or inserted behind
existing colors. This is a useful thing to remember.

A flower for our turtle . . .
Since we are going to make a pretty picture, we ought to learn how
to draw a flower. In fact, if we had a flower-drawing module, we
could draw many flowers.

The Last One

The flower we will draw first has three parts to it: a stem, a leaf, and
the blossom. In some ways drawing a flower will be a lot like drawing
a person (remember back that far?). We will first have to solve how to
build the modules we need.

Let's start with a leaf. One way of drawing a leaf's shape is to use two
arcs. Do you remember how to draw an arc? For a small leaf-sized
arc, try this. Be sure to exit from the graphics screen and then type:

NEW
AUTO

Next enter:

*ARC
GR: 10(DRAW 1; TURN 9)
E:

Press RETURN again to leave the AUTO mode and type:

GR: CLEAR
U: *ARC

1'·--

READV

This draws a nice, little arc on the screen. Now we have to draw an-
other arc to finish the figure of the leaf. We already know (from our
bird-drawing experience) that we must turn the turtle before using 169

PICTURE THIS!

*ARC again, or we will get simply a semicircle. So how much should
we turn to create a closed leaf? Do you remember any turtle rule that
might help us? Does the fact that a leaf is a closed figure help?

Well, let's think about this for a minute. There is a turtle rule that
says a closed figure is made by turning 360 degrees on our way
around the figure. To draw our arc, we turned 9 degrees for each of
the 10 steps we took. This gives us a 90-degree arc. If we use *ARC
again, we will account for a total of 180 degrees. This leaves us with
180 degrees left to turn. Since we have to get back to exactly where
we started, we should turn the turtle by 90 degrees at the end of each
use of the *ARC module.

Let's see if this works. Type:

GR: TURN 90
U: *ARC
GR: TURN 90

READY
GR: TURN "90

Wow! We just used an old rule to make something new! Now let's use
this information to make the *LEAF module. Type:

GR: QUIT
170 REN1000

AUTO

The Last One

and enter:

*LEAF
U: *ARC
GR: TURN 90
U: *ARC
GR: TURN 90
E:

Exit from the AUTO mode, and then use this new module to make
sure it works properly.

Next, let's work on the flower itself. A long time back, we made a
module called *WINDMILL that drew some nice, flowerlike patterns
for us. We can use the same technique to draw the blossom of our
flower. First, we define the petal shape, and then we repeat this shape
eight times, by rotating the turtle one-eighth of a circle each time. To
do this, type:

GR: QUIT
REN 1000
AUTO

and enter:

*PETAL
GR: 6(DRAW 5; TURN 60) [this gives us hexagonal petals
E:
*BLOSSOM
C: #A=O
*LOCALJUMP
C: #A=#A+l
U: *PETAL
GR: TURN 360/8
J (#A<8) : *LOCALJUMP
E:

Exit from the AUTO mode and type:

GR: CLEAR
U: *BLOSSOM

171

PICTURE THIS!

Ir-i. ._",
["1"" u:,r'=:'.:.1._

U: *BLOSSO.'1

PE (4l i[)o Y

Now that we have a blossom and a leaf, we need to draw a stem before
we will have all the parts needed to draw a flower. I think our stem
should be a gentle are, perhaps arching to the right a little bit. Type:

GR: QUIT
REN 1000
AUTO

and then enter:

*STEM
GR: 10(DRAW 1; TURN 1)
E:

GR: CLEAR
U: *STEM

Leave the AUTO mode. Now we can experiment with our flower
parts. Type:

i

172
U: *STEM

The Last One

This, as you see, gave us a portion of the flower's stem. Now let's add
a leaf. Type:

U: *LEAF

U: *LEtliF
REAOY

So far, so good. Now that we have a leaf on the stem, we should make
the stem longer. To do this type:

U: *STEM

U: *5TEM
RE AD ...'

173

PICTURE THIS!

