Computer Magic, Inc.

ATARI GAME OWHNEERS
You already own a powerful hobby computer.

Unleash the capabilities of the 6502 microprocessor inside
your Atari Video Game Console with the MagiCard module, the first
in a line of new generation plug-in modules and game cartridges
Erom Computer Magic. The MagiCard 1is ideal either f£or those
who“ve been leooking for an inexpensive way to learn about
computers and microprocessors, or for those who've been wanting
te program their own TV games. In less than an hour you can be
creating and running machine language programs that can make use
of all the video and audioc features of the Atari game.

The MagiCard is a printed eircuit board of somaewhat greater
complexity than thoese found inside game cartridges. It plugs
into the connector on top of your Atari Video Game Console Jjust
like an ordinary game cartridge. Unlike an ordinary game,
however, the MagiCard allows wyeou full access to the 6502
migroprogessor and wideo display generator inside vyour Game
Console.

A new technigue ([(patent applied for) allows the MagiCard to
contain both ROM (read-only memory) and RAM (random-access
memory). The 2K bytes of ROM contain a monikor program with such
features as fetch Erom memory, store to memoecy, display memory
contents on TV, display dizsassembled 6502 machine code on TV, run
a program, and <assetbe read and write., 1K bytes of RBAM allow
for storage of user programs and data. Your keyhoard controllers
provide communication with the monitor and allow for entry of
machine language programs. Monitor subroutines are also made
available to the user; allowing ecasy display of alphanumeric text
and memory-mapped graphies.

Included with the MagiCard is a l3t-page instruction manual
which can Serve as an introduction Lo machine language
programming for novices, and which contains details on the 65302
microprocessor, the MagiCard features, and the audio and video
capabilities of the Atari game. Also provided are plans for
building an inexpensive cassette interface. BAs a sSpecial bonus,
the manuval includes a sample program of the Game of Life, the
popular computer hobbyist game £first £featured in Scientific
American in Ogt. 1970. This version of Life features a 40x42
qrid and more than Z00 generations per minukte.

MagiCard plus manual are available for $49.88 (Illinois

residents add 6% 2tax, please). The manual can be purcchased
separately for 515.00 {deductable from the subseguent purchase of
one Magicard within 30 days). Order from:

Computer Magic, Inc.

PO Box 3383

Fox Valley Center
anrara, IL 60305

MagiCard

Instruction
Manual

MagiCard Inatruction Manual

Computer Magic, Ina.
Box 3383
Fox Valley Center

Aurora, Illinois
60505

312-357- F06Y

Copyright 1581 by Computer Magic Inec.

A Note to the Reader
Introduction
Chaptar 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter &
Chapter 7
Appendix A
Appendix B
Appendix €
Appendix D
Appendix E

Owner Information

Cantenta

Computer Fundamentals

Using Your MagiCard

Description of 6502 Microprocessor
MagiCard Keyboard Functions

MagiCard Memory Map

Detalla of Video Computer System Featurea
MagiCard Monitor Subroutines
Hexadecimal-Decimal Conversien Table
MagiCard Charactar Sat

6502 Instruction Summary

"Life"--a Zample FProgram

Conatruction and Connectling a Cassette Interface

A Note To The Reader

Congratulations on purchasing our MagiCard 6502 computer adapter
card for your videc gamel Firab some worda of caution: Never insert
or remove the MagiCard or any controller connectlons to your game
while 4t 41s turned on. Always handle the MagiCard by the edges and
touch the game console swliches with Yyour free hand Juat before
inserting 1t. Avoid touching the TV screen with your hands or any of
the game cables to further minimize the chance of damage due to atatie
electricity. Finally, be sure you know which side of the MagiCard 1s
"up" (see Chapter 2), and always inasart it right aide up. Moat af
theas pracautions are helpful with conventional cartridges as well,
and if you make a habit of them, your game should function for many
years.

Depending on your experiesncs with computera, and tha 6502 in
particular, you may be able to skip or skim the earlier chaptera of
this manual. Cosputar stores, bookatores and librarles often have a
few of the many books written about the B502. Don’t try to read them
all. Programming The 6502, third edition, by Rodnay Zaka i3 one of
several good onea. Some aspecta of the game system are elther too
detalled to describe properly in a manual of limited size, or so
obscure that we aren’t sure what to say. These unolear areas are
never vital to a basle understanding of the game and are generally
deducible from clues we give and from tests using the MagiCard itself.
Happy exploring!

In onea respect, programming the MagiCard - Video Computer
combination may be a nevw {and educatlonal) experlence even for some
experienced programmers. It 1a a "real-time™ system, with the 6502
program handling all aspecta of the diaplay, sound and controller

response on an inatant by instant basis. The diaplay, for example,

may be oreated line by line as the electron beam aweeps acrcaa tha TV
sereen, requirlng the program to reveave thia evaneacent tapeatbpry
every 1/60 second., Don't worry, the MagiCard makes it very easy to
ereate certain dispiaya, so you can start programming quickly. And it
is poasible, with effort, to program diasplaya and games rivaling thoae

available in cartpidgea. Welcome to the real (time) world.

Computer Magic 1981

Introduction

Inside your Atari Video Computer System 4a a powerful 6502
microprocessor, a "computer on a chip."™ With thls manual and your
MagiCard, you will learn to program this tiny computer and explore the
full capabllities of your Atari game.

Chapter 1 will introduce you to scme fundamental oconcepts about
computera, ineluding the fdeas of a program, memory, and tha
hexadecimal number system--the language you will use to speak to your
computer. If you are already familliar with these coneepta, you may
astart with Chapter 2.

Chapter 2 wWill show you how to get started with your MagiCard.
By working through a few simple examples,; you will learn how to write
programs for yowr computer, how to enter programs and data Lnto
memory, and how to run your programs, You will learn to produce
diaplays on your televialon screen and sounda through your televiaion
aspeaker.

The last five chapters in the manual provide a wvariety of
detailed information about the MegiCard and the Atarl Video Computer
System, Chapter 3 glves a detalled description of the 6502
miceropraocessor. Chapter 4 covers the use made by the MagiCard of msach
key on your keyboard controllera. The memory map for the MagiCard is
the subject of Chapter 5. Chapter 6 desaribes the detalled workings
of the Atari game featurea, Finally, Chapter 7 describes the MagiCard

monitor aubroutinea that are of potential use to you in your programs,

CHAPTER 1

Computer Fundamentals

All computers, from the amallest aingle-chip microprocessor to large
machines that fill uwp a room, have oertain featurea in common.
Computera, although faat, accurate, and powerful, are really rather
dumb. The only thing they ean do is to execute a serles of extremely
simple instructlions. Examplea of asuch instructiens are to add two
numbars together, to move & number [(rom one place to another, and to
check if ona number i3 larger than another.

Alas, all eomputers have three basic parts. These are

1. The central processor unit {or CPU). Thia i3 the brain of

the computer, the place where Lt interprets and executes the
inatructions, In your computer, the CPU 1a the B502

wieroprocessor inside of your Video Computer System.

Z¢. The memory. This is the place where Lhe computer stores
infeormation. This Lnformation can be either a program, which
ia a list of instructions for the computer to perform, or
data, which is a list of numbers for the program tc operate
on., In your computer, there ifa a amall amount of memory
inside of your Video Computer Syatem and substantlal

additional memory on your MagiCard.

3. Input-output devicea. These are the computer’s eyas, ears,

Computer Fundamentals PAGE 1=2

and mouth, the way it receives information (both programs and
data) from the outside world, and the way 1t tranamits its
answers to you. In your computer, your keyboard controllera
are the input device, and your televiaion screen and
television apeaker the output devices. If you build the
audlo cassette interlace, a cassette recorder can be used a3

both an output and input device for programs and data,

Any problem you wiah to asolve on a computer, whather it be

balanoing your checkbook, playing a game, or forecaating the weather

involves the same seriea of ateps:

2.

fou must write a program, a list of inatructions telling the

computer what to do.

Tou muat enter the program into the computer memory by using

an input device.

You must enter into the computer memory the data that the
program will operate on. (For example, consider balancing a
acheckbook. The program would be a list of instruotions
telling the computer to add depoaits and subtract checks from
your balance., The data would be a Llat of that month's

opening balanoe, daposits, and checks.)

You run the program. The ocomputer exacutes your program,
doing each Ainstruetion in order, and then dlsplays the
anaswers on Lta output deviece (provided you have 1included an

instruction in your program telling it te do so}.

Computer Fundamentala PAGE 1=3

Your MagiCard will enable you to follow these stepa to parform a
wide wvariety of tasks on your Video Computer System. Before golng on
to specifiec detalls of the use of your MagiCard, we must first discuss
a few more toplea about computers in general. In partieular, you will
need to understand the hexadecimal number syatem, which i3 Gthe
language you will use ko talk to your computer, You will nead to
underatand a little more about the structure of a computer so that you
will know what kinda of inatructions you can give it.

First conalder the hexadecimal (or hex) number aystem. In this
manual numbers are ln hex unleas written out or expreassly atated to be
in decimal. Hexadecimal is a number syatem based on 16, rather than
our uwsual decimal npumber aystem based on 10. In our normal aystem,
for example, the number 23 represents 2 tens plus 3 onea, or the
quantity twenty-three. In hex, on the other hand, the diglts 23

represent 2 sixteens and 3 ones, or the quantity thirty-Cive (s3ee

Figure 1).
Decimal Hexadecimal
tens ches aixteena onea
place place place place
quantity = 2x10 + 3Ix1 quantity = 2x16 + 3x1
= twenty-three = thirty=five
Filgure 1

Furthermore, a new way ia needed to represent the quantities ten

through fifteen with a single digit, and we choose to use the lettera

Ay B, C, D, E, and F for thia purposa, Thua, to count from ona to

Computer Fundamentala PAGE 1=0

twenty In decimal and hex would look like:

decimal: O 1 23 456789 1011 1213 14 15 16 17 18 19 20

hex: 0123456789 A B C D E F 101} 1213 14

Hex ia the lanpuage that your computer uses, You will need to be able
to pecognizs Chat AB is a number, and that the number that comea aftep
AB is AC, To find the decimal value of AB you can elther look it up

in the chart Lo Appendix A, or calculate it youraelf sa follows:

RB

PAT sixtesns + "B" opnes’

1]

10 aixteens + 11 ones

160 + 1

71

Now let’s look in more detail at what is inside a computer.
Firat, conaider the memory. You should think of the memory a3 an
ordared series of locations like the houses on a atreet. In each
logcation you can store elther lpatructions For the computer or data.
Moreover, agaln like the houses on a streect, each location in memory
nas an addreza. The addreas of the [irst leocation in memory i= zero,
and each subzequent location has an addresa one higher than the
previous logatlon. These addrasaes are hex numbers. For example, as
in Figure 2, the firat several locations in memory have addreasss 00,
0y, 02, 03, ete., while later on in memory there is a group of

locations with addreases A9, AR, AD, AC, etc.

Computer Fundamantals PAGE 1=5

Address Memory

0o

01

02

03

A9

Af

AR

AC

Figure 2

The addresa of a location of memory ia very important because LE is
the way that the computer finda the eorrect instruction to executa or
the right piece of data to use (just like you use the addresa of a
house to find the right house on & atrange abtreet),

Now you can understand the order in which the computer executeas
ita {instructions. It goea through the, memory and executesa the
inatructions in order {(like a salesman knncklng on the door of one
house after another on the streat)., For example, you might tell the
computer to start by executing the inatruction in memory locatlon AT.
It will then continue with the instruction at AS, then A5, AA, etc.
The computer will proceed along in this manner until Lt finda an
instruection telling it to stop, or a apacial kind of inatruection
(called a ™jump") telling it to Jump off and atart executing
instructions 4in sequence atarting at a new loecation. For exampla,

conaider the part of a program shown in Figure 3.

Computer Fundamentals PAGE 1=6

AT

AB

A9 JUMP TGO BC

BC

BD

BE STOP

Figure 3

If you atart the computer at addreass AT, it will execute in order the
instructions at A7, AB, A9 (which causes it to jump), BC, BED, and BE,
whera it will atop. In fact, one Ainstruetion can oocupy asvaral
locations in sequence. That does not complicata tha aimple axecution
of locations in order.

Finally; we discuss just what the varioua instructions tell the
computer to do. ({(You have already learned about two instructiona iIn
the above example: STOF and JUMP). To do thia you must know a little
bit about the central proceascr unit (CPU) of vour computar. Inaide
the CPU are asome special locations called "reglatera™. Data iz moved
from loecationa i4in memory into thess regiatars, whara ths data can be
manipulated. A "LOAD" instruction moves data from memory to a
register. A "3TORE"™ instruction moves data from a reglater to memory.
Other instructions operate on the data in a reglater; for example,
"ADD" instructlens add a number to the reglater and "3SUB" instructlons
subtract a number from the regiater. You ecan understand Gthis more
clearly by [followlng the state of memory and of a reglster after the
executlon of each Llmstruction of a simple program. The program (see

Figure 4) i3 designed te add the number stored in memory location C2

Computer Fundamentals PAGE 1=7

to a running total atored in loaction C1.

Memory Reglater
AS LOAD C1 00
AB ADD cz
AT STORE €1
€1 10
g2 5
Figure U

The initial eontents of the regiater is zéro and the fipst instruction
to be executed by the computer 13 contained in memory location AS
(LOAD C1). After executing the [irst inatruectlon (Figure S5a), the

contenta of location C1, namely the numbear 10, has been moved into the

register.
Reg. 10 Reg. 15 fieg. 15
| 10 c1 10 c 15
c2 5 c2 5 c2 5
{a) (b} (e)
Figure 5

The computer then executes the instruction at loecation A& (ADD C2),
which causes the contents of locatlon C2, the number 5, Lo be added
into the reglater, MNow the state of the computer i3 aaz shown in

Figure 5b. Finally, the computer executes the Instruction at location

Computer Fundamentals PAGE 1-8

kK7 (STORE C1), which coples the contents of the register back into
logation C1. The new atate of the computer 13 a3 shown in Figure 5¢,
With the aum stored back inte lesation C1. The computer will contlinue
executing Instructions with whatever inatruction {a in location A8,
The general Cfeatures Jjust 1llustrated are ocommon to all
computers. Each model of computer will have at most a alightly
different internal arrangement, with different kinds of registera and
a different set of instructlons. After you have underatood the
mzterial in this chapter, you are ready to go on to learn about the
specifiec instructions available in your computer, the 6502

microprocessor, and to learn how to use your MagiCard.

CHAPTER 2

USING YOUR MAGLCARD

2.1 PLUGGING IN AND TURNING ON

The {irat atep is to asaemble your HagiCard system, which 1is
little more difficult than plugging any game cartrldge into the game
console. With the On/Off awiteh off, insert your MagiCard into the
large slot ecentered 4in the cartridge part of the game conscle. You
Wwill need to stick the amall siiver of fiberglass board provided into
one of the small slots on either side of the larger slot to open the

door behind the large 3lot. Be asure the component alde of the

MagiCard--the aide with the plastic elsstreonie parts--is facing up.

It i3 a good idea to always handle your MagiCard by the aide edges.
Make sure it {3 firmly aeated in the alot. Next, plug in the two
keyboard controllers. (I you do not alr&;dr own a set, keyboard
controllers are available at moat stores selling Atarl cartridges.)

Slide the two controllera together, making sure the controller on the
left-hand side {3 plugged into the left-hand part of the game consale.
For your convenlence, two cardboard templates glving the functions of

the keys have been provided. If you wiah, you can place these over

the keya of the controllers.

Now, turn your game on. The letters cMx-2 ahould appear in the
middle of your TV screen, and there should be a amall square blinking
about once per aecond near the top. cMx-2 ldentifies the MagiCard (if

you buy other produsta f(rom us they will Lldentify themselvea

USING YOUR MAGICARD Page 2-2

differently)., The blinking square indicates the MagiCard is ready to
accept your commands. (I you do not sea this display, make sure your
game eonsole has lts power cord connected and plugged in, that 1t 1ia
attached to your TV aet, that the switch near the TV i3 in the game
poasltion, that your TY ia tuned to the proper channal, and that thes

MagiCard and keyboard controllers are firmly plugged in.)

How you are ready to atart learning the function of the wvardious
keys on the keyboard controllers. First, consider the 16 keys shown

in figure 6,

1 2 3 A B c
Y 5 & D E F
T 8 9
0
Figure &

used for the 16 hex digits. Try preasing some of theae keys one at a
time. {Don’t press any other keys yet.) As you preas them, you will
hear a beep and see the hex digits appear on the upper right of your
TV screen (ignore the number FOFQ which appears on the left--it has no
meaning vet). Practice entering various hex numbera. This 1{a the way
you will enter instructions and data into your computer. If you make

a mistake, just atart over again pressing the correct numbers. They

will replace the incorrsct ones; as you can observe on your TV.

USING YOUR MAGICARD Page 2-3

2.2 STORING NUMBERS IN MEMORY

Now that you know how to get hex numbers up on the TV sereen, you
are ready to learn how Lo sbtore aumbera in the computer’s memory. You
will firat have to tell the computer the address of the mpemory
logation you wish to atore a number into, and then tell it the number

you wish to astore. To do thls you use Lhe two new keyva shown in

Flgure 7,
X X e X X X
X X X X X X
X X X X b o X
X STORE X |ST. AD.
Flgure 7

the "Store Address"™ (5T. AD.) and "Store® keya. (The X'a in figure 7

represent keys you have already learned about.)

The sequence of ateps to load hex numbers (which can reprasent

either inatructions or data)} into the computer’s memory 18 as follows:

1. Type in the Y-digit hex number of the address you want to
store into. It appears at the upper right of the TV acreen.
(For example, type in F030.)

2. Preas the "Store Address" key. The only visible effact this
will have will be to change the number at the upper left of
the TV acreen from FOFO to 0000. More Almportantly, this
tells the computer that the number you just typed in; in this
caae FO30, i3 the address of a locatlon in memory inte which
you intend to store a number.

3. Type in the 2-digit hex number you wish to atore. For
axample, btype 55. The upper right of the TV should now read
3055 (The 30 i2 left over from the FO30 you typed in Step 1.
Only the 55 is impertant, because a aingle memory location is
only large enough to contaln two hex diglts. Only Gthe last
two digita count in these circumstancea, and so the 55 will
be stored and the 30 ignored).

4. Preas the "Store" key. This is what actually ecauses the
number 55 to be stored into memory location FO30. Thia
ahould cause two affecta on your TV ascreen: firat, FO030

should appear at the upper left as a reminder that you have

USING YOUR MAGICARD Page 2-4

Just stored Lnte that locatlion; and second, a pattern of &
dota should appear Just under FO30. The four dois appear
because the dats in memory location FO30 is used to generate
the pleture at one poaition on the TV acresen. Originally
thia location contained 00 and ao that area of the TY ascreen
waas blank; but whan you atored 55 into that loeatlon you
caused a pattern to appear on the TV. (In the last section
of thia chapter a more detalled diacusslon iz given on how to
draw whatever patterns you want on the TV acreen.)

For more practice storing Lnto memory repeat steps (1)=(4) using
different memory locations (try FOSA and FOBY instead of FO30) and
different data (try 33 and FF instead of 55). You should see
different patterns appear at dJdifferent places on your TV. In each
case, however, the addresa that you've stored into should appear at

the upper left of the TV.

Certaln memory locationa in your computer have special functiona.
For example, memory location 0008 sets the eolor of objects appearing
on your TV. A= an exercise; try atoring B85 intoc location 0008. (Thia
involves golng through Stepa {1)-(U), typing In 0008 at Step 1 and 85
at Step 3.) When you press the "Store® key, tha numbers on your TV
will change fron pink to blue! (A 1list of all these speclal locatlons

and their functicns is given 1n later chaptera ol this manual.}

Now you are ready lor aome exercises:
Exercise 1: Turn the numbers on the TV back to pink. (The pink color
corresponds to the number 55.)

Anawer: Store 55 into location 0008,

You might 1ike to experiment by storing different numbera into
loeation OO00B and seeing the different eolora your computer can
produce. Be careful, however. If you store 00 intoc location 0008 the
numbera will seem to diaappear, becauss they will be drawn in the same
oolor as the backgrnunpl To make them reappear you will have to atore

a non-zero number inte 0008, By the way, the color of the background

USING YOUR MAGICARD Page 2-5

la determined by the number atored 4into memory location 0009;

therefore, by atoring Into both 0008 and 0009 you ecan produce

arbitrary combinationa of colors.

Exerciae 2: Erase the pattern of dotas you created when you firat
stored numbers into memory.

Answer: Store 00 into FO30, FUSA, FOBY, and any other loecations you
atored a non-zero value into to clear those areas of the TV
acreen; or

Alternate answer: Fresa the "Game Resst™ awliteh on your game console.

This willl elear of the agreen, restore the original pink color,

and give you a freah atart.

Finally, there i3 one more thing you need tec know about atoring
nupbera into pemory which 13 especlally important when vou want to
store intoc several memory locations Iin a rowv {as you will certainly do
whenevar you enter programs into the computer). Each time you preas
the "Store" key, the computer adds one to the addreas 1t just stored
into and will automatically do the next atore there {unless you put In
a different addresa by preaszing the "Store Addresa" key). Thus, to
atore lnte a serles of conaecutlve memory 1éﬂatinna you need only do
Steps (1) and (2) above once, lor the flrst memory location in the
series. You then simply repeat 3Steps (3) and (4), typing in the
numbers and presaing the "Store" key, as many times as necesaary. The
numbera will be entersd into consecutive memory locatlona. Moreover,
If you want to enter the same number Into a sasplea of locationa you
only need to do Step (3) once. The computer will remember the number
¥ou want to atore, and each time you preas the ™Store™ key Lt wlll

astore this sams number in the next memory location.