Hmmm, I don't think this will be quite long enough. Let's make the
stem longer. Type:

U: *STEM

•.l
J,.-7J:-••
I

U: *5TEM
READ V

Now that is much better. Let's finish our flower with the blossom.
Type:

U: *BLOSSOM

?I:;-••••
I. "II

•-t..-.?
I

U: *BL0550M

174

The Last One

At last we have a complete flower on the screen. There is real merit
in making a complex picture from smaller parts. We have the free-
dom to move parts around, to use them several times (as we did with
the stem), and generally to check everything out before making the
final module.

To make our final flower module, type:

GR: QUIT
REN 1000
AUTO

and enter:

*FLOWER
GR: PEN YELLOW
U: *STEM
U: *LEAF
U: *STEM
U: *STEM
GR: PEN RED [for a red blossom
U: *BLOSSOM
E:

Leave the AUTO mode and type:

GR: CLEAR
U: *FLOWER

U: *FLOWER
READ

175

PICTURE THIS!

Ta Daa! We have finished our flower!

We could leave our flower hanging in thin air, or we could plant it in
the ground or put it in a vase. I think we should put our flower in a
pretty, blue vase. Of course, you can (and should!) design your own
vase for your flower. I am just going to show you a vase I like so we
can finish our picture.

The vase I am going to draw uses semicircles (l80-degree arcs). We
will first draw the right side, then the bottom, and then the left side,
filling the vase with color as we go. Ready? Type:

GR: QUIT
REN 1000
AUTO

and enter:

*VASE
GR: PEN BLUE; TURNTO - 90
GR: 10(DRAW 1; TURN -18)
GR: 30(DRAW 1; TURN 6)
GR: DRAW 10
GR: 30(FILL 1; TURN 6)
GR: 10(FILL 1; TURN -18)
E:

[upper lip of vase
[lower part of vase
[bottom of vase
[lower part draw and fill
[upper lip draw and fill

Exit from the AUTO mode, and then try using *VASE to see how it
works.

Now that we have a pretty, blue vase on the screen, let's put our
flower in it to finish our picture. Let's first figure out where the turtle
is. If you have been keeping track of such things, you probably know
that the turtle is at the upper left lip of the vase and is pointing to

176

The Last One

"I I"

U: *VASE
READV

the left. We should move the turtle to the middle of the vase and get
it to point straight up before drawing our flower. Since the bottom of
the vase is 10 units wide, we should back up 5 units in order to get
to the middle. The following lines should give us what we want:

GR: GO - 5; TURNTO 0
U: *FLOWER

3:;···J • ,

-e,:10 .
.., Ir:
"'it..

illllll"IIII'III·IIIIII[III!
U: *F L 0 JI.o.IE R

IRE A i'> '1"

177

PICTURE THIS!

And now, with this flower as our gift to each other, it gives me great
pleasure to leave you to your own discoveries in the exciting world of
turtle graphics!

Q: Does this mean that we are all done learning about PILOT:
that we are done with our studies?

A: A woman once went into a courtyard where she happened to
meet a wise old man. "Oh," she said, "I am so happy! My son
just wrote me a letter from school to tell me that he has fin-
ished his studies!" The wise man said, "Well, I wouldn't
worry about it too much, I'm sure life will find more for him
to study soon."

178

APPENDIX

summary
of modules
used in
this book

Modules Used in Chapter Six:
This module draws a square.

*SQUARE
GR: 4(DRAW 25; TURN 90)
E:

This module draws a pentagon.

*PENTAGON
GR: 5(DRAW 25; TURN 72)
E:

This module draws stick figure of a person.

*PERSON
GR: 4(DRAW 7; TURN 90)
GR: GO 5; TURN 90; GO 2; GO 3
GR: TURN 90; GO 3; TURN 90; DRAW 3
GR: GO -1; TURN -90; GO 2
GR: DRAW 10
GR: TURN 45; DRAW 8
GR: GO -8; TURN -90; DRAW 8; GO -8
GR: TURN 225; GO 7
GR: TURN 90; GO 7; TURN 180; DRAW 14
E:

179

PICTURE THIS!

Modules Used in Chapter Seven:
This module draws a picture of a star.

*STAR
GR: TURN 90
GR: 5(DRAW 25; TURN 144)
GR: TURN -90
E:

This module also draws a picture of a star. Do you remember why?

*PICTURE
U: *STAR
E:

This module uses *PONG. Remember the trouble we had?

*PING
GR: PEN YELLOW
GR: 3(DRAW 10; TURN 120)
GR: TURN 90; GO 15; TURN - 90
U: *PONG
E:

This module uses *PING.

*PONG
GR: PEN RED
GR: 3 (DRAW 10; TURN 120)
GR: TURN 90; GO 15; TURN -90
U: *PING
E:

Modules Used in Chapter Eight:
This module draws a star.

*STAR
GR: 5(DRAW 25; TURN 144)
E:

This module draws a pattern with five stars.

*COUNTER
C: #A=O
*ADD1

180 C: #A=#A+1

Appendix

U: *8TAR
GR: TURN 72
J (#A<5) : *ADD1
E:

This module draws patterns out of eight copies of *PICTURE.

*WINDMILL
GR: GOTO 0,10; CLEAR
C: #A=O
*JUMPHERE
C: #A=#A+ 1
U: *PICTURE
GR: TURN 360/8
J (#A<8) : *JUMPHERE
E:

This is the *PICTURE module, which uses *8TAR.

*PICTURE
U: *8TAR
E:

This is a *8QUARE module to use in place of *8TAR in the *PICTURE MODULE.

*8QUARE
GR: 4(DRAW 25; TURN 90)
E:

This is a *PENTAGON module to use in place of *8TAR in the *PICTURE module.

*PENTAGON
GR: 5(DRAW 20; TURN 72)
E:

This is a *HEXAGON module to use in place of *8TAR in the *PICTURE module.

*HEXAGON
GR: 6(DRAW 15; TURN 60)
E:

Modules Used in Chapter Nine:
This module draws a polygon with #8 sides. Remember to set #8 to the value you
want with the C: command.

*POLYGON
GR: GOTO 0,0; TURNTO 0
GR: #8(DRAW 25; TURN 360/#8)
E: 181

PICTURE THIS!

This module draws polygons and stars with #S points. The variable #M is the angle
multiplier. Be sure to set both #S and #M with the C: command before using
*TRYSTAR.

*TRYSTAR
GR: GOTO 0,0; TURNTO 0; CLEAR
GR: #S(DRAW 25; TURN 360*#M/#S)
E:

This module draws polygons with any number of sides. When the module needs a
value for #S, it asks you to type one in on the keyboard.

*POLYGON
T: HOW MANY SIDES DO YOU WANT?
A:#S
GR: GOTO 0,0; TURNTO 0; CLEAR
GR: #S(DRAW 25; TURN 360/#S)
J: *POLYGON
E:

Modules Used in Chapter Ten:
This module prints the location of the turtle on the screen.

*WHERE
T:
T: THE HORIZONTAL LOCATION IS %X
T: THE VERTICAL LOCATION IS %Y '"
E:

This module draws a square with the length of a side given by the value stored in
#A.

*SQUARE
GR: 4(DRAW #A; TURN 90)
E:

This module uses the previous module to draw a square of any size.

*TELLSQUARE
T: HOW BIG A SQUARE DO YOU WANT? '"
A:#A
U: *SQUARE
E:

182

Appendix

This module draws a solid square that grows on the screen.

*GROWSQUARE
C: #A=O
*JUMPHERE
U: *SQUARE
C: #A=#A+l
J (#A<31) : *JUMPHERE
E:

This module draws a growing square outline in which each previous square is
erased from the screen before drawing the next square.

*GROW
C: #A=O
*HERE
GR: PEN ERASE
U: *SQUARE
C:#A=#A+l
GR: PEN YELLOW
U: *SQUARE
J (#A<31) : *HERE
E:

This module draws a square spiral.

*SQUIRAL
GR: CLEAR; GOTO 0,0; TURNTO 0
C: #A=O
*DRAWLINE
GR: DRAW #A; TURN 90
C:#A=#A+l
J (O/OY<48) : *DRAWLINE
E:

This module draws a squiral with any angle.