USING YOUR MAGICARD Page 2-6

As an illustration of thia try the following exercise:

Type 1in FO30
Preaa "Store Addreaa”
Type in 55

Preas "Store". F030 appears at the upper left, and one set
of dots appeara. 5% has been stored into location F030.

Presa "Store" again. FO031 appeara at the upper left, and an
ldentical set of dota appears right under the firat sat. 55
has been atored into location FO31.

Typa in AA

Preas "Store®, AA {3 stored i1nto loecatlon FO032. FO032
appears at the upper left and a different pattern of dots
appears under the firat two aseta.

Continue pressing "Store"™. AA fa auccesaively stored Lnto
F033, FO3N, FO35, ete. When you have mastered this exercise,
you know all there La to know about storing numbers into
memory and are ready to learn how to [eteh numbera back from
memory .

USING YOUR MAGICARD

2.3 FETCHING NUMBERS FROM MEMORY

Fetching numbers from memory worka the same way aa

numbers to memory, using the two new keys ahown in Figure 8,

Page 2-T

atoring

X X X X X ¥

X X X X X X

X X X X X X

FETCH X X FET « AL} X X
Figure B

the "Fetch Addresa"™ and "Fetch" keys. The sequence of steps to feteh

a hex number {rom the computer’s memory and to display 1t ¢n the TV

screen ia aa followa:

1. Type in the U-digit hex number of the address ln memory you
want to fetch from. As usual, it appeara at the upper right

of the TY sereen. (For example, type ln FEQQ.)
2. Presa the "Fateh Addresa’ Key.

3. Preasa the "Fetch®™ kKey., This will cause the address
memory location ({(in the example FBOU) to appear at

of the
tha left

of the TV screen, and will cause the Gtwo hex diglts of

information (either data or program) contained ln that memory
location to be fetched and diaplaysd on the right side of the
TV acreen as the last two diglta. (Y¥n the example the right
aide of the TV reada 00083 0% is the contenta of location
FBOO. As whan you were storing numbera to memory, the firat
two digits of the diaplayed number are irrelevant.)

fou can examine & serles of memory locatlona Juat by repealting

Step (3). GEach time you press the "Fetch" key, you will see the

addresa on the left of the TV screen Lncerease by 1, and two new diglits

will ‘appmar on the right of the TV indicating the vontents of that

memory locaticon.

Exercise 3: Sters 00, 01, 02, ..., OF 4into the successive memory

logations F300, F301, F302, ...F30F, and then fetch the numbers

back out of those memory locations to insure that you stored them

USING YOUR MAGICARD Page 2-8

correatly.
Answer:
1. Type in F300.
2. Preas "Store Addreas".
3. Type in 00.

4. Press "Store". You should now see F3I00 0000 at the top of
the TV.

5. Type In 01 and press "Store". You should see F301 0001,

6. Continue typing inm numbers and presaing "Store" until you get
to OF. You should see F30F OEOF on the TV.

T. Typz ln F300 and presa "Fetch Address®,

8. Fresa "Fetch". You should see FI00 0000, verifying that the
contenta of memory location F300 are 00.

9. Preas "Fetoh" agaln. You should see F301 0001, showing that
the contents of loecatlion F3071 are O].

10. Preas "Fetenh" agaln. You should see F302 0102, showing that
the contenta of locatlon F302 are 02.

1. Continue presaing "Fetch™, atepping through Gthe memory

addressea and verifying thelr contents until you get to FI0F.
The TV ahould diaplay F30F OEOF.

When you have mastered thla exerclae you willl know how to satore
hex numbera (which can be either inatructions or data) into the

computer 3 memory, and how Lo Fetch the numbers from memory to verify

that they were stored correctly. The laat thing you need to Know
before golng on to write programs for the computer i3 the arrangement

of the different areas of memory in your computer.

There are four diatinet areas of memory:

1} Addresses FEOO-FFFF: ROM (read-only memory)

Thisz area of memory can only be read (fetched from) and not
stored to; hence, the name read-only memory. 1Its contenta are
permanant-<you cannot change them, and more importantly, 4ts
contents remain the same even when you turn the powsr on and off.
This type of memory is used in computer ayatema for atorage of
programs and data that are intended te be permanent and nevar
change.

USING YOUR MAGICARD Page 2-9

In your MagiCard system thia area of memory contains a
program called the monltor. This memory residea in the MagiCard
on the large chip closest to the connector. The monitor program
was permanently atored in thia chip at our factory, and is
Inatantly avallable to you whenever you turn on your MaglCard
ayatam.

This monitor program i3 the program that atarta Lo run
automatiecally whenever you GLurn your ayatem on. You have been
using thia program all aleng aa you have been learning to feteh
gnd store. This monitor program reads the keyboard controllers
and executes the commands you glve 1it, as well as conatantly
updating the diaplay on the TV screen. You will learn about
other uselful monitor functlons shortly; In partlecular, ¥ou wlill
learn how to tall the monitor program to tranalfar conbrol Crom
itsell to a new program that you have written and atored in the
computer’s memory.

2} Addresses FOOO-F3FF: AAM (random-access memory)

This area of memory can be both fetched from and astored to.
It 13 the area you have been using above in the atore and fetch
exarciaea. It ia uased for temporary askorage of programa and
data. The contents of RAM are loat when you turn the power off.

This RAM reslides on your MagiCard on the two medium-alzed
¢hipa next to the ROM ehip. They tontaln a total of 1024 memory
locations, each of which 1ia large enough to contaln two
hexadecimal diglits. Thia amount of memory is often referred to
az 1K bytes of RAM: 1K meaning 1024 loecations; byte meaning a
location of memory blg enough to contain two hex digita; and RAM
meaning memory that ocan be both atored to and retohed from.

The varlous locatlons in the RAM memory can be used for
whatever purposea you want, depending on what program L3 running
at the time. For example, the monitor program uses locations
FOOO through FOD1 to save the data describing the TV display,
which i1a why the display changed when you stored numbera into
theae locatlions. Eventually, vyou will want Lo atore data Into
locations FOOO-F3FF from a program, Unllke other locations, this
requires a apecial method deacpibed later in thia chapter and in
Seation T.2.

3} Addresses 00BO-00FF: RAM

These addresses are for additional RAM located insaide your
Video Game Conaole. They are used in the same manner as the RAM
deacribed above, but without restrictions on use by a program.

I) Addresses 0000-003F: Video Display Generator

These addresses represent apeclal loecatlons in the wvideo
diaplay pgenerator chip inside your game conaole. Storing to
these leocations will change the display on your TV or produce
agunds. You have already uasd two of theae locatlions whan you
stored Iintoc locationa 0008 and 0009 to change the color of the
dlaplay. You will learn about a few of these locations as you
examine some aslmple programs presented later 4in thia ohapter.
More detalls are given in Chapter 6.

USING YOUR MAGICARD Page 2-10

2.4 CREATING AND RUNNING PROGRAMS

You are now ready to learn to créate programa Tor your oomputar,
store them in memory, and run them. In this section you will go
through the stepa necassary to run programa, uaing the techniques to
store and fetch you've already learned as well as the new keya "Shift"

and "Run" shown in Figure 9.

RUN X X X X X
X X X X X X
HEX INS X X X X
_pop | pgMe
) § UN X X SHIFT X
SHIFT
Figure §

We will also describe the "Hex Dump" and "Ina Dump” (Inatruction Dump)
keya, which make 1t easler to verily that a program has been stored

correctly 1ln memory.

Any program, from the simplast o the moat complex, must go
through the aame atagesa. First, the problem muat be clearly stated.
Next, the problem should be breken down into a series of amall pleces.
Finally, each of these pilecas 13 tranalated into a seriea of computer
inatructliona In computer machine language whieh can then be atored In

the computer’s memory. The program is then ready to run.

Az a first aimple example, we preasnt a program to show all the
different colors the video display generator can make on the TV. We
go through the atages in writing this program 1n some detall to
{llustrate how a program 13 written. Later, examples will be mora
abbreviated, so you should spend some time on this firat example Gto

insure you thoroughly understand 1t.

USING YOUR MAGICARD Page 2-11

Firat comes the atatsment of the problem. In our example, we
want to display all colors on the TV. However, this i3 not really a
precise enough statement of the problem. In general, it will be m@mora
useful to atate the problem in a way more related to the computer.
For this example, we need to recall just how to display a eclor on tha
TV: it 15 done by atoring a number into memary locatlon 0009. Thua,
atated more precisely, the programming problem is to store all

pesaible numbers in succesalon into location 0009.

Hext, we break the problem up intoe plecesa, at the same time
declding what reglaters or memory locatlons to uze Lln the program for
storage of data. In the axample, there iz only one place of data that

ve are ooncerned wWith: the color we are about to display. We will

use the X register of the computer to store this pumber, {The

regiatars as well as the Ainternal organization of the 6502

microprocesasor are described in Chapter 3.) Thua the ateps to solve
this aimple programming problem are:
A) Put 0 into the X reglster.

B)] Store the X register into location 0009 (to start with color
D}I

C) Add 1 to the X register (te go on to the next coler).

O) Jump back to step (B} (so that steps B and € will be repeatad
to go through all the colors. HRefer back to Chapter 1 if you
have forgotten what a jump is.)

Note carefully how the program worka. The firat time Step B 13
axacuted thera will be a value of zero in the X register, and thua
eolor Zero will be atored In location 0009 and diaplayed. The next
time Step B ias axecuted the X reglater will sontain 1 (because 1 was
added to the X reglater in 3Step C), and thus ocolor 1 will be
diaplayed. The next time around the X reglister will contaln 2
{because another 1 waa added to the ¥ reglater the second time Step C

was executed), and so coler 2 will be displayed. The program will

USING YOUR MAGICARD Page 2-12

atep through all the numbera, and therelfore all the colora. (In case
you are wondering what happena when the X reglater counts up to FF {or
255 1n decimal), the largeat number that it ean econtain, 1t will

return to zero and repeat the aequence of colors over again.)

Thia programming technique of executing the same Iinstructiona
over and over again for different values of data (in thla case Tor
different numbers in the X reglster) i3 called a loop. Such loops are
apn eaxtremely Aimportant programming tool. You will find them in
virtually all the example programs and will find them fto be very
useful in writing your own programa. Three essentlal ingredients that
are present ln any loop are shown in thelr simplest forma in Steps B,
Cy, and D of the example:

1. Do scmathing (hera Step B which diaplaya a aslor).

2. Change the value of the data (here Step € which changes the
value of the X registar).

3. 0o back to the start of the loop to do it again (here Step D
which jumps back to Step B to repeat the loop).

Moat loops alao have a fourth element which ia not present 1n this
almple example: a check Lo see whether the program has gone through
the loop enough times and should go on to scmething elaa. You will

age this element of loopa in future examples.

Finally, you are ready to translate each of the ateps in the
program into apecific machine language Iinatructlons to the computer.
In the almple example each step will ecorrespond bto one computar
inatruction. In more complicated examples, as you become more
proficlent in programming, =ach step will normally corpeapond to
several ocomputer instructions. The complete aet of instructions that
the 6502 computer can execute is given in Chapter 3. For now, Yyou
will 1learn the inatructions a few at a time as you go through tha

sample programs. In each case tha introduction of an instruction will

USING YOUR MAGICARD Page 2-13

inelude the abbreviation for the inatruction, the two digit hex code

which ias the actual machine language veraion of the lnstructlon, and a

brief description of what the Inatruction does. Agaln, (or more

details see Chapter 3.

LDX I A2 Load X reglater immediate: thia Inatructlion puta the
two=-diglit hex number following A2 in the program lnto the
X register.

5TX ar Store ¥ reglater: this instruction puta the contenta of
the ¥ raglster into the memory location whose H-diglt hex
addresa follows BE in the program.

INX E8 Increment X reglater: this inatructlon adda ' to the X
regiater.

JMP 4c Jumpi this instructlon jumpa to the memory location whosa
address follows 4C in the program and continues exsoutling
Instructlons at the new memory Locatlion.

Using these inatructions, the sample program is as follows (store the

program 4in the computer starting at memory location F100, in the RAM,

aa lndicated in the Mlrat column):

address lnatructlon machine code comment

F100 LbX I 00 AZ Q0 Put 00 into X reglster
Fio2 ST 0009 8E 09 00 Put X register into 0009
F105 INX Ed Add 1 to X register

F106 JMP Fl102 4 02 M Jump back to F102

A few pointa should be noted about thia program. The firat
instruction is atored at loecation FI100. The addresa of each
subsequent Llnstruction is determined by adding the length of the
pravious Inatruction to the addreasa of the previous inatruction. For
example, the firat Llnstruction conalata of the two bytea A2 and 00,
which oceoupy memory loeatlons F100 and F101. The second instructlion
goes in loeatlon F102. It is three bytea long (8E, 09, and 00) and so
the third Ainstruction will go in location F105, etec. ¥ou don't need
to know all af thesas addresass to store the program in meaory, sinoe
that i3 domne Juat by repeated presaing of the "Store" key which
autopatically stores Lnto auccesaive memory locations. You do need to

know the addresses of any inatructiona to which the program will jump

USING YOUR MAGICARD Page 2-14

30 that you can code the jump instructliona. In the example, you need
to know that the 5T inatructlon i3 at lecation F102 as you can have
the program jump ta that inatruction. Finally, note Lhat when memory
addreasea (0009 and F102 in the example) are tranalated into machlne
code, the order of the bytes la reversed. For example, Addreaa F102

in the JMP instruction ia entered aa 02 first, and then F1. This ia

Lhe way the 56502 expects to [lnd Lta adﬁraaaes“

You are now ready to store the program into memory and run {t.
Aa a reminder, the zequence of steps to atore the program is:
1. Type in F100
2. Presa "Store Addrasa
3. Type in A2, press "Storen
4. Type in succeasion 00,8E,09,00,E8,4C,02, and F1, pressing
“"Store® after esach two-digit hex numbar. If you have done

this corpectly, when ¥ou are done the TV display should read
F108 02F1 .

Bafore running the program, it ia a pgood 1dea to check GLhe
contents of memory to verify that the program was atored coerrectly.
You could do this by fetching bytes from memory one at a time aa
described above, but there are two easier ways to do thls by using the
"Hax Dump”™ and "Ins Dump” Weya. To usa the Hex Dump [eature, use the
followlng sequence:

1. Type In F100

2. Press "Fetch Addresa”

3. Preas the "Shift" key (0 on the right controller)

i, Presa the "Hex Dump" key { on the left controller). You will

sea an address (F100) together with two bytes of data (A2 00)
on the bottom line of the TV. The two bytea ara the contenta
af F100 and F101.

5. Press "Hex Dump" again. You will see & new line wilth an

address (F102) and Gthe contenta of the naxt two memory
locationa (BE 09).

JEING YOUR MAGICARD Page 2=15

6., Continue preasing "Hex Dump™ to examine the remaindear of the
program. When you have gone through the entire program, be
sure to preas "Unshift" (the 0 key on the lef't controller) to
return to normal mode. You wWlill kmow you are in normal mode
because the cursor, the 1ittle square in the top center of
the TV, will begin blinking again.

To usa the Instruction Dump feature,; uae the asame sequence but
presa the "Ins Dump™ Key (key 8 on the left controller) instead of tha
"Hex Dump" key. Now you will see the abbreviation for the actual
fnatruction, just as you coded the program above. (Agaln make aure to

press "Unghift" when you are [inished looking at the whole program.)

Finally, you are ready to run the program! The asequence of steps
1a as Tollomws:

1. Type in F100

2. Preaa "Store Address™ key

3. FPreaa "Shift" key

4. Press "Run" key {1 key on left controller). At thia point
the MagiCard glves you a ahance to stop the run sequance to
pravent you from lnadvertently running a program before you
are ready. The screen will go blank and wait for you to
preas either the "Game Resaet" or "Game Seleot™ awltochea on
the game console. Presalng the "Game Reset" aswiteh will
return you to the moniter, in case you were not really ready
ts pun the program. However, here you are ready to run, so

5. Presa the "Game Select" awiteh to begin execution of the
pProgram.

You should now ses & brilliant display of colors on your TV.

Congratulations, you have run your [lrat programi

What next? You'll probably get tired of watching the colora
falrly soon and will want Eo go on to bigger and betier programs, but
there are 3t111 a Few things vou can learn from this almple example.
For one Gthing, how can you atop the program and get back to the
monitor? The answer 1s, vou can't! The program does not contain any
inatruetiona to stop, and ao there ia no way for 1t to stop. It will

Just keep runnlng, showling the colors over and over again, untll Yyou

USING YOUR MAGICARD Fage 2-16

turn your computer off. In the (utura, 1t will be useful to put
inatructions inta your programs to allow them to atop, ao thia is the
firat modification to make to the sample program. As part of the
loop,; cheak the "Game Reset" awltch, and Lf it is pressed leave the
color diaplay program and go back to the monltor program. The

modified program looks like this:

F100 Lbx I 00 A2 00

Fig2 5TX 0009 BE 09 00

Fi05 INX EB

F106 LDA 0282 ADl 82 02 These four inatructions teat the
F109 AND T O 29 01 game reaet awitech and jump back to
F108 BYNE D Do o the monitor (via the BRK inatruection)
F10D BRE 0o if game reaet 1is pressed

F10E JHP Fiag2 bC 02 Fi

Try typlng this in and running 1t. (You'll have to turn the
computer off and then back on again %o get the original example
program to stop.) You will again see the diaplay of ecolors, but now,
if vou preas the "Game Reaet" awiteh while the program is running, the
program will jump back to the monitor program (I°11 explaln how thias
works 1in & moment). The monitor will as usual identify itsell with
eMx=2 in the middle of the TV and with the blinking cursor at the top.
To restart the program, Jjust key 4in F100, presa "Store Addresa”,
"Shift", "Run", and "Game Selact", and you should ses the dlaplay of
colors again. To return to the monitor again, preas "Game Reaat”.
You should be able to go back and forth between the <color diaplay

program and the monltor as many timea as you like.

Now think about what Lt i1a that this new verslon of the program
did. The new instructiona you used (again see Chapter 3 lor detailed

descriptions) are:

LDA AD Load Accumulator: The accumulator ia another one of the
regiaters in the 6502 CPU, 1iike the X register. This
instruction puts the contents of the memory location whose
addreas follows AD into the accumulator. In the exampla,
the addresa 1s 0282.

USING YOUR MAGICARD Page 2-1T7

AND I 29 And Immediate: This lnatruction takes the logical and of
the Aimmediate Dbyte with the aceumulator and puts the
reault back Iin the asccumulator. The immediate byte Ls the
byte lollowing 29.

BNE PO Branch If not equal: Thia 1a the first example of a
sonditional {natruetlion: that 1a, an instruction that
does one of two different things depending on some
conditlion. In this caae, the conditlion ia whether or not
the laat inatruction produced a result egual to zero. Ir
it did, this lnstruction doea nothning and the program
sontinues with the next inatruction in sequence after Lthe
BHE instructian. ir the result of the previous
inatruction was not equal to zero, a branch occura. A
branch 1is3 like & jump, causing the program to jump off to
a location different than the one naxt Iin sequance.
Branchea differ f{rom Jumps in that they tell the program
how far to jump rather than where to Jump, as JMP
inatructiona do. In tha axample, the byte after DO in the
program ia 01, meaning that Irf the condition for the
branch 43 satiafied (here if there wWas a not zero result
from the last instructlion), it jumps 01 bytes; that 1is,
it Jjumps past the BRK instruction and executes the JMP
Fi02 inatruction inatead. To aummarize:

if the last result was; thens and next ia:
equal no branch BRK
not equal branch JMP F102

BRE an Break: Thia inatruction causes the program to atop
wvhatevepr it ia dolng and automatically Jump to a
predetermined locatlon. In your MagiCard syatem thia
location 13 the monitor program. Thus; executlng a break
inatruction i3 a qulek and saay way of getting back to the
monitor.

Now you can see how thls new program works. The LDA 0282
instruction puta the contentas of memory locatlion 0282 into the
accumulator., Thia 1s a special loecation in the input/output aection
of your computer (see Chapter 6 [or 3 detailed explanation) which
contalns the values for the varlous awiteches on the game console. The
PAND I 01" inatruction asalects the firat bit only (which correaponds
to the "Game Reset" switch) for teating. (If you don't know what a
bit i3, see below.) The BNE instruction then does different things
depending on whether or not you preas the "Game Reset" awitch. I you
do not preasa the awltch, you will get a not equal to zero result lrom

the AND inatructien. Thua the program will take the branch, akip the

BRX 4inatruction, and continue to execute the color display program.