*SQUIRAL
GR: CLEAR; GOTO 0,0; TURNTO 0
C: #A=O
T: WHAT ANGLE WOULD YOU LIKE? '"
A:#B
*DRAWLINE
GR: DRAW #A; TURN # B
C:#A=#A+l
J (O/OY<48) : *DRAWLINE
E:

183

PICTURE THIS!

Modules Used in Chapter Eleven:
This module draws a big circle on the screen.

*BIGCIRCLE
GR: 360(DRAW 1; TURN 1)
E:

This module will draw different-sized circles by changing the turning-angle
(stored in #A).

*DRAWCIRCLE
T: HOW MUCH WOULD YOU LIKE TO TURN? '"
A: #A
GR: GOTO 0,-30; TURNTO -90
U: *CIRCLE
E:

The previous interactive module uses another module called *CIRCLE.

*CIRCLE
C: #B = 360/#A
GR: #B(DRAW 1; TURN #A)
E:

This module draws circles for which you choose both the angle increment and the
step size.

T: HOW MUCH WOULD YOU LIKE TO TURN? '"
A: #A
GR: GOTO 0, - 30; TlJRNTO - 90
T: WHAT STEP SIZE WOULD YOU LIKE? '"
A:#S
GR: GOTO 0,-30; TURNTO -90
U: *CIRCLE
E:
*CIRCLE
C: #B = 360/#A
GR: #B(DRAW #S; TURN #A)
E:

This module draws an arc on the screen.

*ARC
T: HOW BIG AN ARC DO YOU WANT? '"
A: #A
C: #A=#A/2
GR: #A(DRAW 1; TURN 2)
E:

184

Appendix

This module draws a bird's wing.

*WING
GR: 30(DRAW 1; TURN 3)
E:

This module erases a wing if the pen is set to ERASE first.

*ANTIWING
GR: 30(TURN -3; DRAW 1)
E:

This module draws a picture of a flying bird. The value stored in #P determines the
length of the pause between "flaps."

*FLYBIRD
GR: PEN YELLOW
GR: TURNTO 45
U: *WING
GR: TURNTO 45
U: *WING
PA:#P
GR: PEN ERASE
GR: TURNTO 90; DRAW 1; DRAW - 1
GR: TURNTO -45
U: *ANTIWING
GR: TURNTO -45
U: *ANTIWING
GR: TURNTO 0; GO 20; TURNTO 90; GO 8
GR: PEN YELLOW
GR: TURNTO 90
U: *WING
GR: TURNTO 0
U: *WING
PA:#P
GR: PEN ERASE
GR: TURNTO 90; DRAW 1; DRAW -1
GR: TURNTO -90
U: *ANTIWING
GR: TURNTO 0
U: *ANTIWING
GR: TURNTO 0; GO - 20; TURNTO 90; GO - 8
E:

This module moves the bird on the screen.

*MOVE
GR: TURNTO 90; GO 10
E:

185

PICTURE THIS!

This module puts everything together to make an animated scene of a bird flying
across the screen.

*CARTOON
GR: GOTO - 70,0
C: #P=30
*FLY
U: *FLYBIRD
U: *MOVE
J (%X<60) : *FLY
E:

This module resets the turtle and all variables.

*RESET
GR: PEN YELLOW
GR: GOTO 0,0; TURNTO 0; CLEAR
VNEW:
E:

This module draws a spiral whose size is given by the number stored in #S.

*SPIRAL
T: HOW MANY STEPS DO YOU WANT? '"
A:#S
C: #C=O
*DRAWSPIRAL
GR: DRAW 3; TURN #A
C: #A=#A+1
C: #C=#C+ 1
J (#C<#S) : *DRAWSPIRAL
E:

Modules Used in Chapter Twelve:
This module draws a large, filled square.

*FIRSTSQUARE
GR: GOTO - 15, - 15; TURNTO 0; PEN YELLOW: CLEAR
GR: 4(DRAW 60; TURN 90)
GR: FILL 60
E:

This module draws a solid square whose length is stored in the variable #A.

*SOLIDSQUARE
C: #B=O

186

*KEEPGOING
GR: TURNTO 90; DRAW #A; DRAW -#A
C: #B=#B+1
J (#B>#A) : *EXIT
GR: TURNTO 0; DRAW 1
J: *KEEPGOING
*EXIT
E:

This module draws a small arc used in drawing a leaf.

*ARC
GR: lO(DRAW 1; TURN 9)
E:

This module draws a leaf.

*LEAF
U: *ARC
GR: TURN 90
U: *ARC
GR: TURN 90
E:

The next two modules draw a flower blossom.

*PETAL
GR: 6(DRAW 5; TURN 60)
E:
*BLOSSOM
C: #A=O
*LOCALJUMP
C:#A=#A+1
U: *PETAL
GR: TURN 360/8
J (#A<8) : *LOCALJUMP
E:

This module draws the stem.

*STEM
GR: 10(DRAW 1; 1)
E:

This module draws a complete flower.

*FLOWER
GR: PEN YELLOW
U: *STEM
U: *LEAF
U: *STEM
U: *STEM

Appendix

187

PICTURE THIS!

GR: PEN RED
U: *BLOSSOM
E:

This module draws a vase for the flower.

*VASE
GR: PEN BLUE; TURNTO - 90
GR: 10(DRAW 1; TURN -18)
GR: 30(DRAW 1; TURN 6)
GR: DRAW 10
GR: 30(FILL 1; TURN 6)
GR: 10(FILL 1; TURN -18)
E:

188

index
Absolute commands, 62. See also

Commands
Accept buffer, 106-107
Accept command (A:), 106-107
Angle multipliers, 94-104
*ANTIWING, 148-149, 185
*ARC, 141-144, 169-171, 184, 187
Arcs, 141-152
Asterisks (*)
as multiplication sign, 94
before dictionary entries, 50
before modules, 77

AUTO command, 47

BASIC, 9
*BIGCIRCLE, 132-133, 184
Binary digits, 36
*BLOSSOM, 171, 174-175
Bracket, left square, 61

Cartesian geometry, 3
*CARTOON, 151, 186
*CIRCLE, 134, 184
Circles, drawing, 131-140
CLEAR command, 15-16,27
Color
use with graphics, 159-178

Commands, 45-50
A: (Accept), 106-107
AUTO, 47
C: (Compute), 78
CLEAR, 15-16, 27
DRAW, 18,25-43,62
DRAWTO,62
ERASE, 22-23, 115-116, 148
FILL, 160-165

GO, 38, 62
GOTO, 27-31, 38, 62
GR: (Graphics), 15-18
J: (Jump), 80-81
LIST, 46-50
NEW, 47
PA (Pause), 150
QUIT, 46
REN: (Renumber), 48
TURN, 19, 36-38, 62
TURNTO, 31-34, 36-38, 62
T: (Type), 105-106
U: (Use), 51-52
VNEW,153

Compute command (C:), 78
Computer language, 10
Conditions, 77, 80-81
Coordinates, 3
*COUNTER, 80-83, 180-181
Counters, 77-82
Cursor, 14
Curves, 131-158

Debugging, 10,98
Decagon, 41
Deferred mode, 45-47, 49
Dictionary
entries, 45, 50
limits of, 71
to define modules, 44, 55, 67, 68

DRAW command, 18,25-43,62
*DRAWCIRCLE, 133-140, 184
DRAWTO command, 62

Equals sign
in replacement operations, 78

189

190

ERASE command, 22-23,115-116,
148

Factors, 103-104
Figures, closed, 170
FILL command, 160-165
*FIRSTSQUARE, 164-165, 186
*FLOWER, 175, 177, 187-188
Flowers, 168-176
*FLYBIRD, 149-150, 185

GO command, 38, 62
GOTO command, 27-31, 38, 62
GPRPP (general purpose regular

polygon plotter), 43, 89
Graphics command (GR:), 15-18
*GROW, 116, 183
*GROWSQUARE, 115, 183