USING YOUR MAGICARD Page 2-18

0n the other hand, if you have pressed the swilich, you will get an
equal to =zero result from Gthe AND. The program will not take the
branch and thus will execute the BRK instruction and return to the
monitor. (By the way, you can check the position of the other
awitehea in the same manner by uaing "AND I 02" for the "Game Select?
switch, ™AND I 80" rfor the "Right DAfficulty™ switch, "AND I 40" for
the "Left Difflculty" switeh, and "AND I 08" for the "TV Type" awlteh.
In all cases you get a not equal to zero result from the AND Aif the

switeh is up and an eqgual to zero reault if the awltch ia down.)

Such conditional branches as uvsed in this example are another
extremely important progranming teol. They provide the way a program
can make declsiona and alter its actions, based either on an external
event like the setting of a awiteh or on the rasult of an internal
computatlion. For example, conditlonal branches are the normal way for
loopa to oheck on whether or not they should be exacuted again. You
will smee conditional branchea used repeatedly lo the sample programs

in the naxt section.

Finally, a note about bita and bytes. As you probably know,
computers do not actually use hexadecimal numbers, but rather binary
(or base-2) numbers, where the only digits are zero and one. This ia
a particularly convenient number aystem for computers becausa zero and
one can correapond to the "off" and "on®™ states of an elesctronic
cirouit. All information in & computer 13 nothing more than a long
atring of "ons" and "offs", ones and zercs. Hexadecimal 13 a wuselul
shorthand [or programmera because of the close correspondance between
hex and blnary numbers, as can be seen from the lollowlng chart of the

binary (and decimal) squivalents of the hax digits:

USING YOUR MAGICARD Page 2-19

decimal hex binary

------- o -

0 0 Qoo
1 1 Q001
2 Z Qo
3 3 oon
Hl Y 0100
5 5 a1
6 & arn
T T a1
a8 B 1000
9 L 1007
10 A 1010
11 iz 1011
12 C 1100
13 D 11
14 E 1110
15 F 111

You can aem that esach hex number corresponds to a unique
four-digit binary number. Each hex digit ia four binary digits, or
bita (bit being an abbreviation for binary digit). A byte, or two hex
digits, 4s 8 bita. Thus, =sach locatisn in the computer”a memory ia
actually a collection of 8 little electronic circults, each of which
can be individually turned on a;d off'y corresponding to 8 bits or 1
byte. As the § bits take on all possible values of on and off, they

produce all possible combinatliona of two hex digits (all the hex

nunbers from 00 to FF, or all the decimal numbers from zeroc to 255).

For example, the decimal number 171 ir hexadecimal i3 AB (see the
chart in Appendix A), and the binary equivalent of AB 1a 1010 1011
(aee chart above). Thus decimal 171, or hex AB, is represented in the

computer as a byte with bita 0,1;3,5, and T on (starting from zero and

counting from the right), and bits 2,4, and & off. Blts and bytas
will be referred to in Chapter 3 in the discussion of the 6502

picroprocessor.

USING YOUR MAGICARD Page 2-20

<.5 USING MONITOR SUBROUTINES

You are now ready to write more complex aample programa using
another Important programming tool, subroutines. A subroutine 1s
aloply a section of your program that you need to execute [alrly
often. Rather than repeat the szame lnstructlona over and over agaln
at different placea ln your program, you put the instructions In one
place only. At all the places whare you want te axecute that whola
set of instructicns, ¥ou put the single Ainatruction JSR (Jump to
Subroutine) with the addrassa &f the ona place where Ehe ast of
instructions begins. Thia will cause the program to jump off .and
execute bthe aet of instructions (the aubroutine). At the end of the
aubroutine a speclal instructlion, RIS (Return Crom Subroutine), forcea
a Jump baek to the Jinatruction following the JSR, where executlon

céntinuaa.

A number of espécially useful subroutines are contained in tha
monitor program and are avallable to the user. They ara fully
deacribed In Chapter 7. A few of them are used in the following
aample programa to illustrate diaplay of both text and graphics on the
TV acreen. A complete desoription of all the Ainatructions wused in
these programs will not be given here; aince [ull detaila on all 6502
instructions are given in Chapter 3. Instead full 1istings of the
programs will ©be given; ready to be keyed in and/or modified to ault
your oWwn purposea. Desariptiona of what the programs do, and commenta

on various parts of the programs where new things are introduced are

alao provided.

Example 1 displays the full MagiCard character set on your TV
screen uslng the monltor subroutines DOLN and DSPL. As axplained in
Appendlx B, each hex number from 00 to 3F representa a unique

character. This program diaplays all the sharacters by putting all

USING YOUR MAGICARD Page 2-21

these hex numbers into the diaplay area of memory (locations 98-41).
This {18 first done Ln the lodop starting at location LOOF, where the
numbers from 00 to 09 are atored into locatlions 98 to A1, Wote Lhe
use of the X register as an index reglater in the "STA X gan
inatruction, which atorea into a different memory loecatlon for each
value of the X register. As the X register takes on all values {from
00 to 09, these numbers are successively atored inteo 58, 99, 9A, e=te.
as the program goes through %the loop. The loop ands when the X
reglater reaches OA, and the "JSR DOLN" instructlon Jumpa Lo
subroutine DOLN which diaplays the first line of charactera. Locatlon
EF is then increased by one to polnt to the next line of the dlsplay,
and locatlons 48 through A1 each have 0A added to them (in the loop
atarting at location LOOP2, agaln using indexed addreasing moda), to
move on to the next set of ten charactera (Iin this case characters OA
through 13). This process continues until all 7 lines have displayed,
wharaupon the program Jumps to location DONE. Here Lt Jjust
gontinuously calls DSPL to continue ahowing the same display on the TV
until you hit the "Game Reset" awltch, which will return you to the
monitor. (You den't need to put code to check for the "Jame Reset®
awiteh into your program because this i3 automatically done by the

DSPL subroutine.)

Example 2 ia a modification of the first program which allows you
to type measages on the TV screen uaing the keyboard controllers.
Eeys 1-9 on the left controller repreaent lettera A-I; keya 1-3 on
the right controller represent J-=R: preasing key 0 on the right
gontroller puta you in shift mode, whereupon keys 171-9 on the left
controller represent 5-Z and blank. Key 0 on the left sontroller
takes you out of ahift mode again. This program again wuses DSPL to
put up the display and alsc to read the keyboard controllers, and uses

‘subroutine ONEC to put one character at a time onto the diaplay as you

USING YOUR MAGICARD Page 2-22

enter them on the keya. HNote the uae of ¢ertaln memory locationa to
save data durlng the ocourse of the program; location EQ containa the
1ine number af the character balng diaplayed, E1 sontaina the poaition
within the line,; and E2 ia a Clag remembering whether or not you are
ln shift mode. E2 contalns 0 when in unshift mode and 12 when In
ahiflt mode. Studying these two examples should enable you to write

your own programs bto display text on the TV screen.

Example 3 ahowa how to use the CALF subroutine in conjunction
with STPM and DSPL te produce graphie diaplaya. It ia a target
practice game using the leflt controller only. Key 4 moves your cannon
te the left, key 6 moves your cannon to the pight, and key O firea a
bullet at the moving targeta. Hote the use of subroutinea within the
main program (OFF to turn a paint off and ON to turh a poaint on), and
the use of the sound regilatera in the video diaplay generator to nake
nolses when a bullet {3 fired and when a hit ia made. Also note tha
extensive use of memory loeations to stere varlablea (locations
E0-EC), as explained in the comments In the program listing. You can
easlly modify this program to add multiple targeta, to keep acore at
the top of the screen using the text display routines, and to use both
eontrollers to allew for two different players, each having a ocannon

and competing lor high score.

Finally, Example U shows you how to run the TV display without
using monitor subroutinesa. It makes all the appropriate stores to
logations in the wvideo diaplay generator to aynchronize the TV
pleture. A program can make changes to the var;uua diaplay reglisters
of the dlaplay generator in the course of execution to change the
pieture being displayed. In the example thia is done in two places;
dupring LOOP3, the pattern is changed in locatlon OE and the right-aide
color ia changed in locatlon OT between lines of a aingle TV plotura;

and in the major loop of the program running from START to LOOP2, the

USING YOUR MAGICARD Page 2-23

left-alde color Ls changed in location 06 and the pattern ia changed
in location OF between Crames of the TV picture. You can easlly see
theae two types of changes as you watech the TV: the right-aide color,
lor example, changes each line of the display; while the left-slde
color only changea from one TV picture to the next. By making
modifications of this program, you will be able to make displays of
various typesa of objects that move around on the TV screen and begln

to duplicate the video effects of game cartridges.

USING YOUR MAGICARD Fage 2-24

Example 1: Display of Character Set

START LDA I 00 F100 A9 00 0 to accumulator
STA OOBF Bp BF 00 O to BF (line of display)
LDX I 00 A2 0O 0 to X reg. (character poaition)
LOOP TXA Fi07 8a tranafer X reg to acc.
STA X 98 95 98 atore ace. in diaplay area of mem.
INX EA inerement X reg.
CEX I 04 EO 04 compare X reg with OA (to see Lf
line dona)
BNE LOOP Lo F8 branch back to loop if not done
DISP J5R DOLN F1OF 20 CB FC Jump to display line subroutine
LDX O08F AE BF 00 put line # in ¥ reg
INX E8 add 1 to X reg
5TX OOBF BE BF 00 put new line # back in BF
CPX T 07 EC 07 check i all linea finished
BEQ DONME Fo 11 jump to done 4f all lines finished
LDX I 00 Az 00 0 to X (character position)
cLG 18 clear carry {for add instruction)
LOOF2 LDA 21X 98 F120 BS 48 get old character to agcumulator
ADC I OA 69 O add A to character to make new one
STA 2X 9B 95 94 atore new character in diaplay mem.
INX E8
CPX I 0a EO0 Oa check Af done with 1line
BNE LOOF2 Do FS branch back to leop2 if not done
JMP DISP he OF F1 jump to disp if done
DONHE JSKE DSPL F12E 20 6F FA Jump to dapl subroatine
JMP DONE 4 2E F1 . jump back to done to repeat

diaplay until game reset ia hit

USING YOUR MAGICARD Page 2-25

Example 2: Memo Pad

i

START (X ZE0 'O A2 0 Eothne

STX 2 E1 BE6 E1 0 o E1 (peaition in line)

S5TX 2 E2 85 E2 0 to E2 (shift Flag)
DISP JSR DSPL F108 20 BF FA Jump to dapl subr. to diaplay

a line and read keyboard controllera

LDa Z 83 AS 83 right keyboard byte to acc.

BPL RIGHT 10 44 branch %0 pight if key was hit

LDA Z 82 AS 82 left kaybsard byta to ace.

BMI DISP 30 F5 oranch back to diap if no key was hit
LEFT BHNE LCHAR F113 DO o7 branch Lo lehar if char key was hit
UNMSHET LDX I 00 F115 A2 00 unahift key was hit; 0 to X reg

2TX Z E2 BE g2 0 to E2

JMP DISF b 08 F1 Jump to diap
LCHAR CLC Ftic 18 char key was hit; clear carry

ADC E2 65 EZ add shift flag (0 or 12) to char

CMP I 1B €9 1B check Lf blank eharacter

BNE NWTBLNE Do o2 branch I not blank

LDk I 20 A9 20 put code or blank (20) in aco.

NTBLNK ST Z E3 F125 85 E3 ace to E3 {new character to EJ)
NEWCHR LDX Z EO F127 A6 EO Iine # to X reg

5TX 2 BF 86 8F line # to BF
LDX Z Ei Ab EV position in line to X reg
5TA % BE 86 8E poaltion Ln line to BE
LDA Z E3 AS E3 character to actcumulator
STA ZX 98 35 98 store character in right location in
memory [or one character display subr.
JSR ONEC 20 67 FB Jjump to one char subroutine
LDX Z E1 AG E1 posltion in line to X reg
INX E8 add 1 to X reg
5TX Z E1 a6 E1 new poailtlon to E7
CPX I 04 ED QA check LI at end of line
BNE DISP Do C9 branch back to disp Lf not end of line
LDX I Q0 A2 00 0 to x reg
S5TX Z E1 6 Ev 0 td E1 {start of new line)
LDX Z ED Af ED 1ina ¢ to X reg
INX E8 add 1 to X
5TX Z EO 46 EO new line # to EO
CEX I OT E0 07 cheak for laat line on soereen
BNE DISP Do BC Jump back to disp if not last iine
LDX I G0 A2 00 0 to ¥ reg
STX 2 ED a6 =0 0 to B0 {reatart with line 2 0)
JMP DISP 4o 03 F1 jump back teo disp to continue
RIGHT BHNE HCHAR F1%3 DO O7 cheak for new char on right controller
SHFT LDX I 12 A2 12 shift key waa hit; 12 to X reg
5TX 2 E2 86 E2 store 12 in EZ (to shift charactera)
JMP DISF N2 0B P1 jump back to dlap
RCHAR CLC Fi5Cc 18 new character on rlght:; clear carry
ADC 1 09 69 09 add 9 to acc to convert char
S5TA Z E3 85 E3 atore new char in E3

JHP NEWCHR 4C 21 F1 Jump to newchr to put up new char

USING YOUR MAGICARD Page 2-26

Example 3: Target Practlce

START LDX I Fi F100 A2 FU set up BC and BD for atpa
STX T 8D 86 8D
LDY I Q0 AD DO
TIA 98
STY 2 8C Bl BC
LOOR1 JSR STPM F108 20 FT FF loop to clear TV display
INY ch by atoring 00 Lin F100-FiD2
cMY I D2 co p2 using stpm subroutine
BNE LOOF1 Do FA
STA £ E3 F111 85 E3 initialize variables; 0 to E3
STA Z EA 85 EA 0 to BA (EA and EB are addresa for
LDA I F8 A9 F8 randem number generated by
STA Z EB 85 EB F8 to EB reading a loc in monitor)
LDA I 14 A9 1M 14 to EO (starting horizontal poa
STA Z EO 85 ED of cannon)
LDA T 02 A9 02 02 to ET {apeed of bullet)
STh Z ET g5 E7
LDA I 2B AD 28 28 1a vertical poa of cannon
STA Z BF 85 BF turn on cannen by putting hor.
LbA Z ED AS EO and vert. poaltion in BE and BF
STA Z BE 85 8E and calling subroutine on
J3R ON 20 15 F2
NEWTRG LDX I 00 F12C A2 00 new target; 00 to E4 (hor. pos.)
STX 2 EH 86 EY
LDA X) EA Al EA get a random instructlon [rem mon.
INC Z EA E6 EA
TAX AR aave aco in X reg
AND I OF 29 OF caloulate target v poaition
ADC 1 10 69 10
STA T E5 85 ES atore targ v position
TXA aa get acce back from % reg
ROR BA shift right four bits
ROR GA
ROR &A
ROR 64
AND I 03 29 03 caleulate target speed
ADC I 0 6% 01
STA Z E& 85 Eb target apeed to Eb
STA 2 EB 85 ES and E8 (target apeed countar)
DIS? JSR DSPL F148 20 6F FA Jump to diasplay aubr.
BEC E EC cb EC check aound counter
BPL. ARND 10 04
LDa I 00 A9 00 turn off sound
STh Z 16 B5 16
ARND LBA Z Ba F153 A5 84 read left keyboard controller
BMI HOKEY 30 5e and Jump to nokey if no key hit
BEQ FIRE FO 34 Jump to fire 1f O key hit
CMP I 05 cq 05 check whether left (key 4} or
BPL RIGHT 19 17 right (key 6) movement wanted
LEFT LDA Z EO F15D A5 EO get cannon horizontal pos.
BEQ MOEEY FO 48 and jump to nokey if at left edge
STA T BE 85 BE
LDA I 28 Ag 28
STA Z BF 85 8F
JSR OFF 20 1F F2 turn off old cannon poaition
DEC Z EO ch EO move cannon one pos. left

DEC Z BE co6 BE

USING YOUR MAGICARD Page 2-27

JSR ON 20 15 F2 turn on new cannon position
JHMP NOKEY ¢ A9 F1 jump to nokey to continue
RICHT LD4 Z EO FI1TH A5 ED get cannon hor. pos.
cMp I 27 c9.i27 check LI" at right edge
BEQ NOKEY FO 2F and jump to nokey {f yea
STA L 8E 85 BE
Loa I 28 A9 28
STA 1 BF g5 BF
J3R OFF 20 1F F2 turn off old cannon poaition
IMC 2 EQ E6 EO move cannon one pos. right
INC Z 8E E& BE
JSR ON 20015 F2 turn on new cannon positian
JMP NOKEY B AG FYT jump to nokey to continue
FIRE LDA Z E3 F18D A5 E3 gheak if bullet already flrad
BNE NOKEY pa 18 and jump Lo nokey il yes
ING 2 E3 E6 E3 turn on biullet Firad flag
LDA I 27 A9 27 starting bullet vert. pos.
STA T E2 85 E2 bullet vert. pos. to E2
STA 2 BF as 8F
LDA 2 EO AS ED get pannon hor. pos, for
STA Z E1 85 E1 atarting bullet hor. pos.
STA Z BE 85 BE
JSH ON 20 1% F2 turn on bullet
LBk 2 ET7 AS ET got bullet speoed to
STA I E9 85 E9 bullet apeed counter
JS5R BSHD 20 2B F2 make bullet sound
NOKEY LDA 2 E3 F1A9 AS E3 check if bullet fired
BEQ NOBULL FO 23 and Jjump to nobull 4f not
DEC % E9 o6 E9 decrement bullet speed counter
BHE HOBULL pQ 1F and Jjump il not time Lo move
Lba 2 ET AS ET reatore bullet apeed counter
5TA Z E9 85 E9
LDA Z BN A5 E1 bullet hor. pos.
STA 2 BE 85 8E
LDA 2 E2 AS E2 bullet vert. pos.
STK Z BF 85 &
J3R OFF 20 IF F2 turn off old bullet positlon
DEC £ EZ co E2 move bullet up one position
BMI TOP 30 08 Jump to top Irf at top of acreen
DEC 2 8P c6 BF
JSH ON 20 15 P2 turn on new bullet position
JMP NOBULL b po F1
TOP LDA T Q0 FICC A9 00 turn of I bullet fired [lag
STA 2 E3 BS B3 by putting 00 into E3
NOBULL DEC Z EB FiDO C6 EB decrement target speed counter
BNE NOMOVE Do 1D and Jjump il not time to move
LDA Z EB AS E& reatore target apesd counter
STA Z EB Bs E8
LDA 2 EU AS EX target hor. pos.
STA 2 8E B85 BE
LDA T ES AS ES target vert. poa.
STA L BF 85 &F
JSR OFF 20 1F F2 turn off old target positlon
LDX Z EU Ab EY
CPX. I 27 EQ 27 aheok if target at right edge
BEQ JUMPNT FO 26 and jump to newtrg il yes
INX EA move target one poaltlion right
STX I EY 86 EN
STX Z BE BG 8E
JSR ON 20 15 F2 turn on new target position

HOMOVE LDA Z E1 FIF1 A5 EI compare target and bullet

USING YOUR MAGICARD Page 2-28

CMF Z EN C5 EN horizontal positionsa

BHE JMFDSP Do 1B and jump to diap if different
LDA 2 E2 A5 E2 compare target and bullet

CHP 2 ES C5 ES vertical positions

BNE JMPDSP Do 15 and jump to disp if different
JSR HITSHD 20 3A F2 hit!! make hit aound

LDA Z E1 AS E1

STk Z BE 85 BE

LDA I E2 AS E2

3TA 2 BF Bs &F

J3R OFF 0 1F F2 turn of bullet and target

LDA I 0O A9 00

STA Z E3 B5 E3 turn of I bullet fired [lag

JUMPNT JMP NEWTRG F20F 4C 2C F1 jump to newtrg
JMPDSE JMP DISP F212 UC 48 F1 jump te disp

o JSR CALP F215 20 BE FF on subr; jump to calp

ORA Y FOOO 19 00 FO or new bit on

JESR STFM 20 F7T FF jump to atpm

nTs 60 end of subroutine; return
OFF JSR CALP F21F 20 BE FP off subr; Jjump to calp

EOR I FF 4G FF

AND Y FOOO 39 00 FO and new bit offl

J5R S5TPM 20 FT FF Jump to stpm

RTS 60 end of subroutine; return
BEND LDA I FF F22B A9 FF bullet sound subroutine

3Th Z 4 B5 1A load aound reglaters

LDA I 22 Ag 22

STA Z 18 85 18

STA Z 16 85 16

Lba I 20 A% 20

5TA I EC 85 EC agt up sound counter (EC)

RTS [F14] end of subr, return
HITSHND LDA I 77 F23A A9 717 hit aound subroutine

5TA Z 1B 85 16 load sound registar

LDA I 20 A9 20

3TA 2 EC 85 EC set up aocund counter

TS 60 end of aubr, return

USING YOUR MAGICARD Page 2-29

Example 4: Generating Your Own Diaplay

START LDA Z B1 F200 A5 81 contents of 81 to ace
STA Z CF as oF save new pattern in OF
LDA I 03 A% 03 3 to acc
STA Z OA a5 oa 3 to DA
LDA I 55 A9 55 55 to acc.
STA Z 07 85 07 55 to OT (pight alde eslor)
LBY I 00 AQ QO 0to Y reg
DEY a8 dacrement ¥ reg
5Th Z 02 85 02
STY Z 01 a4 01 start V blank
STY € 00 84 oo start V ayno
LDA T 2A A9 24 Z2h to ace
5TA 0295 8D 95 02 satore 2A into timer
LOOP1 LDY 0284 F21A AC B4 D2 load timer to y and wait
BNE LOOF1 DO FB for it to pun put
STY 2 02 B4 p2
STY Z 00 a4 oo end ¥V ayno
LDA I 2U AG 24 24 Lo ase
STA 0296 Bp 96 02 load timer
LDA 0282 AD 82 02 swltchea to aco
AND T O 29 01 look at game resst awiteh
BNE MNORSET no o branah if switeh not hit
BHRE Qo break to monitor il reaat hit
NORSET INC 2 BO F230 E& 80 inerement loecatlion 80
BNE LOOP2 Do GA
LDA I EQ AG EO E0 to aoo
STh 2 BO 85 Bo ED to B0 to reset counter
INc z B E6 81 increment loa 81 (color)
LDA Z B3 A5 81 new color to ace
STA Z 06 B5 0k new calar to 06 (left aide solor)
LOOPZ LDY 0284 F23E AC 84 02 wailt for timen
BNE LOGP2 Do FB
STY 2 02 84 o2 start of TV sacan line
STY Z M au o1 and V bBlank
LDX I Ei A2 EN Eld to X reg
LOOP3 STY Z Q2 F249 B4 o2 atart of TV scan line
STX 2 0B B& 0B new pattern to GE
3T Z OT B& o7 new color te 07 (right side color)
DEX CA decremant X reg
BNE LOOP3 Do F7 Jump back to loopd for

next line of TV plcture
JMP START 4C 00 F2 Jump back to start

CHAPTER 3

Deseription of 6502 Mieroprocessor

Thia chapter gives a complete desoription of the A502
mlcroprocessor, It I3 assumed that those who read this chapter have a
good general understanding of computer concepts (auch as bytes, bits,
hexadecimal, reglaters, memory, and instruetions}. Although an effort
has been made to make bhis MagiCard manual as complete aa possible,
you may find 1t necessary to read some additional material on
microcomputers bto fully understand the material in this chapter. You
should be able to find several books on the 6502 in any small computer
store. An excellent example is the book Programming The 6502, third

edition by Rodnay Zaks.

3.1 General Deascription

The £502 microprocessor i3 a general purpese B blt microprocessor,
The processor contalns aix reglaters--one accumulator, two index
regiaters, a stack polnter, a processor-status reglster, and a program
counter. A maximum of 65,536 bytes of memory can be used with the
6502 although the design of the ATARI Video Computer System limits the
size of a MagiCard program Lo &about 1024 bytes. The 6502 has an
inatruction set of sixty-five instructions -and thirteen addresaing
modes (many of which ¢an be used with only a few ilnmatructions). All
B502 instructions are either one, two, or three bytes in length. The

first byte of the instruction (the "opcode") apecifies the operation

Description of 6502 Microproceasor PAGE 3-2

to be performed while the second and third bytea (if preaent) provide
either data for the lnatructlon or the address of a memory location to
be referenced by the instruction.

Section 3.2 describes the 6502 reglatersa. Section 3.3 deaerlbes
the format of 6502 inatructions inecluding a detailed description of
the possible addressing modes. Finally, GSection 3.4 describes the

operation of each of the 6502 instructions,

3.2 Description of 6502 Regiaters

The namea, abbreviations, and lengtha of the 6502 registers are given

below:
Regiater Name Abbreviation Length
Accumulator A B bits
X indax reglater X 8 bits
¥ index register ¥ B bits
Stack polnter register 5 8 bita
Procaesaor atatus reglater P 8 bits
Program Counter PC 16 bits

The use of esach ol the regiaters will now be diacussed in more detail.

3.2.1 Accumulatopr
The accumulator is used primarily to perform arithmetic and loglcal

aperations on data.

3.2.2 X and Y Index Registers
The index regiasteras are uvsed to apecify an offset {index} into a table

of data and a3 counters.

Deacription of 6502 Microprocessor PAGE 3-3

3.2.3 Stack Pointer Regiater
The stack polnter containa the address of the next memory location
avallable on the "atack"., The atack is an area of memory (confined on
your ATARI game to addresses between 80 and FF)} that is used for the
temporary atorage of data. In particular, the stack is used as part
of the 6502 subroutine calling procedure (see description of JSR and
ATS instructions in Seetion 3.0.11) and the 6502 "break" mechaniszm
{see description of the BRE inatruction in Section 3.4.15).

Bytes of data may be placed on the stack ("pushed®) one at a time
and, at some future time, removed from the stack ("pulled"™) one at a
time in the opposite order in which they were pushed. Pushing a byte
onto Lhe atack causesa the byte to be stored iIn memory at the address
contained in the stack pointer, after which the astack polnter is
decremented by one. Pulling a byte from the stack is the inverae of
pushing==the stack pointer 13 incremented by one, and the address now
in the stack pointer 13 taken as the addreas ol' the byte to be
removed, Because of the way the "push” and "pull" operatlions are
defined, the asatack grows from larger addressea to smaller oneca. For
thia reason, the stack pointer is usually set to an initial wvalue of

FF.

3.2.4 Processor=-Status Reglsater

The processor-atatus reglster contains a collection of° atatus flags.
Each flag haa two posaibles wvaluea--a value of one (indieating that the
lag ls "set")} or a wvalue of gerc (indicating the Gthe flag is
"alear"), Depending on the particular flag, the value of a flag ia
elther altered by including a apeclal instruction in the program, or
altered automatically by the microprocessor to lndicate something

about the outcome of Lthe inatruction it has just executed. The wvalues

veacription of 6502 Miecroprocessor PAGE 3=U

of some of the (laga can be altered in both ways.

Those flaga that are avtomatically altered by the mieroprocesaor
are called "condition codes®™. Depending on the particular instruoction
that has been executed, the miecroprocessor may alter the value of any
or all of the condition eodes. Those conditlon codes that are altered
by the execution of an Iinstruction are apecified In the detalled
descripticon of each Instructlion given in Seoction 3.U.

The names of the flaga and a short deseription of their use are

glven below.

Zero Flag (or "2-flag")-- This flag is a condition code set by
the microprocessor to dindicate that a byte had a value of
Iera.

Hegative Flag {or "N-=Tlag")-- This flag iz a conditlon code s&t
by the microprocessor to indicate that a byte had & negative
value (l.e., 1t3 most significant bit was a one).

Carry Flag (or "C-flag")-- This flag {3 a condition code sat by
the microproceasor toe indicate that a logieal (e.g., a
shift) or arithmetic (e.g., an addition) operation was
performed that reaulted 1in a value greater than could be
atored in a one byte number.

Overflow Flag (or "V-flag")-- Thia (lag is a condition code 3set
by the microprocessor to indicate that the result of an
addition or subtraction operation reaulted 1n "marithmetic
overflow® ., Arithmetiec owverflow occurs in an addition
operation when two numbers with the same 3ign are added
together and the result is a number with the opposite sign.
For example, if you add the numbher one %o the number 7JF
{hex), the result ia 80 (hex}. Both the number one and the
number 7f are ppailtive (the most significant bit in the byte
13 zero) while the npumber 80 is pegative (the most
significant bit in the byte i3 one). Thua, arithmetic
overflow has occurred. In a almilar fashlon, arithmetic
overflow cceurs in a subtraction operation when twe numbers
of opposite aign are subtracted and the slgn of the result
1a the same as the slgn of the number aubtracted.

Decimal-Mode Flag (or "D-flag")-- When this flag is set by the
programmer, 1t tella the microproceasor to perform add and
subtract operationa in "packed decimal" mode. In packed
dacimal mode, each byte of data is treated as 1f it
contained two decimal digits--the most aignificant digit in
the most algnificant [lour bita of the byte, and the least
algnificant digit in the leaat significant four bits of the
byte.

Interrupt-Disable Flag (or "I-flag")-- When this flag iz aet by

Description of 6502 Microprocesaor PAGE 3-5

the programmer; 1t tells the microprocesaor that the BREK
instruction (see Section 3.4.15) ia to be exeouted in the
same way aa the NOP instruction {see Section 3.4.13)--1.e.
the BRE instruction is essentially ignored.

Break Flag (or "B-flag™)}-- This flag is set by the wicroprocesaor
whenever the executlion of a BRK instructlon has caused an
Interrupt (ase Section 3.4.15) and 1a of essentially no
value to usera of the MagiCard.

Each flag ccocuples one hit in Ehe processor status reglater. The
particular bit position of sach flag is of very little interest to the

programmer but is inecluded here for completeneaa:

Bit Flag

Carry Flag

ierao Flag
Interrupt-Disable Flag
Declomal Hode Flag
Break Flag

unused

Overllow Flag

Negative Flag

=1 W) = O

3.2.5 Program Counter
The program counter contains the 16-bit address of the next
instruction to be executad by the microprocesaor. It ia automatically

updated after the execution of each instruection.

3.3 Format of 6502 instructionsa
All 6502 inatructions consist of one, two, or three bytes. The first

byte of the instruction (called the "opeoode®) tella the 6502

1. What operation ia to be perlormed.

2. How may bytes are in the instruction (l.e. one, two, or
three).

3. What the additicnal bytes in the instruction are to be used
for.

uUesgriptlon of 4502 Microprocessor PAGE 3-6

The poaaible operationa that can he performed by 6502 instructiona
will be given when the inatruction set ia described in Sectlion 3.4.
The saescond and third itema in this liat are collectively referred to
aa the "addresaing mode™ and will now be discussed in more detail.

Tha 6502 miocroprocesscr recognizes thirteen different addreasaling
modes . Twe of the addressing modes tell the 6502 that the only byte
in the instruction iz the opeode. One of the addreasing wmodea tells
the 6502 that there are twe bytes in the instruction and that the
aepcond byte containa the actual data to be wused in performing the
requeated operation. For all other addresaing modes, the one or two
bytes following the opooda &are usad by the 6502 to caleulate a
"target addreas" for the inatruction.

The exact manner in whieh the target addrasa i3 ecaleulatad
depends on the particular addressing mode selected. A deacription af
the target addreas ealeulation ia included aa part of the deseription
af each addresaing mode given in Sections 3.3.1 to 3.3.12, The use
that ia made of the target addreas depends on the operation being
performed. For example:

If the inatruetion 18 a register load operation, the target
addreas specifies the address in memory whoase contenta ia to
te loaded into the reglater.

Ir the instruction s a reglster store operation, the target
apecifies the addresa in memory into which the value in the

regiater ia to be stored.

If the ipstruction 13 a Jump operation, the target address
speclfies to what addreaa the mieroprocesacr s to jump.

HMany cperations can be comblined with more than one addressing
mode. For example, conalder the operation that shifts a hyte of data
one blt to the left. Using one of the poasible 6502 addressing modes
for this instructlion, you can specify the 16-bit address of the data

byte that la to be shifted. Alterpatively, by specifving a different

Deseription of 6502 Mieroproceasor PAGE 3-T

addreasing mode, you ecan shift a data byte that is in the accumulater.

It ia important to note that not all operationa can be combined
with all addresaing modes (i.e., no opoode exista for many imaginable
combinations of coperations and addressing modes). Until you are
familiar with the 6502, you will have to take care bto insure that a
program you are writing does not depend eruclally on a very reasonable
(but nonexiatent!) eperation and addreasing mode combination.

All the addressing modes uwsed by the 6502 are described below.
The abbreviations [lor the addressing modes wsed by tha MagiCard
instruction dump feature (see Section 4.3) are shown within square

brackata,

3.3.17 [] "Accumulator" addressing mode or "Implied” addressing mode:
Total inatruction length Ls ocne byte. Accumulator addresaing meana
that the accumulator contalna the operand (data to be uzed by the
instruction), Implled addressing means that the operand is implied by

the operatlon itselfl,

3.3.2 [1] "Immediate” addressing modae:

Total instruction length 1a two bytes. Tha second byte of the
instruction 413 the actual walue of the operand. Another way to think
of thils 13 that the target address for the operation 1a the address of

the second byte of the Inatruction.

3.3.3 [A] "Absolute™ addressing mode:
Total instruction length iz threes bytes. The second and third bytes
of the inatruction contain the target addresas for the operation. The

second byte of the instruction contains the leaat significant eight

Deseription of 6502 Mieroprocessaor PAGE 3-8

bits of the address, and the third byte of the instructlon contalnas

the most aignificant elght blta of the addreas.

3.3.4 [Z] "Zerc Page" addreasing mode:

Total instruetion length is two bytes. The second byte of the
instruction containa the target addresa. This mode 13 similar Lo the
absolute addressing mode exceptk only addresses from 00 ta FF may be

referenced.

3.3.5 [ZX] "Zerc Page % Indexed" addresaing mode:
Total inatruction length i3 two bytes. The target addresa 1s found by
gdding the second byte of the instruction te the contents of the

X index regiatar (only the lower eight bita of the sum ara kept).

3.3.6 [ZY] "Zerc Page Y Indexed" addressing mode:
The same as zero page X indexed except the Y index regiater 13 wused,.
Hote: thia mode is avallable for only two instructiona--load X index

register (LDX) and store X index register (STX).

3.3.7 [X] "Abasolute ¥ Indexed" addressing mode:

Total instruction length is three bytes. The second and third bytes
of the Instructlon contain a sixteen-bit addreas in the same manner as
in absolute addressing. The target addreas ia found by adding the
contenta of the X index register to thia sixteen-bit addresa. (Note:
The addition of the X index register to the original sixteen-bit
addresa 1s performed in a aixteen-blt mannar. For example, ir the

second and third bytes of the inastruction were C9 and FA, and Gthe

Pescription of 6502 Microprocessor PAGE 3-9

contenta of the X index reglster were 40, then the target addresa

would be FACO « 40 = FBOY)

3.3.8 [Y] "Absolute Y Indexed" addressing mode.
Thia mode is the same as abaolute X indexed mode except the Y indax
reglster 13 used. {Note: This mode 1is available for fewer

instruetlions than "Absolute X Indexed" mode.)

3.3.9 [X)] "Indirect X" addresasing moda.
Total instruction length ia two bytea. The second byte of thia
instruction ia added to the contenta of the X index regiater to form
an eight-bit address (as in the [ZX] addresaing mode). The contenta
of this eight-bit address and the address immediately following ara
then taken to be the target address,

For example, assume that the second byte of an [X)] instruction
is 80 end the contenta of the X index regiater ia 3. The contents ol
memory location 83 contaln the lower eight bits of the target address,
and the contents of memory location BY contain the upper eight bits of

the target address.

3.3.10 [}¥] "Indirect ¥Y" addreasing mode,

Total instruction length {a two bytes, The second byte of the
i{nstruction containa an eight-bit addreas, The contents of thia
addresa and the following addreas are taken aa a aixteen-bit addreas
{the least significant byte of the sixteen-bit addreas is in the first
byte as in [A]). The target address is formed by adding the contenta
of the ¥ index reglater to the sixteen-bit address.

For example, assume that the second byte of a [}Y] instruction is

Description of 6502 Microprocesaor PAGE 3=10

B0 and the contenta of the ¥ index reglater ia 2. The 6502 firat
forma a alxteen-bit address by getting 1ts lower eight bits from
location 80 (which we will assume contains FF) and its upper eight
bits from location 81 (which we will assume eontalna FO0), The
contents of the ¥ index reglster {3} i3 then added to the sixteen-bit
addreas (FOFF) resulting in a target addresa of F102.

1t ia wvery important not to confuse [}Y¥] addresaing with [X)]
addressing. In practice, [JY¥] 13 used more often and should be
underatood completely. The [X)}] mode i3 often used with zere in the

X index regiater,

3.3.11 [(}] "Absolute Indirect" addresaing mode.

Total instruction length i1s three bytea. The second and third bytes
of the inatruction contaln a salxteen-blt addresa (the lower elght bita
are in the second byte, and the upper elght bits are in the third
byte). The location at thia addresa contalns the lower eight bits of
the target address, The upper elght bits of the target addresa are in
the next memory lecation. (Note: This mode 13 only used by the JMP

{Jump) instruction).

3.3.12 [nn) "Relative" addresaing mode,

Total instruction length 43 two bytea, The second byte of the
instruction 1a treated as a signed two s-complement numbaer (1i.e.,
FF = =1, FE = =2, «ssy B0 = =80, TF = +7F; es.)» This signed number
iz added to the sixteen-bit addrasa of the first byte of the next
instruction and the reault is the target address. For example, assume
that the two bytes of an Anstruction that usea relative addresslng are

contained in memory locaticna F311 and F312. Further, asaume that the

Deseription of 6502 Mieroprocessor PAGE 3-11

second byte of Lhe inatructlon contains FD. The target addreas lor
the instruction ia FD + F313 = =3 + F313 = F310. (Hote: Relative

addresaing is used only by branch instructions.)

3.4 Deacription of 6502 Instruction Set
In this section, we deacribe all of the instructicons recognized by the
6502 mieroproceasor. For each instruction, the lollowing information
ia provided:
1. The 1instruction name--a three letter onemonic (always
capitalized)
2. A desecrliption of the operation performed by the instructlon.

3. An opcode value for each of the possible addresaing modes
that can be used with the lnatruction.

. The condition codea in the program-status register that are
modified by the inatruction.

Te form a complete instruetion, you firat use the operation to be
performed and the addressing mode deaired to saleot the value of the
opcode to be used., The opoode byte is then followed by the (poaszibly)

additional bytes required by the addressing mode being used.

NOTE

Although there are two hundred and
fifty-six posalble elght-bit opecodes,
many of the poaslbilities are not used
by the 6502. If one of these unused
valuea ia accidentally 4included in a
program, unpredictable (oftem bad)
resulta will ceceur.

3.4.1 Memory Transfer Instructions
A1l of the followlng instructions elther copy ("Load") the contents of

a memory location inte a register or copy ("Store™) the contents of a

register into a memory location.

Load the aceumulator with the econtenta of the specified

Store the accumulator into the specified memory locatlon
Load the X index register with the contenta of the specirfied

Store the X index register into the specified memoary location
Lead the ¥ index register with the contents of the speciflied

Name Description
LDa

memory location
STA
LOx

memory loecaklon
5TX
LDY

memory locatlion
STY

Store the ¥ index register lnto the specified memory location

The opcodes for each memory-transfer instruetion with each of its

possible addresaing modes are as [ollowas:

LDA
STh
LDX
5TX
LDY
5TY

[(r] [a} [z (X)) [)»] ([2x) (x] [¥) [z¥]

o Sl - M o - - I S e~ U - - S] . . g e

(8] AD AS Al B1 BS BD B9 e
- 8p 85 a1 91 95 90 929 B
Az AE AB -- -— = - DE 6
-- 8E 86 - - -— -- - 96
A0 AC Al -- - BU BC - --
-- BC 84 -- - a4 - -- --

Condition Codes:

Z=-flag: set i a value of zero 13 loaded i1inte a register,

cleared otherwlise (the Z-flag is not modified by store
inatructional.

N=flag: set il a negatlve wvalue L3 loaded into a reglster,

c

cleared otherwiae (the N-Tlag i3 not modified by store
instructions).
and V-Tlags: not modified by any of thesa instructions

3.4.2 Reglater-to-Aegister Tranafer Instructions

These lnatructlons copy the contents of one reglster into another.

Implied
Name
TAX
TXA

TAY

addresaing 13 the only addressing mode allowed.

Opeode Deseription

. . I - o

AR Copy the contents of the accumulator into the X index
register.,

aa Copy the contents of the X index regiater into the
accumulator.

AB Copy the contents of the accumulator into the Y Index
reglater,

38 Copy the contenta of the ¥ index register into the

Deseription of 6502 Microprocessor PAGE 3-13

accumulator.

TEX Ba Copy the eontents of Gthe Staek Polnter into Lhe
X index register

TXS 9a Copy the contenta of the ¥ index regiater Into Cthe

Stack Polnter.

Condition Codes:

Z2-flag: set il the regliater contents are zero, cleared otherwlae
(the Z-flag ia not modified by the TS instruction).

H=Clag: zet if the register contenta were negative, cleared
otherwizss (the MN-flag 13 npot medified by the TXS
inatruetion),

C and V=rlags: not modified by any of thease instructiona,

1,40,9 Increment and Decrement Inatructlons
These inatructions add one or subtract one f(rom either a memory
logation ar a reglater,

Name Deaeription

ING Inorement the econtents of the target address by one,

DEC Decrement the contents of the target addresa by one,

INX Increment the contents of the ¥ index register by one (uses
implied addresaing mode).

DEX Decrement the contents of the Y index reglaster by one (uses
impllied addresaling mode).

INY Increment the contents of the Y index register by one (uses
implied addresasing mode).

DEY Decrement the contents of the ¥ index register by one (uses
implied addressing mode).