Heptagons, 41, 99
*HEXAGON, 85-86,181
Hexagons, 40-41, 94-95, 140

Immediate mode, 45-47, 51
Interactive mode, 105

Jiffies, 150
Jump command (J:), 80-81

*KEEPGOING, 166, 187

Labels, 77, 84
*LEAF, 171, 173, 187
LIST command, 46-50
LOGO, 4

Mirror images, 102
Moire patterns, 112

Modules, 44-88, 179-188
*ANTIWING, 148-149, 185
*ARC, 141-144, 169-171, 184, 187
*BIGCIRCLE, 132-133, 184
*BLOSSOM, 171, 174-175
*CARTOON, 151, 186
*CIRCLE, 134, 184
*COUNTER, 80-83, 180-181
*DRAWCIRCLE, 133-140, 184
*FIRSTSQUARE, 164-165, 186
*FLOWER, 175, 177, 187-188
*FLYBIRD, 149-150, 185
*GROW, 116, 183
*GROWSQUARE, 115, 183
*HEXAGON, 85-86,181
*KEEPGOING, 166, 187
*LEAF, 171, 173, 187
*MOVE, 150-151, 185
*PENTAGON, 44, 53-54, 85-86,
179, 181

*PERSON, 55-66, 179
*PETAL, 171, 187
*PICTURE, 69-70,83, 180, 181
*PING, 71-73, 180
*POLYGON, 90-92, 107, 181, 182
*PONG, 71-73, 180
*RESET, 152-153, 186
*SOLIDSQUARE, 166-168, 186
*SPIRAL, 153-158, 186
*SQUARE, 51-52, 85-86, 113, 179,
181, 182

*SQUIRAL, 118-130, 183
*STAR, 68-70, 76,116-117,180
*STEM, 172-174, 187
*TELLSQUARE, 113-114, 182
*TRYSTAR,97-103,182
*VASE, 176-177, 188
*WHERE, 109-112, 182
*WINDMILL, 82-84, 181
*WING, 145-149, 185

Multiplying, 94

NEW command, 47
Nonagon,41,95-96

Numbers, size limitation of, 34-36
Numbers, whole, 43

Octagon, 41, 43, 140

Pause command (PA:), 150
*PENTAGON, 44, 53-54, 85-86,179,

181
Pentagons, 41, 93-94
Percent variables, 108-112
*PERSON, 55-66, 179
*PETAL, 171, 187
*PICTURE, 69-70, 83, 180, 181
PILOT, 3, 9-10
*PING, 71-73, 180
*POLYGON, 90-92, 107, 181, 182
Polygons, 39-43, 139. See also

GPRPP
*PONG, 71-73, 180
Prime numbers, 103-104
Programming, 9-10
Programs, see Modules
Pythagorean theorem, 163

QUIT command, 46

References, limits to, 73-4
Relative commands, 62. See also

Commands
Renumber command (REN), 48
Replacement operations, 78-79
*RESET, 152-153, 186

*SOLIDSQUARE, 166-168, 186
*SPIRAL, 153-158, 186

Spirals, 117-130, 152-158
*SQUARE, 51-52, 85-86, 113, 179,

181, 182
Squares, 20-21, 22-24, 41,43,

108-117
*SQUIRAL, 118-130, 183
Squirals, 117-130
Stack, 74
TOO DEEP, 72-74

*STAR,68-70, 76,116-117,180
*STEM, 172-174, 187

*TELLSQUARE, 113-114, 182
TOO DEEP, 72-74
Triangles, 41
*TRYSTAR, 97-103, 182
TURN command, 19, 36-38, 62
Turning-angles, 136-140
TURNTO command, 31-34, 36-38, 62
Type command (T:) 105-106

Use command (U:), 51-52

Variables, 75-107, 134
percent (%), 108-112

*VASE, 176-177, 188
VNEW command, 153

*WHERE, 109-112, 182
*WINDMILL, 82-84, 181
*WING, 145-149, 185

191

	Title
	Preface
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Appendix