The opcodes for each increment or decrement instruction with each af
its posaible addressing modes are as follows:
[1 ([a] (21 [2Zx] I[x]

INC - EE Eb F& FE

DEC -- CE €6 D6 DE
INX EB - - -— -
DEX CA — a= m= -
M B = o e am
DEY B8 o= = @ =

Conditlon Codesa:

Z-flag: set LF the reault of the increment or decrement was
zerg, cleared otherwlse.
N=flag: aet il the result of the ingcrement or decrement was

Deacription of 6502 Microprocessor PAGE 3-14

negative, cleared otherwlae
C and V-flaga: not modified by any of these Lnatructions

3.4.4 Add and Subtract Inatructicns

The 6502 has one addition inatruction (ADC) and one asubtraction
instruetion (SBC). The ADC Inatruction adds the contents of the
target to the accumuliator and then adds the value of the C-flag to the
accumulator, The SBC instruction subtracts the contents of the target
addresa from the accumulator and then aubtracts Lhe complement of the
C-flag value from the accumulator, The C-flag is added to (or
aubtracted from) tha accumulator to make it eaay to perform arithmetiec
with multiple byte numbers. Whenever arithmetic i3 done with single
byte numbers, the C-flag must be cleared {aet) before performing
addition (aubtraction). After the operation has been performed, the
C-flag will be set il an addition resulted in a oarry., The C-Flag
Wwill be cleared il a aubtraction reaulted in borrow. Another ADC ar
SBC instructlion can then be applled to the next more significant byte
of a multi-byte number,

Hame Deseriptlion

ADC Add to the accumulator the contenta of the apecified byte
plus the value of the C-flag.

SBC Subtract from the sccumulator Lhe contenta of the apecified
byte. Afterwardsa, decrement the ccntents of the accumulator
by one if the C-flag was clear.

The eopeodes for the addition and aubtractien instructions with each
poasible addressaing mode are as follows:
(] [a) [z (X)) D)yl ([z2x] (x] [¥]

ADC 69 6D 65 61 T T5 7D ™
SBC E9 ED ES E1 F1 F5 FD F9

Condition Codesa:

Z-flag: set Lf the [inal contenta of the accumulator were zero,
cleared otherwlae (not set il declmal mode arithmetic ia
being used).

Description of 6502 Microproceasar PAGE 3=15

N=-flag: set i the final contents of the accumulator were
negative, cleared otherwlase.

C-flag: aet il there was a carry in addition, e¢leared Al not;
cleared 1" there was a borrow in subtraction, set LI
mtl

V-flag: aset il arithmetic overlflow ocourred, cleared i not.

3.4,5 Shift and Rotate Inatructions

These instruetions move each bit in the asslected byte (afither a memory
location or the acoumulator) one place to the left or right. The
vacated bit positlion (bit T for a right shift, bit zero for a left
shift) is filled either with a zero or with the previocus value of the
C-flag. In all ecases, the bit that {s bumped off the end 15 placed in
the C-flag.

Hame Desaription

ASL Arithmetie shift left. Shift all the bitas in the targeted
byte laft one place, ahift bit 7 into the C-flag, and shift a
zero into bit zero, {This operation i3 equivalent to
multiplying by two).

L3R Logical shift pight. BShift all bits in the targeted hyte
right one place, ahift a zero into bit 7, and shift bit zero
into the C-flag.

ROL Rotate left, Shift all bits in the targeted byte one place
to the left, shift the C-flag into bit 2Zero, and shirt bit 7
into the C=flag.

ROR Rotate right., Shift all bits in the targeted byte one place
to the right, ahift the C-flag into bit 7, and shift bit zero
into the C=Tlag. (Note: Il the C-flag is set Lo the 3ame
value a3 bit T before this instruction i3 executed, the
result ol the HOR will be to divide either a poaitive or
negative number by two.)

The opcodes for the ahift and rotate inatructions with each of the
posalible addressing modes are as follows:

[a) 2] [2X] [X] Accumulator
ASL OE 06 16 1E oA
LSR A4E Lha &6 S5E YA
ROL 2ZE 26 36 3E 2h
ROR GE b T6 TE GA

Condition Codes:

Z-flag: ast If the reault of the operation waa zerd, <leared
otherwiaae,

Deaeription of 6502 Microprocesaor PAGE 3-16

N-flag: ast 1f the result of the operation was a negative value,
eleared otherwiae.

C=-flag: aet to the value of the bit that was "™shifted out"™ of
the byte being ahifted.

V-flag: not modified by any of these inatruotiona.

3.4.6 Logleal Operation Tnstrustions

These lnstructliona perform a bit-by-bit logieal operation between thae
bita of a specified byta and the bits of the ascumulator, and leaves
the result in the accumulator. A bit=-by=-bit operation meana that each
bt of the final accumulator value i3 a logieal functlion of the same
bit in the 4initial &coumulator and in the apecified byte. The
instructions available and the logieal functions they provide are
listed below.

Hame Description

AND Perform bit-by-bit "AND" of the accumulator with the selected
byte and place the result in the accumulator.

1 WAMD"
1 MAND™
0 "AND"
0

OO O =

"AND"

[= e o R

For example, A3 "AND" BA = 82
ORA Perform bit-by-bit "OR™ of the accumulator with the selected
byte and place the result in the accumulator

TOR™
"OR™
nOR"
nopn

= TS o

B ieoii

1
1
1
o

o0 - =

For example, A3 "OR"™ 8A = AB
EOR Perform bit-by-bit "EORY ("exclusive OR"} of the accumulator
with the aelected byte and place the result in the

acoumulator.

1 "EOR" 1 =0
1 "EOR"™ 0 = 1
0 "EOR™ 1 = 1
0 "EOR" 0 = O

For example, A3 "EOR™ 8A = 29. (Note that "NOT" (that ia,
the logical operation that changes all zercs to ones and all
ones to zeroa) can be performed by performing an "EDRY
operation on the accumulator Wwith a walue of FF.)

Description of 6502 Microproceasor PAGE 3-17

The opeodes lor each logleal instruction with each possible addreaslng

moxde are as Followa:

(1 (a1 (2] [0} Dyl [z2x) [x] (Y]
AND 29 20 25 21 31 35 3 39
ORA 09 OO0 05 ©O1 11 15 W 19
EOR N9 4D 45 41 51 55 5D 59

Condition Codes:
Z-flag: set Lif the final contenta of the accumulator are zero,
cleared otherwise.
N=llag: set I the [inal contenta of the accumulator are

negatlive, cleared otherwise.
C and V-flags: not modified by any of these instructions.

3.4.7 Stack Instructions

The basie staek cperations performed by the 6502 are "push"™ and
"pull®. Push puls a new byte onto the satack, and "pull® removes Lhe
last byte pushed onto the atack. The atack polnter register always
points to the address where the next byte will be pushed.

The stack ia used automatically when calling (JSR inatructien) or
returning from (RTS instruction) a subroutine, Therefore any bykes
pushed onto the stack within a subroutine muat be pulled from the
atack belore the return lnstruction ia executed. This is reflerred Lo
a3 "keeping the stack balanced".

Name Opoode Deacription

PHA 48 Push the contenta of the accumulator onto the atack.

PLA 68 Pull the next byte from the atack and put it into the
acoumulator.

FHF 08 FPush the contents of the processor astatus register
onto the satok.

PLP 28 Pull the next byte from the atack and place it into

the processcr status reglater.

Conditien Codes:

PHA and PHP do not change any condition ocodea

PLA changea the Z-Clag and N-flag to indicate if the byte pulled
from the stack was zero or negatlve.

FLP loads a byte into the proceassor status register, and thus,
aeta a wvalue into each of the condition codea {as well

Description of 0502 Microproceasor PAGE 3-18

as aetting the values for all the other flagsa). See
Section 3.2.4 for the meaning of each bit 1in Ethe
prosessor atatus regiater.

Besides the above instructions, the only other 1instructions that

affect the stack are JSR, RTS, BRE, and TXS.

3.4.8 Compare Inatructions

Theae inatructions are used to compare the contents of the accumulator
with the value of another byte. After the compare operation has been
performed, neither the contenta of the register nor the value of the
byte being compared will have been changed--the only thing ehanged
will be the values of the &, N, and C-Tlaga, Theae [lags will be aet
ans ir the contenta of the byte being compared had been subtracted from
the regiater.

The purpose of the compare ipstructionas fa to set up the
condltion codes for subsequent uwse with a conditional branch
Inatruction, The three 6502 compare instruectlons are as followa:

Name Deacgriptlon

- ———— e o o

CHP Compare the contenta of the accumulater with the aspecified
byte and act the condition codea accordingly.

CPX Compare the contenta of the X index register with Gthe
apecified byte and set the condition codes accordingly.

CPY Compare the contents eof the Y index register with Gthe
apecified byte and aet the condition codea accordingly.

The opeodes for each compare instruction with weach ol its posaible

addresaing modes are aa follows:

(11 [A)] (21 [x)]1 D)yl [2x]1 [x] (Y]

CPY Co g Cl — - - _— .

Condition Codesn:

Same as SBC instruction except the V-flag is not altered.

Deacription of 6502 Microprocessor PAGE 3-19

3.4.9 Branch Inatructlions

The 6502 Ainatruction set ineludes eight conditional branch
instructionsa, There are two ipstructions for each of the four
eondition code flags-- one inatruction to test If the flag was set,
and one inatruction to teat if the flag was clear. If the teat made
is true, the program counter i3 reset to the address apecified by the
second byte of the instruction (using the "relative" addressing mode
discussed in Sectien 3.3.12). If tha tast i3 [alas, the program
counter ia not changed and the instruction after the branch
inatruction ls executed next.

The conditional branch instructions are liasted below:

Name Opcode Description

BMI 0 Branch il minus (i.e., branch if N-Flag i3 set).

BPL 10 Branch Lf plus (i.e., branch if N-flag is clear).

BNE DO Braneh 1f not equal to zero (i.e., branch Lf ZI-flag
iz clear).

BEQ FO Branch 1 equal to zero (i.e., branch Af 2-flag is
aek).

BCC Q0 Branch If C-flag i3 clear.

BCS BO Branch 1 C=-flag i3 aet.

BVC 50 Branch Af V-flag ia clear.

BYS TO Branch If V-Tlag la zet.

Condition codesa:

Not altered by any of these Lnstructlona.

3.4.10 Jump Inatruction
Thiz instruction forces the 6502 to reset the program counter to a new
value and, thus, to continue program execution at a different addresas.
This is the only instruction to use the "indirect™ addressing mode.
The opeodes for the Jjump inatructlion are as followa:

[a] 0431

e

JMP HC 6C

Condition Codes:

PAGE 3=-20

Hone of the conditlion cocdes are changed.

3.4.11 Subroutine Call and Return Instructiona

There are two 6502 instructions used with subroutines--one asubroutine
Meall" instructlion (JER) and one subroutine return instructlion (RTS).
A subroutine is a seriea of instruetions that can be "called™ fron one
or more places within a preogram. After the instructions in the
subroutine have been executed, a "preturn®™ ia made (l.e., the
mlcroprecessor contlnues program execution at the address followlng
the subroutine eall instruction).

The aubroutipne ecalling 4inatruction pushes the value aof the
program counter minuas one onto the stack (the least significant byte
is pushed first). This keeps a record on tha atack of from what
addresa the subroutine waa called. When & return i3 made from a
subroutine, a two byte address 13 removed from the stack, the address
is inoremented by one, and a Jump made to the resulting address.
Program exegution then proceeds starting with the [First Ainstruction
after the ecall to the aubroutine.

One subroutine can call other subroutinea (even itselfl 1) as long
as the stack does not overflow lts allotted memory region. The stack
can be used during a subroutine but it must be reatored to the entry
configuration before the RTS instruction is executed.

In summary, the subroutine inatructions are:

Name Opecode Description

e T _-———— .

JSR 20 Jump to subroutine. Push the current value of the
program counter minua ona onto the atack (least
aignificant byte firat), then Jjump to the addresa of
the aubroutine. Thia inatruction uses absolute
addresaing mode Lo apeclfy the address of the

subroutine.

RTS 60 Return from subroutine. Pull & two-byte absclute
addreas from the stack, inecrement the address by one,
and jump to the addreaa. This Ainatruction 13 one

byte long and uses implied addressing.

Deaaription of 6502 Microprocesaor PAGE 3=-21

Condition Codes:

None of the condition codes are changed by these lnatructiona,

3.4.12 Status Flag Manipulation Tnatructlions
Thase instructions set and elear flaga in the processor status
regiater. All of these inatructions use the lmplied addressing mode.

Name Opcode Deseription

————— —————— —— o

CLC 18 Clear C-llag
SEC 38 Set C-flag
CLD D38 Clear D-Tlag
SED F8 Set D-flag
CLI 58 Clear I=flag
SEI 78 Set I-flag
cLVY B8 Clear V-flag

Condition Codes:
None of thesa inatructions alter any of the oconditiena except
for those Flags mentionad in the instruction’a
deacription.

Hote: The V=flag can be sat with the BIT inatruction.

3.4.13 HKOF instruction

NOP i3 a single byte insatruction (with opcode EA) that doea nothing.
It is uwseful fer waiting for a while {a lew miecroseconds) or to
regerve space in a pregram for instructions that you may want to
insert later. Similarly, if an instruction needs to be remavad, Yyou
can replace each of lta bytea with NOP instructions to avoid having to

move other instructiona to clesa the gap.

3.4.14 Bit Test Instruction
The bit test instruction (BIT) performs a bit-by-bit "AND" of the
accumulator with a specified byte (See deascriptlon of the AND

instruction lor a description of a "bit=by-bit AND".). The results of

Description of 6502 Mieroprocessor PAGE 3-22

thia AND 1a only used to set the condition codes, the contents of the
aceumilator as well as the value of the apeclilfied byte are not
changed. Like - the compare Instructions, G&the BIT inatruction is
usually followed by a conditlonal branch Inatruction., The opcodea for
the BIT instructlon with each of its posaible addressing modes are as

followa:

Al (2]

e

BIT 2C 29

Condition Codea:
Z-rlag: set Lf the result of the bit-by-blt AND i3 zero, cleared
otherwise.
N=flag: set to Lhe value of bit T of the byte being ANDed with

the accumulator.
V-flag: set to the value of bit 6 af the byte balng ANDed with

the acecumulator.
C=flag: not changed by thia lnstruction.
3.4.15 Break Instruction
The break inatruction {(BRE) 43 the only part of the interrupt
capability of the 6502 available to MagiCard users. Execution of the
BRK inatruction (opcode 00) performs a reset of the MagiCard similar

to that ocauvsed by turnlng the power off and on again. BREK has the

following advantages aver turning the power off:

1. A reaet can be lnitlated under program control.

2. The contenta of the program atorage memory (FQO0 - FIFF) are
not loat.

A programming mistake will often lead to the execution of a BRE. For
example, 1f a Jjump i3 made to an improper location, the 6502 will
atart to execute some random values as (f it wera a program. In auch
cases 1t Ila reasonably 1likely that It will scon encounter a byte
containing a zero, and therefore, reaet ltaself via a BRE. A complete
dessriptlion of the reset that occcurs when a BRE ia executed (or when

the MagiCard la firat poweared up) will he found in Section 7.16.1.

CHAPTER 4

MagiCard Keyboard Functlons

In this chapter we disecusas in detail the function of each
keyboard oontroller key when the MagiCard is plugged into your Atari
game, The keya on the keyboard controllera are referread to by a
letter "L" or M"H" ("L" for the left controller, "R" for the right
controller) followed by a symbol Ffor the key on the controller
(0,1,25-++,9;%#). The luncticn names correspond te the names on the
cut-out keyboard overlays,

Each key on the left controller haa two distinct functions
(referred to as "unshifted" and "shilfted"). Preasing the RO key
(right controller zero) key causes all the keys on the left controller
toe take on their ahifted functions. Shifted mode i3 exitted by
pressing the LO key. The right controller keys have no [lunction in
shift mode. The shifted funotions for each left controller key are
printed on the keyboard overlay above the unshifted lunction.

The firat ssction in the chapter givea a briel desoription ol the
function of each eontroller key. Each subsequent saction is devoted

to describing one particular key Cunctlion in more detail.

MagiCard Keyboard Functions PAGE 4-2

.1

u'1i1

Brief Deacription of Key Functions

Key Name

L

L2

L3

LY

LS

LG

L7

L8

Lo

LD

La

Le

Fetoh

Store

Lelft Controller Functions (Unahifted)

Function

Enter hex diglt "1™ inte the pight most character of the
dlaplay’s tap line.

Enter hex digit "2" into the right most character of tha
diaplay’s top line.

Enter hex diglt "3" into the right most character of the
diaplay’s top line.

Enter hex diglt "U® inte the right most character of the
diaplay’s top line.

Enter hex digit "5" into the right moat character of the
diaplay’s top line.

Enter hex digit "6" into the right most character of the
diaplay’s top lipe.

Enter hex digit "7" into the right moat character of the
diaplay’s top line.

Enter hex diglt "8" into the right moat character of the
diaplay’s top lina,

Enter hex digit "9" into the rlght most character of' the
dlaplay’s top lina.

Enter hex digit "0" into the right moat character of the
dizplay’s top line.

Read the contents of the memory location whose addresa is
in the "Fetch Address" (see description of R" key) and
place into the right two hex diglts of the display’s top
line, ahift the previous rlght two display digita two
digits to the left, and increment the "Fetch Addresa™ by
one ,

Write the contents of the right two digits on the
diaplaya top line inta the memory location whose address
iz in the "Store Address" (see descriptlon of RI key) and
inorement the "Store Addreas™ by one.

MagiCard Keyboard Functicna PAGE U=3

§.1.2 Right Contreller Functiona (Unshifted)

Key Name

R1

R2

R3

Ry

RS

R&

RT

R8

R9 Extra Ad

A

Cend Ad

felao

RO Shirft

Functlon

Enter hex digit "A™ into the right most character of tha
display’s top line.

Entar hex digit "B" into the right moat character ef tha
display’s top line.

Enter hex diglt "C" into the rlght most character of the
display’s top line.

Enter hex digit "D" into the right moat character of the
diasplay’s top line.

Enter hax digit "E" into the right most character of the
display’s top line.

Enter hex digit "F" into the right most character ef the
diasplay”’s top line,

Enter the right four hex diglits on the diaplay’s top line
into "Cend Addresa"., "Cend Address® is wsed when writing
data to or reading data from a cassette.

Calculate relative offset for branch instructions. As
discussed in Section 3.3.9, the second byte of each
branch instruection contains a signed two a-complement
mmber that specifiea the number of bytes between the
address following the branch instructlon and the addresa
to be branched to. This byte Ls called the "relative
offaet" of the branch. You can use the MaglCard to
determine the vyalue to wse for the relative offaet by
proceeding as follows. Firat, place the absolute addresa
(four hex digita} of the aecond byte of the branch
inatruction 1into "Store Addresa™. Next, enter tha
absolute addresa of the destination of the branch into
the right four digits on the diaplay’s top line. Pushing
the RE key then calculates the two hex digit branch
offast that should be atored in the second byte of LEhe
branch instruction. A result of FF implies that the
branch i3 out of range. The previous contents of Lthe
right four digits on the display’s top line are moved
into the left four digita.

Enter the right four hex digits on the the display’s top
line inte "“Extra Address™, The current value of "Store
Addreas® ia alac placed Linto the left four digits of the
diaplay™as top line. "Extra Address" is not used by the
MagiCard Monitor; however, it can be wuseful to paas
information to a uaer program.

Shift lock. Preazing thia key causes each key on the
laft controller to assume its "shifted"™ functlion. The
left controler remains "shifted"™ until the LO ("unahift®)
key ia pressed. All keys on the right controller have no
"shifted" function. Preasing the "Game Resct™ on the

MagiCard Keyboard Functions PAGE U-H

Video Computer console will also "unshift® the keys.

A" Fetch Ad Enter the right four hex diglts on the diaplay’s top line
Into "Fetech Addresan, The ourrent wvalue of "Cend
Address™ is also placed into the left four digits of the
display s top lipe.

R# Store Ad Enter the right four hex digits on the display’s top line
intoe "Store Addreas™. The current wvalue of "Extra

Address" i3 also placed into the left four digits of the
diaplay’s top line.

4.1.3 Laft Controller Functiona (Shifted)

These functions are performed by the left controller keys when it has
been "shilted®™ by presasing the RO key. The functlions performed by
keys L1 through L6 are apecially protected to avoid acecldental
activation. When one of these keya is pressed, the TV screen will go
blank. If at this point the "Game Select" awitch on the Video
Computer conscla 13 preased, the selascted function will be executed.
If, on the other hand, the "Game Reset"™ awltch on the Video Computer
eonsole Ls preased, the MaglCard will not perform bthe selected
function but will instead perform its pOWEr=Up initialization

Saquence.,

MagiCard Keyboard Functions PAGE L=5

Key Hame

L1 Run

L2

L3

L4 Cwrite
LS

LE Cread

LT Hex Dump
L8 Ina Dump
Lg

L0 Unshirt
Le

L#

Function

Start program executlon at the address contalned 1in
"Store Addreas®, (Waits for "Game Select" with screen
blank.)

No operation (Waits for "Game Select" with screen blank.)
No operation (Walta For "Game Seleot” with sereen blank.)

Casgsette write. Write Lo cassette the contents of memory
addresses "Feteh Addresa™ to "Cend Address” =1. 3See
Section 4.6 fer detallas about cassatte eperations.
[Waits for "Game Select" with soreen blank.)

No operation (Waits for "Game Select” with sereen blank.)

Casaette read. Head data (rom casaette and atore [nto
memory addresaes "Fetch Addresa® through "Cend
Addreas™ =1, Sea sectlon 4.7 lor details about casaette
operations. (Walts for "Game Select" with sereen blank.)

Hexadecimal dump. Display on the sereen (as four hex
digita}) the contents of two bytes of memory atarting at
the addreas contained in ®Fetech Addresa®, "Fetch
Addreaa™ {a then lneremented by two.

Instruction Dump. Display on the acreen the disassembled
form of the lnatructieon starting at the address contalned
in "Feteh Addreas". "Fetech Addreas™ 13 then Lneremented
by the length of the instruction.

Ho ocperalion

"nahift"™ the left controller keys. The left controller
keys return to thelr normal "unshifted" functions.

No operation

Ho operation

MagiCard Keyboard Functlons PAGE L6

4.2 Hex Dump Funetion (Shirft L7} — Further Information

After preasing the RO (Shift) key, each time the LT (Hex Dump) key is
presaed the entire display is moved up one line (scrclled one lina)
and a new line is added at the bottom. The new Line econtains three
plecas of dinformation (or "fields")., The f[lrat [field 4is Ffour
charactera in length and diaplays the "Feteh Addresa" value as a hex
number. The second field is two characters in length and displays the
hex number contalned in the location at that address. The third fiald
i3 also two characters in length and displays the hax number contained
in the next loecatien. After the new line i3 diaplayed, the aontenta
of "Fetch Addresa® 1s inoremented by two aoc the next time the LT key
is pressed the contents of the next Gtwo memory locationa will be

diaplayed.

4.3 Instruction Dump Function (Shift LB) == Further Information
After preasing the RO (Shift) key, each time the LB key is presaed,
the entire diaplay 1is serolled two lines up and twe new lines are
added at the bottom. These two new lines describe the Ainstruction
contalned at addresa "Fetch Addresa®. The upper new line contains the
four digit hex address of the instruction being dumped. The next line
contalns three [lelds--the inatruction name Cield, the lpstruction
addresaing mode fleld, and the address information rleld.

The inatruction mame field ocouples the first three characters.
This field contalns the three character opcode name (sec Section 3.4)
for the Instruetion being dumped (i.e., the instruction starting at
address "Feten Address®™). If the byte at the addresa "Fetch Addresa®
i3 not a legal ocpeoda, the instruction name "ILL"™ ia displayed and Lhe
reat of the line ia blank.

The addressing mode field occupies the next two charactera. Thia

fleld oontalins the twe character addresaing mode name for the

MagiCard Keybgoard Functlons PAGE U=T

inatruction (mee Section 3.3}. For relative addresaing, this field
will contaln the twe hex digits of the instruction (which is the

relative addresa itsalf).

NOTE
Due to an ipregularity in the 6502
inatruction aet, the addreasing mode of
the "J3R" instruction will always be
listed -as [¥Y] rather than the correct
value of [A]. Just Lignore Lhis error
and remember that JSA (opcode 20) has an
addresaing moda of [A].

The additisonal addressing information field occupies the last
four characters. For 4inatructiona with accumulator or implied
addressing (i.e., an addressing mode field of []), this field will be
blank. For two byte inatructions (with the exception of branch
inatructions), this rield will contain the second byte of the
instruction. For three byte instructions, this field will contain the
four hex digit addresa contained in the last two bytes of the
inatruction. The most alignificant byte of the addresa 1s placed in
the First twa hex digits {(for easy reading); even though they are
atored in the opposite order in memory. For braneh instructlons, thia
fleld will contaln the abaolute address to which the instruction would
branch. Henee, you can sSee both the relative addreas (in the
addresaing mode fleld) and the correaponding abaolute addresa (in the
additional address informatlion lleld].

After the insbtructlon inlformaticon is diasplayed on the bottom two
lines, "Fetch Address®™ i3 Ilncremented by the length of the inatruction
{Inatructions with illegal opcodes are conaidered to have a length of
one byte). Hote that attempting to dump arbitrary data as

instructiona may be mialeading because any random one byte number has

about a 60% chance of belng a legal opecode. Similarly, if you begin

MagiCard Keyboard Functicna BAGE 4-8

to dump at an address that corresponds to the second or third byte of
a multiple byte inatruction, that byte may be interpreted as a legal
inatruction opcode. Depanding on the particular case, aeveral
apurious instructionsa may be dumped (some of them "ILL") before, by
chance, the firat byte of a real Inatruction 1s encountered. From
that point on, dumping will proceaed normally.

The same sort of trouble may cccur LI you are dumping a program
that you have incorrectly entered into memory. A mistyped opoade to a
multiple byte instruction may give rise to a confused dump immediately
following the error. In this case, you should eorrect the erronecus
opeode and dump again. These cases may sound confusing, but once you
are aware of the poasaibility of thelr occcurrence, they are eaay to

recognize in practice.

.4 Combined Use of Fetch (L®) and Store (L#) Keys
The "Fetch®™ key places the byte whose address ia "Fetch Address" into
the right tws hex digits of the display’s top line. Similarly, the
"Store" key atores the right two hex digita of the display’s top line
inte the address "Store Addreas™. By setbting "Fetch Addresa" and
"Store Address™ to the same wvalue, and then alternately pushing
"Fetch” and "Store", you can move through memory while watching the
bytes move through the right two charactera on the display’s top line.

It is also poasible to make changea to memory as the bytes ars
displayed. After a byte has been placed into the right two hex digits
of the display by presaing the "Fetch"™ key, a new value may be keyed
into the display (by pressing the keys LO through L9 or R1 through R6)
bafore the "Store™ key i3 preased. When "3tore" is preased, the old
value for the byte will be overwrltten by the new value.

ITf the "Fetch Addresa™ and "Store Address™ are set Gto different

valuesa, an identlical procedure will move data from one place in memory

MagiCard Keyboard Funetions PAGE H=9

to another (with optional modification te any byte dealred). It ia
helpful to understand that the above procedures are simply

combinations of the saimple functiona of "Fetch™ and "Store".

4.5 Rele Function (R8) —- Further Information

It is often convenlent to write a program wusing namea [or the
addresses that are the deatinationa of branch, JMF, or JER
inastructliona, Once the program has been written, the wvalue of each
address name can be determined by choosing a atarting addresa for the
program and counting the number of bytea in all the instructions
between the starting address and each addreas pame. For any
inatruction that uses abaolute addressing (e.g., JMP or J5R), the
absolute address ltaelf 1s placed in the second and third bytes of the
instruction. In the casae of branch I1nstrectiona, however, Gthe
abaclute addrass 1tself la not included in the instruction. What ia
needed i3 a two's complement byte offset between the addreas of the
memory location Iimmediately after the branch instruction and the
address of the branch destination. For branches to nearby locaticna,
the offaet caleulation becomes easier with practice, Branches to
distant partas of the program are not so easily handled.

The "Hele"™ function can save time in determining the offset Lo
use for branch instructions (read its description In Section 4.1.2 IF
you have not already done ag). When you are entering a ©branch
inatruetion as part of a program, First key in and atore ln memory Lhe
opeode byte for the brench. Then, 1instead of the two digit byte
offset that pgoes into the second byte of the branch lnstruction, key
in the absolute address to which the branch is dintended to go and
presa the RB ("Rele") key. If the new wvalue in the right two
characteras of the display ia not FF, it is the correct relative offset

for the branch instruction. You only need to preas the YStore™ key to

place the offset inte memory and can then contlnue keylng in the next

inatruetion of the program.

4.6 Cassette Write Function (Shift LU} -- Further Informatlon
The "shifted” function of the LY key writes a range of memory
locations Lo a cassette tape., The series of operatlons required are
as followa:
1. Enter the addresa of the lirst byte to be aaved on cassette
inte "Fetoh Address™ (uaing the RY key).

2. Enter the address immediately following the last byte Lo be
saved intc "Cend Addresa" {uaing the RT keyl.

3. Press "Shirt Lock™ (RO}, then "Cuwrite® (L&}, (The display
will go blank.)

4. Flip the cassette Iinterface switech on.

5. Start the casactte pecorder in record mode (Volume half way
up, tone on "high®).

fi. Presa the "Game Select" awiteh on the Video Computer conscle
(If you are writing at the beginning of the cassette, wait
until the leader is pasaed before presaing "Game Selecl").

T. HWhen the display reappears, wait a few seconds and stop the
recorder.

8. Flip the cassette interface switeh off.

9, Preas the "Unshift®™ key (LO}.
¥riting data to a ecassette produces a 12 asecond high-pitched header
tone fellowed by & high warble tone that represents the data. The
data tone i3 followed by a loud, low huzz tene. Each byte writtenm to
caasette has an assoelated parity bit (even parity) whieh 1a checked
when the byte ia read back ("Cread" functicn). Details of the astup
and connection of GLhe cassette are inoluded along with conatruction

notes in Appendix E.

.7 Cassette Read Function (Shift L6) == Further Information

The "aghifted" function of the L& key reads data from a caasette tape

MagiCard Keyboard Functions PAGE h=11

inte a range of memory locaticna. The serles of coperations reguired
are an [ollowa:
1. Enter the addreas of the Firat memory location o receive
data from cassette into "Fetch Addresa™ (using the RY key).
2. Enter the address of Gthe memory location immediately
following the area to receive data into "Cend Addresa" (using

the R7 key).

3. Preaa the "Shift" key (R0), then the "Cread" key (L&6)}. (The
display will go blank.)

1. Flip the caassette interface awitech on.
5. Start the ecassette in playback mode (Volume halfway up, tone
"high") with the tape positioned within the high-pitched

"headepr”,

6. Preaa the "Game Select" awitch on the Video Computer console
{while the recorder ias still playing back the header tone).

T. When the display reappears; stop the recorder.
8. Flip the caasstte interface switch offl.
9. Press the "Unahift" key (LOD).

10. Presa the LO key lour times and then press the "Cend Ad™ key
(RT7).

After all these steps are done, the left f{our characters on the
display’s top line will show the addresa of the location immediately
after the last memory location that was filled with cassette data.
This should equal the walue placed into "Cend Address" in Step 2. If
it does not, bad data was encountered (a parity error) at about the
addresa ‘ahown and the cassette input atopped. Try rereading, perhaps
with the volume turned wp a bit (the tone control should be as high as
poasible).

If the display doean’t return after the recorder has read through
the data, elther the recorder wvolume was Gtoo low, & cable was
disconnected, or an improper address was entered Lin Step 1 or Step 2.
The aimpleat way teo recover ia to briefly turn off the power to the

Video Computer Syatem. If that is not desirable, playing the cassatta

MagliCard Keyboard Functiona PAGE 4-12

Lhrough any random data while adjusting the volume will usually cause
recovery of the diaplay {(due to an ilnput parlty error).

Motlee that data can be read back inte memory at any address
entered in Step 1--not necessarily the same place it resided when it
was recoprded, Similarly, leas than the full amount of data ecan be
read back from a tape (though you muat always start at the beglnning).
For example, a gap can be created in the middle of a program to add
new inatructiona. To produce the gap, first read the entire program
into memory but atore it at an address that 1z larger Lthan the
original starting address by the size of the desired gap. Next, read
the program in again storing it at the normal starting addreas but
ending at the instruction just before the gap. This leaves a reglon
of duplicated instructions in the middla of the program that can be
overwritten by Kkeving in new instructions. Tt is alao possaible to
delete instructiona from the middle of a program by reading the entire
program 1intoe a lower address than wuswval and then overwrliting the
beginning by reading in a portion of the program at the normal
addreas,

Code moved in this way may require a few modificationa (Ll.e., to
addresses contained within its instructiona or to another portion of
the program that references the moved portion), but lor a large
program of hundreda of Lnatructiona thla can be far edsier than
reentering the entire program. You may even develop a few subroutines
that are used (requently in different programs. I vou write them
using a carefully chosen subset of the 6502 instruction set -and
addreasing modes, you will be able to place them anywhere in memory
(using the caasette il they are long) and use them without
modificationsa, A subroutine having this property 1is asaid to be

"position independent™.

CHAPTER 5

MagiCard Memory Map

In this chapter we define the MaglCard memory map--that is, what
each posalble two-byte absolute addresa (s used for. A5 you wWwlll see,
some addresses are used to refer to memory locationa (asuch as the
memory that yeur programs ean be stored in) while other addreases are
used to eontrol the audio and video capabilities of your Atarli Video
Computer System. In the next aection, we give a broad outline of the
use of each range of addresses. In the remaining sectiona of this
chapter we provide more detalls of the use of those addressea that
reference actual memory. A description of the audio and video control

features ls glven in Chapter 6.

5.1

Addroas Range

S —

Q000 - DO3F

Qou0

oogo

0100

0200

0300

FOOoOQ

Fhoo

FBoo

oaTF

0OFF

01FF

02FF

EFFF

F3FF

FTFF

FFFF

PAGE 5-2

Baale Memory Map

Contents

Control regiatera for the TV display, sound and part of
the game controllera. Thia range of addresaes controls
all af the wideo and audic [eaturea of your Video
Computer Syatem; therafore Lt 13 ealled the "Display
Generator®.

The same as 0000 - O003F (i.e. a reference to location
0040 43 identical to a reference to location 0000; a
reference to 0041 ia identical to & reference to 0001
ete,).

Read/Write memory (RAM) used for the stack, temporary
storage of ealeculations, ete. This range of memory
locations 13 called "Zerc Page RAM". The MagiCard
Monltor uses locations Q08B0 - OOAY {as temporary
varlablea) and 00FY - OOFF (lor the atack) =50 uwse of
these locationa by a user program should be avolded,

Same aa 0000 - QOFF

Control registers for the 6532 multifunction device.
Thia device ia described in Section 6.1.

This address range serves no useful Ffunction but no
reference should be made to bhese addresses as it may
cause unpredictable reaulta for your program !

Program storage read/write memory (RAM). Locatliona
FOOO - FOD1 are used Lo store the pixel-bits used by
the TY display penerating aubroutine (aee Seotien 7.1).
User written programs can occupy locationa FODZ - F3FF.
This entire memory range (FOQOO - F3FF} can be [freely
read by a user program but any attempt to modify cne of
theas locations must ocour via one of the monitor
subroutines (see Section 5.2).

Used by the MaglCard Monitor program to store values
into the RAM contalned in FODD - FIFF (aee
Section 5.2).

Contains read only memory (ROM) which holda the
MagiCard Honltor program and 1ts user callable
subroutineas. This memory ecan be read by the user
program bubt cannot be written Llnteo.

MaglCard Memory Map PAGE 5-3

5.2 Detallas on Use of Addreas FOOO - FTFF

A3 mentloned above, the address range FOO0 - F3IFF contains memory that
can be used for user written programa and user data. Howaver thera
are important reatrictions on how thia memory c¢an be used, The

rastrictions are aa lollows:

1. MNo imstructions that atore lnto memory <an relerence an
addresa In the range FO000 - F3I00 (These addresases ara
"read only"). An example of a store instruction la "STAM.

2. An lnatruction that stores a value inte an addreas In the
range FU400 - FTFF will actually place the wvalue into an
address 400 lowar in memory. For axampla, a atape Lo
location F523 places Gthe wvalue into F123, (The addresses
FUo0 - FTFF are "write only").

3. HNone af the following Lnatructions ¢an be wsed with any
addresses in the range FOO0 - FTFF : ASL, DEC, INC, LSR,
ROL, ROR. The reason for this ia that these inatructiona
read a value from a location, modify it, and store Lt back to
the same location. Since addresses Prom FOQO - PTPF contalns
either read only ‘or write only memory, it 1s imposaible to
read from and then write back into memory using the same
address for both operations.

B, Inatructions that store to the address range FU0D - F7FF muat
be located in the MagiCard Monitor ROM or the zero page RAM
(B0 - FF}. Any other attempt Lo store into these locations
may work with some HagiCard modules butb its rellability
cannot be guarantesd. Haer programs that wish to atore inte
locationa FYO0 - FUYFF can either do so from the zero page RAM
(perhapa by placing & small subroutine there) or they can
make uze of the monitor subroutines that store Inteo thia
address range (in particular, Se¢ Ehe BSTPM subroutine
deserlbed in Section 7.2).
Additional Restriction: When using indexed addressing
modes to store into this address range, the most sig-
nificant byte of the address provided by the instrue-
tion must not change when the index is added.

5.3 Use of Zero Page RAM (0080 - QOFF) by MaglCard Monltor

In this asectlon we give a brief descriptfion of how the zero page HRAM
iz used by Lhe MagiCard moniteor program, The [lour letter names (or
subroutines (such as PSHD and DSPL) used below are the same ones used
in Chapter T whera the monitor subroutines are described. The symbola
"L5B" and "MSB" mean "leaat aignificant byte®™ and "moat signiflicant

byte™ respectively,

Addroas

80,81
82,83
au , 85
86,87
86,89

84, 8B

8¢, 8D

BE

arF

90

91

g2

93.= 97
93

94,95

36
g8 - A1

A2 = AG

A9 - FB

HET]

———

LSB,MSB of keyed in digits accumulated by subroutine PSHD.

Left ,Right keyboard contreller number of new key pressed
(rfilled by subroutine DSPL).

LSB,MSB of "Store Addreas® (filled by the monitor when the R{
key i3 preaaed).

LSE,MSB of "Fetch Addresa™ (fllled by the monitor whem the R
key is pressed).

L5R,MSB of "Extra Addreas® (filled by the monitor when the R9
key is preased).

Left,Right keyboard controller number of current key pressed
(filled by subroutine DSPL).

LSB,M3B of "Cend Addresa" (filled by the monitor whan the RT
key is presaed). Also uvaed as the base addreas for
aubroutine STPM.

Character number usaed as input for subroutins ONEC.
Alao horizontal position input parameter for subroutine CALP.

Line numbar used as input for subroutines ONEC and DOLN.
Also wartiecal position input paramater for subroutine CALP.

Used by CRED/CWRT to hold the byte currently being
read from/written toc caasette, Uaed as a temporary storage
location by ONEC, DOLN, CALP and DISA.

Uaed by CRED to hold the L3B of the addreas where the next
byte read from the oassette 1a to be atored. Used as a
temporary atorage locatlon by ONEC, DOLN, and MAIN.

Used by CRED to hold the M3SE of the addresa where the next
byte read from the caasatte ia to be atored. Used as a
temporary atoraga location by OMEC, DOLN, and MAIN.

Used by aubroutines OHEC and DOLNM.

Used by ADTY and INSN to save the X index reglster. Used by
CRED and CWRT in performing parity checks,

Used by GO (see Sectiom 7.15.7) to store the LSM,MSE of the
address to which it jumps.

Cursor blink counter used hy MAIN.

ASCII character codes inmput to OMEC and DOLN,

Zeroed by RSET (when a BRE insatruction is executed or when
the Video Computer Syatem is powered up) but not otherwise

used by the monitor.

Totally untouched and unused by the MagiCard monitor. Can be
used by a user program for anything it wishaa.

MagiCard Memory Map PAGE 5=5

F§ = FF Used as the atack by the monitor and monitor subroutines.
When eaxecution of a user program 1= begun (by pushing the
"Run" key), the atack pointer reglster will contaln FF.
Moniter subroutines are guarantesed not to push more than
aeven bytea onto the atack, thus using locations FF through
F3. If the uwaer program usea the atack and then calla a
monltor subroutine, the atack may extend below location F3.
Ba very cautioua to aveld placing a program in locationa that
may get overwritten by the atack (or vice=versa).

CHAFTER 6

Detalls of Video Computer System Features

The Atari Video Computer Syatem 1a capable of performing many
sophisticated tazskas as you can immediately see by playing an Atari
game cartridga, The MagiCard monitor provides subroutines that allow
easy acoeas to a very useful subset of the Atari featurea. In order
to fully realize the potential ecapabilities, howaver, a much deaper
understanding of how the Video Computer Syatem works is required.

In this chapter a great deal of information about the operation
of the Vides Computer System i3 given. For some features (such aa the
"high resolution™ graphics ecapability); a coaplete deacription 1a
bayond the scope of this manual. However, you will Find enough of an
explanation to give you a good atart in investigating these features
yoursellf (either by using the MagiCard monitor keyboard to store
valuea into the control regiaters, or by writing some test programs).

The first three sections ol thls chapter each discuss one of the
devices that are used to provide the Video Computer System features,
These devices are the 6532 multifunction integrated clroult, the game
controllers (keyboard, paddle, and Joystlck) and awltches, and the
Atari display generator integrated circult. The last two asections
glve more detalls on the sound generating feature and on hew to keep

the dilaplay synchronized on your TV set,

Detalls of Video Computer Syatem Featureas PAGE 6-2

6.1 The 6532 Multifunction Integrated Circult

The 6532 multifunction integrated circuit (called the "RIOT") i3 a
ehip in the 6502 family of integrated clreuita. It ls manufactured by
the same companies that make tha 6502 (Roeckwell International and MOS
Technology). The name "RIOT" atanda for RAM-Input-Output-Timer,
becausa the RIOT does all theases things. HRelated ehips in the 6502
family (such as the 6522 PIA and eapecially the 6530 RRIOT) are
almilar enough to the RIOT that you can learn a great deal by reading
any information you may be able to find about them. In thia section
the RIOT ia described, alighting its interrupt ecapabilities, because -
interrupts ara not used by the Video Computer Syatem. The details of
how the RIOT iz connected to the Atarl ocontrolleras 13 given in

Section 6.2.

6.1.1 Input/Qutput (I/0) Portas

The RIOT has two input/output porta, labeled ™A™ and “B"™. Each I/0
port has elght linea that can elther input {(read) or output {write)
TTL logie signals (i.e. from D to 5 volta). Each port also has two
eight-blt reglaters: a "data dipectlon regiater” and a "data value
reglater”. The n’'th bit in these reglaters ia asscolated with the
n“th line in the port. The data direction register is used to speecify
the mode (input or output) for each line. A blt value of one sets the
correaponding line to output, a value of zero sets Lt te input. Once
the data direction reglater has been set, the data itselfl ia read from
{or written Gto) the data wvalue regiater. When using a port for
output, a bit set to one Ln the data wvalue register produces an output
algnal of TTIL "high™ (2.4 to 5.0 volta). A bit set to zero produces
an output signal of TIL ™low"™ (0.0 to 0.4 volts). Each output line

can drive one TTL load plus 30 pf of capacitance. When usaing a port

Detalls of Video Computar Syatem Featurea PAGE 6=3

for input, a TTL high aignal or an unconnected line produces an input
bit of cne, and a TTL lew aignal produces an input bit of zero.

On power up, the RIOT data direction reglatera are set to =zero
(input). All eight bits of the A port ara set to output when the DSPL
subroutine is called (and by the monitor program itself because it
calla DSPL). The B port ia left in the input mode by the monitor
program and ia also reset to input when a BRK instruction La executed.

Thae A and B I/0 ports are very similar in their operation, with

the lollowing execeptiona:

1. When uaed for output, I/0 port B ean supply more ourrent at
logle state zera than port A (Both porta can supply 1.6 ma at
0,4 volts., Port B can supply 3.0 ma at 1.5 volts),

2. If a line in the B port is aet to output, the wvalue of fta
bit 4in the data value register will always be the last value
the bit was set to. A read of a bit In the A port data value
register will, under the same circumstances, return the logiec
value that actually exists on the output line. Thus, Lif CEthe
A port’s smaller drive capacity i3 overridden by an incoming
signal, the incoming signal can be detected. Reading the
data direction register of elther port always returns the
last value written into it (00 immedliately after power up).

3. The most significant bit (bit aeven) ﬁf the & port has Ghe
capability of detecting logic transitions and seting another
bit im a RIOT control reglater when a transition has

occurraed. It 1is poasible to detect transitiona from
logic zero to logle one, logloc one to logie zero, both, oar
neither.

6,1.2 HRAM

The RAM contalned in the RIOT is just the zero page RAM with memory

addresses 80 through FF.

6.1.3 Timer
The RIOT has a aingle count-down timer. A somewhat simplified

description of 4its operation is glven. {The timer in your Video

Petalls of Video Computer System Features PACGE 6-U

Computer Syatem may not do exactly whal the 6532 data saheet says, but
it will do what is described here.) Basically the timer is a reglater
whose value can be aet, and which will then automatically decrement at
some [raction of the microprocessor cloek rate. By uaing RIOT control

regiaters you can:

1. Set the timer to a value and begln lts countdown.

2. Set the rate of countdown aa a fraction of the microprocessor
clock rate (1.197MHz).

3. HRead the current timer value.

. Check if' the countdown has reached zero.
When the countdown reaches zero, the timer sets the tlmer-count-down
flag, walts as long as it did at any other Limer value during the
countdoWwn, sets the tilmer value to FF, and begins a repeated count

down Crom FF to 00 at the full mic¢roprocessor clock rate,

NOTE
The microprocesscr clock counta Té times
in 1/15,750 of a sscond. 1/15,750 of &
second i3 the time neaded for a TV aet
to 8can one horizontal line of the
ploture. Thia fact 1s Iimportant when

you are trying to aynchronlze a diaplay
on the TY sereen (see seation 6.5).

6.1.4 RIOT Control Registera

In this sectlon the addresses and functions of the RIOT control
reglaters are described. Theae reglatera are memory locationa that
perform a apecial functlien when they are written into or read from.
Many of the reglsters aerve a dual function--when they are written
{nto they may set & value for one of the RIOT functiona, and when they

ara raad from Gthey may give a wvalue that 1is assoclated with a

Detalls of Videc Computer System Features PAGE 6-5

different RIOT functlion. The RIOT ecannot Ainterrupt the 6502
microprocessor, but the the interrupt-status Flags (in locatlon 0285)
will be set whenever an Iinterrupt-causing condltlon has occurred.
¥hen wuwaing the table below, remember Lhat the bits in a byte are
numbered from zero (the lesast aignificant bit) through seven (the most

significant or aign) bit.

Detalls of Video Computer System Features PAGE 6-6

Address (Read/Write) Functlon

0280

0281

o282

0283

D284

D294

029C

0285

0235

029D

0284

0285

——— -

(R/W)

(R/W)

(R/W)

(R/W)

(R}

(R)

(R)

()

(R)

(r)

(W)

(W)

I/0 port A data value reglater, When a line that
has been set to output ia read, the value seen la
the actual loglc value on the line not the wvalue
that was last written inte this register for that
line.

I1/0 port A data direction reglster. (A bit value
of zero sets a line Por input.)

1/0 port B data walue reglster. When a line that
has been 3et to output Is read, the value seen is
the value last written Into this reglster for
that line.

I/0 port B data direction regiater. (A bit value
of zero mets a line for input).

Current timer contents. This wvalue 13 always
baing counted down.

Same as 0284 except reading this loeation
disablea setting of the timer-count-down flag
when the timer has counted down to zero.

Same as 0284 except reading thia location enables
setting of the tlmer-count-down flag when the
timer has counted down Lo zero.

Read and reset flag bits

Pit seven 13 the timer-count-down f[lag (set to
one when the timer reaches zero).

Bit aix is the bit-seven-tranaition flag. This
bit ecan be used (asauming that things have
bean propérly set up by writing lnto locatlion
0284 or 0285) to detect logic tranaitions on
the moat algnificant line of the A I/0 port.

Bits zero through five will always be read as
zero,

Same as 0285 except reading this locatlon
disables aetting of the Gtimer-count-down flag
when the timer has counted down to zero.

Same aas 0285 except reading this locatlon enables
setting of the timer-count-down [lag when the
timer has counted down to zero.

Enable setting of bit-saven-transition flag when
line seven on the A I/0 port goes from logio
state ona to logio atate zaro.

Epable aetting of bit-aeven-tranaltlon flag when
line seven on tha A I1/0 port pgoes from loglc
state zero to logie state ona.

Detaila of Video Computer System Feabures PAGE 6=T

D286

0287

0294

0295

0296

0297

nz9c

n29D

029E

0z29F

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

Disable setting of bit-seven-[lag for a logle one
to logle zero tranaltion.

Dizable setting of bit-seven-flag for a logle
zero to logic one tranaltlon.
(It does not matter what value 1ia written inte
locationa 028U through 0287.)

Set timer count down value, begin counting down
every mileroproceasar olook ayele, and diaable
aestting of timer-count-down flag.

Set timer count down value, begin oounting down
every elghth aleroprocessor eclock eoyele, and
disable setting of timer-count-down [lag.

Set timer count down value, begin oountlng down
every sixty-fourth microprocessor clock cyele,
and disable setting of timer-count-down llag.

Set timer count down wvalue, begin counting down
every 1024-th (decimal) microprocessor olock
cyele, and disable setting of timer-count-down
flag.

Same a3 location 0794 except enable aetting of
timer-count-down flag.

Same as location 0295 except enable setting of
timer-count-down lag.

Same A3 location 0296 exopet enable setting of
timar-count-down flag.

Same as locatien 0297 except enable satting of
timer-gount-down flag.

Detaila of Video Computer Syatem Features PAGE 6-8

6.2 Game Controller and Switeh Connectlions

In this section we discuss how the Atarl game controllers (keyboard,
joyatlek, and paddle) are interfaced to the mieroprocessor. The two
controllers are connected to the Video Computer Syatem wia two nine
pin econnectors., When wviewed from the back of the game, the pins on

the econnectors are numbered asa follows:

right controller left controller
12345 12345
6§ T899 6789
Figure 10

The following abbreviations will be used in deacribing how tLthe game
controlleras are connected:
LCA = Fin number "a" on lef't controller connector {n runa from
one Lo nine),

RCn = Pin number "n"™ on right controller connector (n runa from
one to nine).

PAn = RIOT I/O port A line mumber "n" (n runs from zere teo
aeven).

PBn = RIOT I/0 port B line number "n" (n runa from zero Lto
seven).

6.2.1 HRear Connector Wiring

The two rear connectors are Wwired inslide the game as follows:

Fin Connected to

RC1 PAD

RCZ2 PAY
RC3 PA2
RCU PA3

RC5 Display Generator control reglater at location 34

Detalla of Video Computer Syastem Features PAGE 6-9

RC6 Display Generator control reglater at loecation 3D

RCT +5 Volts (note that the game i3 not capable of supplying
mora than 10 mA of current)

RCA Power ground

RCS Diaplay Generator control register at location 3B

Lc1 Pab
LC2 PAS
LC3 PAb
LCH PAT

LCS Display Generator control reglster at loeation 38
LC6 Display Generator control reglster at location 3C

LCT +5 Volta (note that the game la not ecapable of supplying
more than 10 mA of current)

LCA Powar ground

LC9 Diaplay Ganerator control reglster at loeation 39

Rear connector pins RCS, RC6, RCS, LCS, LCGH, and LCY9 are ecach
"connected to® a reglster in the Atarl diaplay generator (see
Section 6.3). A program can read the diaplay generator reglster to
determine Gthe woltage that 13 applied to the rear connector pin
assoclated with the reglater. If the pin is grounded, a positive
value will be read; if the pin is connected to +5 volta or left
floating, a negative value will be read. It takes a couple of hundred
microsecondas for a change in wvoltage at a connector pin to be
reflected In the value read from a control reglater, Rear connector
plns LCAH and RCE are electrieally connected in a slightly dlifflerent

way than the other connector pina,

Details of Video Computer System Featurea FAGE 6=10

6.2.2 Conzple Switches Connectlona
The switches on the console of the Videc Computer System are connected
te I/0 port B as Followa:

Line Connectlon

———— o

PEG Game Resat awitch. The PBO line sees a logic zero when the
awitoh ia pressed.

PE1 Game Select awltch. The PB1 line sees a logic =zero when
the awitch is pressed.

g

PE3 TV Type awitch. When the switeh ls in the color poaition,
1ine PB3 sees a loglc one signal. This awltch goea nowhere
elsm.

PR

PBES

PB6 Left Difficulty switeh, Line PBS sees a logle one aignal
when the switeh ia in the up position.

PET Right Difficulty sawltch. Line PBT seea a logic one signal
when the awiteh is In the up positien.

6.2.3 Keyboard Controller Connections

Each button on a keyboard controller ia an electrical switch that is
connected between one llne from I/0 port A and one of the display
controller regiaters. All the buttona in the same row (e.g. 1, &
and 3) are connected to the same 1/0 port line. All the buttons Ln
the same column (e.g. 1, 4, 7, and ®) are connected to the same
display generator reglater. The connectlons teo the left (right)

econtroller are shown in Figure 11.

Detalls of Video Computer Syatem Features PAGE 6=11

1 2 3 | €===LC1 {REC1)
4 5 f | <==-LC2 (RC2)
T B § | €===LC3 (RC3)
W 0 # | <——-LCH (RCM)}

N N %L

| | |

I I |
LC5 Lco LC&
(RE5) (RCY) (RCE)

Figure 11

6.2.4 Joystick Controller Connections

In the description of the joystick controller connesctions, we will use

the symbol "Cn" (where "n"™ puns from 1 to §9) to stand for the n'th pin

on elther the right or the left rear connector. If a Joyatick is held

so that the red button is in the upper left corner, the following liat

deaoribas the Jovatick operation:

1'

Stick not pushed in any direction: Plns C1, C2, €3, and Cl
are "floating" (that la, not electrically connscted to
anything).

Stick pushed forward: Pin C1 is connected bto piln CB (ground}.

Stick pulled backwards: Pin C2 1ia connected te pin C8
{ground).

Stick pushed to the left: Fin C3 is connected to pin CB
(ground}.

Stick pushed to the right: Pin CY is connected to pin CB
(ground).

Red button not puahed: Pin C& La lloatlng.

Red button pushed: Pin C6 is connected to pin CB (ground},

Petaila of Video Computer Syatem Featurea PAGE 6-12

Pina C1 through CH are connected te lines from RIOT IS0 port A. When
the 1/0 port lines are read into the computer, a floating line will
ahow a value of one, while a grounded line will show a value of zero.
The C& pin i3 connected to one of the display generator control
reglaters. If the pin i3 lleating, the contrel reglater will pread a
negative value, while a grounded pln @will read a positive value.

I the joysatiek i3 pushed dlagonally, two pins are supposed to be
grounded at the same time. For example, moving the stick back and to
the left should connect both C2 and C3 to CH, In reality, however,
some joyaticks will work this way while others will not. You may have

discovered this while playing pgames that attempt to use thias feature.

6.2.5 Paddle Controller Connections

A3 In the Jjoyatick description, we use the aymbol Cn to repreaent the
n'th pin on elther the 1left or right rear connector. The paddle
controllers are wired as lollows. Two controllers are connected to
eash rear connector. Each controller has a switeh button and a dial.
The dial ia connected to & one-megachm linear taper potentliometer
which i3 at minimum reslstance when Lhe dial is turned completely
glockwiasa, One of the controllers has 1lta butbton wired so preasaing it
econnecta (the otherwise (loating) CU to CB (ground}. Thia
controller™s potentiometer {3 connected between pins C5 and C7
(+5 volta). Presalng the other controller’s button connects pin C3 teo

CB, and its potentlometer is connected between pins C9 and C7.

Detalls of Video Computer System Features PAGE 6-13

6.3 Atari Display Generator
The Atarl Display Generator is a custom built integrated circuit that,
under the econtrol of the 6502 mieroproceasor, can generate a
sophisticated display on your TV screen, and can produce a wide
varlety of sounds from your TV speaker. There are actually two kinda
of displays that the dlsplay generator can produce--a "low resclution™
diaplay ({uaed by thes MagiCard monitor for ita TV diaplay) and a "high
resolutlion™ diaplay (used by some Atari game cartridges to make more
detailed diaplaysa). The high resolution display la very complex;
theraefore, we can only give a briefl description of how its control
reglatera work.

For both kinds of diaplays, the diaplay is generated one line at
a time. Thus, to draw an object on the TY screen, a program must keep
track of which sean line 1s being made on the TV screen, and then set
the proper registers in the diaplay generator to the proper value for
each line on which the object appears. This 13 a tricky busineas
which is one of the reasonz why we have provided the DSPL aubroutine
to help you make displays. More information about synchronlzing the
display with your TV set is given in Section 6.5. More informatlon
about sound generatlon 13 given in Section 6.0.

As with the RIOT device, the diaplay generator consists of a aet
of control registers, each with an ‘addreas with which it 1is
referanced. Each control reglater is elther read only or write only.

The control registera and their functions are as follows:

Detalls of Yideo Computer Syatem Features PAGE E-14

Addreas (Read/Write) Funetion

e

0o

a1

a2

03

o

05

o6

o7

09

on

0B

oc

an

0E

oF

(W)

(W)

(W)

(W)
(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

When bit §1 18 set to one, atart TV vertical sync
period. When set to zero, end the vertical sync
period.

When blt #1 i3 set to one, satart TV vertieal
blanking period. When set to zero, end the
vertical blank period.

When anything is written into this regisater, the
mieroprocessor will stop executing instructions
until the begining of the next TV horizontal acan
line.

Unused

Controls the placement, repetition, and
magnification of the high resolution masks at
locationa 1B and 1D, Writing =zero Ainto this
location gives a single, unmagnilied copy.

Same a3 O except lMor the masks at locationa 1C,
and 1E.

"Left color®. Used for 18,10 high reaclution
masks and lor the left hall of the low resclution
display.

"Right color™, Used for 1C,1E high resclution
masks and for the right half of the low
reasplution display.

"Alternate color™. Can be used for both halves
aof the low resclutlen display,

"Background color™. This ia the color of the
soreen where nothing 1a diaplayed.

Bit #0 = 1 => reversa right half of low
resolution diaplay.
Bit #1 = 1 => left and right colors used for low
resolution display (otherwise, both sides are
"maltarnate® color).

Bit #3 = 1 =z» diaplay 1B high resglution mask in
reveraed bit order.

Same as 0B except for 1C high reaclution mask.
Most significant four bits (ordered from bit 4
through bit 7) are the beginning of the
twenty-bit low resclutlon mask.

Hext eight blts (ordered from bit T through
bit 0) of the low resclution mask.

Last eight bits (ordered f(rom bit 0 through
bit 7) of the low reaclution mask,

batalla ol Video Computer Syatem Featurea PAGE 6-15

10 = 14 (W)
15 (W)
16 (W)
17 (W)
18 (W)
19 (W)
1A (W)
1B (W)
[+ (W)
1D (W)
1E (W)
1F (W)
20 = 24 (W)

Each blit in the twenty-bit low resclution mask
controla whether a corresdponding poaltion of the
current TV scan line will be the low reaclution
color or the background color. The twenty=blt
mask i3 actually displayed twice on each line,
onece on the right aide of the TV acreen and once
on the left. Howaver, the contenta of the bit
muaak reglsters (0D, COE, and OF) can be changed by
the program during the drawing of the line by the
¥ s=at. Thua, Corty lndependently controllable
line segments can be drawn on each scan llne
using the low resslution diszplay (Thia ias how the
MagiCard monitor and the DSPL subroutine make TV
displaya.).

A store into one of thess locations positiona the
corresponding high resolution mask (1B = 1F)
horlzontally within a scan line as determined by
the delay from Gthe beginning of the scan until
when the atore ia made.

Sound channel #1, scund=type reglater {only the
least aignificant four bits are used).

Sound channel #2, sound-Ltype reglster

Sound channel #1, pitch reglater {only the least
signiflcant Five bita are uaed).

Sound channel #2, pltch register.

Sound channel #1, volume reglater (only the least
signifieant four bits are used).

Sound channel #2, volume reglster.

High resolution display maak. The bita written
into this regisater define the shape of a high
resclution display object (the moat significant
bit deflnes the left side of the object). The
ecolor of the object ia set by atoring into 06.

A second high resclution display mask. The color
13 set by atoring inte O7.

Setting bit #1 displays a short Interval on the
acan line (1/160-th of a acan line) in the color
sat by storing into 06.

Setting bit #1 displays a short interval of the
sean line (1/160=th of a scan line) in the color
aat by atorlng into 07.

Satting blt #1 diaplays a short Interval of the
sean 1line (like 1C and 1D) but the color is
always white,

Seta the horizental-pesition, ahilft-increment
wvalue (see desgription of locatlionz 24 and 2B)

betails of Video Computer Syatem Features FAGE 6-16

25 - 29 (W]
24 (W)
2B (W)
30 = 37 (R)
38 - 30 (R)

for the high resolution objects delined wuaing
locations 18 tkrough 1F. The wvaluea atored here
should range from -B80 (a right shift of 8 places)
ta +70 (a left ahift of 7 placeal. The total
width of a TV scan line i3 160 (decimal) high
rasolution display elementa (each high resslutien
element 13 one-fourth GChe wldth of a low
resolution element}.

Additional eontrol ef 1B through 1IF high
reaclution objeacta.

Writing inte this location incrementa the
horizontal poaition of all the high resolutlon
objects by the amounts stored in their assoclated
horizontal-position, shift-increment reglatera
(locatlons 20 through 24).

Storing into this lecatien seta to zero the
values of all the horizontal-position,
shift-increment reglsters (locationa 20 through
24},

Display generator status LInformation.
Analogue input from controller connectiona [(see

Section 6.2). A negative value indicates an
input woltage above threshold voltage.

betalls of Video Computer Syatem Features PAGE &6-1T7

6.4 Details of Sound Generation

The Atari diaplay generator control reglsters between locations 15 and
1A ean be used to produce sounds from the TV apeaker. There ara
actually two independently controllable aound "ehannels®™-- each of
which has a piteh register, a volume pegister, and a sound-type
reglater, The acund that comes out of the TV apeaker i3 a mixture of
the sounda that have been selected [rom the two channels.

The value stored Llnto the piteh reglster (location 17 for the
firat asound channel, loecation 18 for the second sound channel)
specifiea the pltch of the sound. Storlng a value of 00 produces the
higheat pitch; astoring a value of 1F produces the loweat pitch. The
value atored Llnto the volume reglater (location 19 for the first aound
channal, lecatien 1A for the seeond scund channel) apecifiesa the
volume of the sound. Storing & value of 00 produces silence; storing
a value of OF produces the loudeat posaible sound. The volume of the
two channela ia not totally lndependent-- asz one gains wvolume, the
other loaes volume. The wvalue satored into the sound-type reglater
{location 15 for the first sound channel, location 16 for the second
aound channel) apecifles the type of sound Lo be made, Values from 0D
through OF may be stored Iinto theaa reglstera. Of the sixteen
posalble wvalues, two (00 and OR) produce no sound. The other values
produce a variety of sounds that are difficult to deseribe. The
easlest thing to do i3 to experiment by storing various values Into
the sound reglaters and 1istening to what happens | One (lnpal
comment-=because the 6502 executes inatructions at a very fast rate
compared to the length of the sounda that are produced, "real-time®
manipulation of the scund control reglaters can produce a wide variaty

of elfects.

Detalls of Video Computer Syatem Features PAGE G-18

6.5 Detaila of TV Display Generation

The most convenlent way to make a TV display 13 to use the DSPL
monitor subroutine desoribed in Section 7.1. A program ecan also make
a dlaplay on the TV screen by atoring 4inta the diaplay contreller
reglaters in a precisely timed manner. The rast of Section 6.5
describes how to make a diaplay wlthout wuaing the DSPL asubroutine.
Example 4 in Chapter 2 givea an example of how Lhe procedure described

balow can be used ln a program.

£.5.1 Baslie Diaplay Generation Procedure

Any program that makes ‘a atable display on the TV screen must repeat a
basie set of operations once every one-sixtieth of a sacond (the time
it takes a TV set to draw one frame). The time it takes [lor the
computer to execute this "basic loop" can be precisely controlled by
using the timer contained in the RIOT device (see Section 6.1) in
combination with the dilaplay controller reglater at locatlion 02. I
the basic loop takes more or leas than one-alxtieth of & second to
exacute, the TV ploture will wiggle alightly and may roll vertically.

The oparations in the basie loop are aa followa:

1. 3Start the vertical-blanking interval.
2. Start the vertical-ayne interval.

3. End the wvertical-aync interval.

§. End the vertical-blanking interval.

5. Set up each line of the TV pleture as the line la belng drawn
by the TV set.

6. Go back to Step 1.
Eaach of the ateps in the basic loop will now be disousaed in more

detall.

Dataila of Video Computer Syatem Features PAGE BH=-19

G.5.2 Start the Vertleal-Blanking and Vertical-Syne Intarvala
The vertical-blanking and vertical-syne time intervala are begun at
the same time. The operationa neceasary to begin the blanking and
ayne intepvala are aa followa:
1. Store aomething (anything) Lnte the diaplay controllar
reglater at location 02.

2. Jdtore a byte with bit #1 aset Into the diaplay controller
reglater at location 01.

3. Store a byte with bit #1 set 1nto the diasplay econtroller
regiater at location 00.

The TV set reaponds to these operatlions by:

1« Turning off the "electron gun™ &that 1t uses to draw the
pieture on the TV acreen, This i3 done to keep from mesaing
up thae TV pleture when the gun moves from the bottem of the
soreen to the top.

2. Starting to move the gun from the bottom of the ourrent TV
frame to the top of the next frame.

6.5.3 End the Vertical-Syne Interval
The wvertleal-ayne interval muat have a ahort (a few hundred

miorcseconds) [ixed duration. The RIOT timer funetion ean be used to

keep track of how mueh tilme i3 left belfore the vertleal-syne Ainterval

should be ended. A good procedure to follow is:

1. Immediately after the vertleal-aync interval has been
astarted, astore Gthe walue 2A 4into the RIOT timer control
register at location 0295. Thia initializes the timer to a
value of 2A and starts it counting down toward zero.

2. At this point, there 1a time for about elghty average 6502
inatructiona Eto be executed before the timer reoachesa zero.

Your program c¢an use thia time to perform any caleoulations it
needs Lo do,

3. After the progras haa done ita calculationa (Lf there were
any), it ahould read location 0284 (the time remalning in the
timer count down). If the wvalue read 1a not zero, Gthe
program should loop back and read 02BY again.

§. When the program reads a value of zero [rom location 0284, it

petails of Video Computer System Features PAGE 6-20

should end the vertical-sync interval by writing a zero lnte
the diaplay controller reglztera at locations 02 and 00 (in
that order).
By the end of the vertiecal-sync Ainterval, the electron gun (atlll
turned off because the vertlcal-blanking interval has not yeb ended)
haa reached the top of the screen and i3 beginning to draw a new [rame

ol the TV pleture.

6.5.40 End the Vertiesal-Blanking Interval

Unlike the vertical-sync interval; the length of the vertical-blanking
Intepval can be made as long as dealred. Once the vertleal-ayne
Interval has ended, continuing the vertical-blanking {interval causes
the lines of the pleture at the top of the screen to be blank.
Because the program will often be very busy forming the display after
the vertical-blanking has ended, much of the computing done by a
program must be done before vertical-=blanking i1ia ended. Ir your
program does a lot of computation, the vertleal-blanking interval can
be extended (thus moving the Cf[irst nonblank 1line of the pleture
further down the asecreen; and reducing the total number of nonblank
linea avallable for your display).

If you look at the display produced by different game carktridges,
you will see the blank area at the top of the screan iz larger for
some games than lor othera. The games with a larger blank area
usually need the extra time for computations. At least one game
{cheas) ahows a aingle-color totally-unaynchronized display while 1t
1a caleoulating its next move., This gives the program 100% of the time
for performing caloulations.

A normal length vertical blanking pericd can be ended as lollows:

1. Immadiately after the verticzal-ayne Interval has been ended,

write the value 24 into loecatlon 0296 {the RIOT "a count down
timer).

Detalls of Video Computer System Featurea PAGE 6-21

2. At this point, there ia time for about five hundred and fifty
averaga length 6502 inastructions before the timer reachas
Zero.

3. After the program has performed its calculations, 41t should
read locatlion 0284 (the time remaining in the timer count
down). Il the value read is not <ero, the program should
loop back and read 0284 again.

i. When the program reads a value of zero from leoeation 0284, L
should end the vertical-blanking interval by writing a zero

into the display controller regiaters at locationa 02 and O1
(in that order).

$.5.5 3Set Up Each Line of the TV Plcture

After the vertieal-blanking lnterval has been ended, the TV's electron
gun 438 ‘turned on, and the horlzental lines drawn by the gun will be
viaible on the TV screen. If the above pecommanded walue for the
length of the vartical-blanking interval is used (i.e. atarting the
RIOT timer by storing 24 into location 0D296), the TV set muat draw two
hundred and twenty-eight lines (EN hex) on the screan before the start
of the next vertical-syne interval. (However it is very poasible that
the last ten or twenty lines drawn will end up below the bottom of
your TV secreen.) Your program can make 1ts display on the screen by
telling the display generator what to place on each line of the
display.

The program ahould atart out by wrlting any wvalue into Gthe
diaplay controller reglater at locatlon 02. This causes the 6502
microprocessor to stop executing instructions untll the TV sebt is juat
beginning te draw the next line on the screen. The instructions
immediately following the write into 02 should write into the diaplay
generator reglaters needed Lo produce the display that you want to
make .

For example, 1f you are using the low resclution diaplay feature

(see Section 6.3}, you must gquiekly write into locations 0D, OE, and

Detalla of Video Computer System Features PAGE 6-22

OF to tell the display generator what pattern i3 to be dlaplayed on
the laft halfl of the TV seresen. If you want to place & new pattern on
the right hand side of the screen, you must then reload the same three
locations--after the bita loaded inte eaech regiater have been
diaplayed on the left aide of the screen, but before they are
displayed on the right aide. The time it takea the TV to draw a line
is auffiecient for about eighteen 65502 instructiona to be executed (or

more precisely, exactly seventy-six microprocessor clock cyclea).

6.5.6 Additlonal Comments

I more Gtime 1a neaded for ocomputing between TV frames, the
vertical-blanking interval can be lengthened and the number of viaible
lines in the display reduced. One line i3 removed from the wisible
display lor every seventy six microprocessor cloeck cyecles added to the
vertical=blanking interval. If the pleture on your TV "wigglea”
slightly, the Gtime the program ia using to make each TV frame is
elther a 1ittle too long or a little too short, Adjust elther the
number of lines 4in the wvisible part of the ploture, or adjust the
length of the vertical=blanking Ilnterval until the picture is atable.
You may find 1t helpful to dump {using the "Insatruction Dump" feature
of the MagiCard) the MagiCard monitor diaplay subroutine "DSPL" (aece
Section T.1) to see an example of how a program can generate a TV

display.

CHAPTER 7

MagiCard Monltor Subroutines

In this section, wa descoribe & number of useful subroutines that
are part of the MagiCard Monitor program. These subroutines are
econtained in read-only memory so it is impossible for them to be
everwritten by a programming errer. The lollowing information 13
provided lfor each subroutine:

1. Subroutine Name--A [our letter name for the aubroutline. The

name 1s given lor convenienoe only and has no meéaning to bLhe
monitor program.

2. Subroutine Address--The four-hex-digit absolute addreas of
the aubroutine.

3. Subroutine Description--A short description of what the
subroutine doas.

4. Subroutine Calling Procedure--Hhat input arguments the
subroutine has and where they are to be placed before calling
the subroutine.

5. Subroutine Outputs--What cutput arguments are produced by the
subroutine and where they are to be found.

6. Subroutine Side Effecta--What memory locations and reglsters
{other than those registerz and memory locatlions that are
used for the output parameters) are modified by c¢alling the
subroutine.

T. Example-<An example of how the aubroutine can be used,

T+1 Refresh TV Display and Read Keyboard Controllers

Name: DSPL
hddress: FAGF

Deaseription: Thia aubroutine makea a diaplay on the TV screan (for one

MagiCard Monitor Subroutinea PAGE T-2

Fframe® lasting one-sixtieth of a second) and determines il any
of the keyas on the keyboard controllers were pushed during that
time, Any program that iz uaing DSPL to display information on
the TV acreen must call DSPL at leaat once each sixtieth of a
second to maintain a steady pleture. A algnifieant amount of* the
aliowaed time between calls to DSPL is taken up by the subroutine
itsell before it retuwrns. This leaves enough time for the user
program to execute about 550 (decimal) average length
instructiona between calls,

For diaplay purposes, the TV soreon is divided into a aet of
equal=sized rectangular reglons called "pileture elementa™ or
"pixels". There are forty-two rows of pixels containing C[arty
pixels each. Each pixel can be individually turned "on" (i.e,
be asen as a amall colored rectangle on the TV screen) or turned
"off® (i.e. be s=een a3 a amall black rectangle on the TV
sgreen}). Furthermore, each pixel has assocliated with it a unique
memary bit (called the "pixel-bit™), When the DSPL aubroutine ia
called, it uses this pixel-bit to eontrol whether or not the
plixel will be diaplayed as "on" or "off", If the pixel-bit is
sat to one, the corresponding pixel will be "on®. If the
pixel-blt is set to zero, the correaponding pixel will be "off".

The pixel-bits are stored in memory locations FOO0 Ehrough
FoD1i. Because of the complicated way the Atari Video Computer
Syatem makes a TV diaplay (aee Section 6.3), the pixel-bits are
atored in memory in a funny way, The aubroutine CALP (aee
Section 7.3) ean be used to Mind the lecatien of the plzel-bit
for any dealred pixel.

Calling Procedure:

Tha subroutine 1a salled via the instrustlon "JSR [A] FAGF".
DSPL has no input parameters but it does depend on proper
initialization of the Video Computer System Display Generator.
Thia initiallization s made by the MagiCard Monitor program
whenever a reset is made (e,g, when the syatem is powered up or
when a BRE instruction i3 executed). Only the colors of the
display are likely to be usefully changed in a user program. The
background color s set by storing a value into loeatien 0. The
pixel s color i3 set by storlng a value into leocation O08. More
datails about color control can be found in Section 6.3 in which
the Diaplay Generator ia discusasd.

Dutputs:

location B2: indicates if a new key was pressed on the left
keyboard controller, If the contents of this location are
negative, no new key has been preased. If the contents are
positive, 4t 13 the wvalue of the key that was pressed
(Preasing the "¥" ey returns a value of OA, and preasing the
ngn key returns a value of OB). Il a key is preaszed and held
down,; it will only be reported on the {irat eall to DSPL
unlesas it 13 released and pressed again.

location B83: indicates if a new key was pressed on the right
keyboard controller.

location BA: indicates if a key is currently belng pressed on the
left keyboard controller. The contenta of this location are
set in the same way as location 82 except that 1f a key is
pressed and held down it will be reported on sach call to DSPL
until it has been released (unlike loeation 82 where it would
be reported only once).

location 8B: indicates if a key is currently being pressed on the

MaglCard Monitor Subroutines PAGE T7-3

right keyboard controller.

Side Effecta:

The accumulator, X index register, ¥ index regiater and conditien
codes are all altered.

DSPL uses the timer [lunction of the 6532 RIOT device (szee
Sectlon 6.1.3), The timer can be read by a user program;
however, 1I' 1t i3 altered between calls te DBSPL, TV
aynchronization will be leat.

DSPL usaes the "A" I/0 port function of the 6532 RIOT device. The
I/0 port can be uaed by a user program, but DSPL will modify
it each time it la called.

Iff the "Game HAeset" switch on the Video Computer System console
is depressed when DSPL i3 called, 3 BRE inatruction will be
axegcuted forcing a reset of the MagiCard Monitor {aee
Section T.15.1). Thia i3 a wuseful way to terminate the
execution of & program that calls DSPL. The I-Tlag 1in the
processor status reglster can be sat to prevent the reset from
ocourring.

7.2 Store to Program Memory

Kame: STPM
Addresas: FFF7

Description: Store the contents of the accumulator inte a memory
location in program memory (i.e. between address FOOO and F3IFF).

The address at which the accumulator is to be stored la Lthe sum

of a apecified aixteen-bit ‘absolute address [called the "base

address®) and the contents of the Y index register ({(called the

"agdresa offset"). Warning: The sum of the ¥ register and

the low order 8 Bifsof the base address should not

Calling Procedurae: oxcend PF,

1. Place the least significant byte of the base address Lnto
menory locatlon BC,

2. Add Tour to the moszt aignificant byte of the base address and
place the result Into memory location BD (i.e., if the bane
address 1s F000, zero should be placed into location BC and,
Fii should be placed into location 8D0).

3« Place the value of the address offset inte the ¥ index
reglister.

4, Place the valua to be stored into the accumulator.

5. Execute the instruction "JSR [A] FFF7n.

Qutputs: None
Side Effecta: HNone

Example: The following program fragment stores a one into memary
location F106:

LbA [I] OO0 glear the accumulator

STA [2] &cC elear location BC

LA [I] FS load accumulabtor with F1 « U
sTh [2] 8b put value FS intoe losatlion 8D

HaglCard Monitor Subroutines PAGE 7-U

LDY [I] 06 placa offaset value of 6 inte Y
Lba [I] O set accumulator to one
J3R [A] FFFT eall subroutine STPM

7.3 Calculate Address and Mask for Plotting

Name: CALF
Address: FFBE

Description: Caleulate an addreas and bit mask to use [or plotting.
This subroutine aids MagiCard usersa in making diaplays on the TV
aocreen. A3 explained in Section 7.1, the diaplay genarating
subroutine produces & diaplay consisting of pixelsa each with an
aszociated pixel=bit in memory. The CALP subroutine takes as
input the pixel’s poaition on the TV screen (i.e., 1t3 row number
and column number) and returns as output the, information needed
to set (or alear) the pixel bit.

Calling Procedure:

1. Place the Horizontal position of the pixel into memory
leocation BE. The horizontal poalition i3 a number between zero
and thirty-nine (27 hex) where a value of zero specifying the
left #ide of the acreen and a value of thirty-nine apeciflying
the right aide.

2, Place the vertical position of the pixel intoc memory location
8F. The wvertical position i3 a npumber between zero and
forty-one {29 hex) where a value of zero apecifies the top of
the screen and a value of forty-one specifies the bottom.

3. Execute the inatruetion "JSR [A] FFBE".

Qutputs:
Y index register: when added te FOO0O0, the value contained in the
Y index ragister givea the address of the byte contalining the
pixel-bit.
Accumulator: has a bit aet that corresponds to the pixel-bit
within the byte,

Side Effecta:
N;Z,;C;and V=flags are altercd
memory location 90 is altered

Examples: The following examples assumeé that memory locations BC and
80 have been previously (illed with 00 and FY respectively, and
that memory locationa B8E and B8F contain the horizontal and
vartical poaiticn of the pixzel being worked with.

Exampla 1: turn on the selected pixel-bit

JSR [A] FFBE caloulate addresas and bit mask

ORA [Y] FOOOD "OR" new bit with cthers

J3R [A] FFF7 store results (with subroutine
STPM)

Example 2: turn off the selected pixel-bit

MagiCard Monitor Subroutines PAGE T7-=3

right keyboard controller.

Side Effecta:

The accumulator, X index register, T index reglater and condition
codes are all altered.

DSPL uses the Gtimer [unction of the 6532 RIOT deviee (azee
Section 6.1.3). The timer can be paad by a user program;
however, if it 13 altered between calla to DSPL, TV
aynchranization will be lost.

DSPL uses the "AM™ I/0 port function of the 6532 RIOT device, The
I/O port ecan be used by a user program, but DSPL will modifly
it each time it 13 called.

ILI" the "Came Reset™ switch on the Video Computer Syatem console
is depreased when DSPL is ecalled, a BRK Inatruction will be
exeguted forelng a reset of the MHMagiCard Monitor {see
Section 7.,15.1). This i3 a wuseful way Lo terminate Lhe
execution ol a program Lhat ecallas DSPL. The [-flag in Lhe
proceaaor status reglater can be aet Lo prevent the reset [rom
oecurring.

T.2 Store to Program Memory

Name: STPM
Addreas: FFFT

Description: Store the contents of Ethe aceumulator inte a memory
location Lln program memory (i.e. between address FOOO0 and FIFF).

The addresa at which the acoumulator is to be stored 13 tha sum

af a apecified aixteen-bit absolute addreas (called the "base

address®) and the contents of the Y index register (called the

"address offset"). Warning: The sum of the ¥ reqister and

the low order 8 Til5of the base address should not

Calling Procedure: axcesd FFP.

1. Place the leaat aignificant byte ol the base address i1nto
memory location BC.

2. ARdd lour to the most signilicant byte of the base address and
plage the result inte memory location 8D (i.e., LT the base
addresa ia FO0O0, =zero should be placed into location BC and,
Fi should be placed into location 8D).

3. Place the wvalue of the addresa offset intoe the Y ipdex
reglater,

4. Place the value to be atored into the accumulator.

5. Execute the Lnatruction "JSR [A} FFFT™,

OQutputs: None
Bide Effectz: None

Example: The (following program (ragment sStores a one into memory
location F106:

Loa [I] o0 elear the mecumulator
3Th [Z] BC clear location AC
LD [I] F5 load accumulator with F1 « 0

5Ta [Z] 8D put value FS into location 8D

HagiCard Monitor Subroutines PAGE 7-h

LoY [1I] o6 place offset value of b into Y
Loa [1] o1 aset accumulator to one
JSR [A] FFF7 eall subroutine STPH

7.3 Caleulate Address and Mask For Plotting

Hamea: CALP
Addreas: FFBE

Deseription: Caleulate an address and bit mask to wuse for plotting.
This osubroutine aids MagiCard users in making diaplays on the TV
acreen. A3 explained 4in Sectlon 7.1, the display generating
subroutine produces a diaplay conslating of pixela each with an
associated pixel-bit in memory. The CALP subroutina takes as
input the pixel’s position en the TV screen (i.e., its row number
and column number) and returna as output the Information needed
to set {(or elear) the pixel hit.

Calling Procedure:

1. Place the Horizontal position of the pixel into memory
location BE. The horizontal position ia a number between zero
and thirty-nina (27 hex) where a value of zero specifying the
left aide of the screen and a value of thirty-nine apeciflying
the right aide.

2, Place the vertical position of the pixel into memory leocation
ar. The wertical position 13 a number between zeroc and
forty=-one (29 hex) where a value of zero apecifies the top of
the ascreen and a value of forty-one apecifies the bottom.

3. Execute the inatruction "JSR [A] FFBE".

Outputs:
¥ index register: when added to FOOO; the value contalned in the
¥ index reglster gives the address of the byte containing the
pixel-bit.
Accumulator: has a bit set that correaponds to the pixel-bit
within the byte.

S5ide Effectsa:
N,2,C,and V-flags ars altered
memory location 90 is altered

Examples: The followlng examples assume that memory locations BC and
BD have been previously filled with 00 and Fi reapectively, and
that memory locations B8E and 8F econtain the horizental and
vertical position of the pixel being worked with.

Example 1: turn on the selected pixel-bit

JSR [A] FFBE calculate address and bit mask

ORA [Y] FOOQ "OR®™ new bit with othera

JSR [A] FFFT7 store resulta (with subroutine
STPM)

Example 2: turn off the aelected pixel-bit

MapiCard Monitor Subroutines PAGE 7-5

J5R [A] FFBE caleulate the address and bit mask
EOR [I] FF complement bit mask

AND [Y¥] Fooo turn off selected bit

JSR [A] FFFT store the result

Example 3¢ preverse the atate of the plxel-bit (turn it off if it is

on, or turn it on L Lt is off)

JS5R [A] FFBE calculate the address and bit mask
EOR [Y] FOODO complement the pixel=bit blt
JSR [R) FFFT atore the reault

Example U: teat if the pixel iz on

7.4

Name:

J5R [A] FFBE caloulate the addreas and bit mask

AND [Y¥] FDOOD this will elear the Z-Tlag iIf the
pixel"a bit is on

BHE (somewhere) branch if the pixel ia on

Place One Character Into The Diaplay

ONEC

Addreaa: FBGT

Deaecription: Set the pixel-bits needed to plot a character.

Calli

Section T.1 explains how the state of each pixel diaplayed on the
TV screen (by the TV diaplay subroutine) ia econtrolled by the
value of 1ta asaceiated pixel-bit 1in memory. By aetting the
proper combination of pixel-bita, it ia posaible to diaplay
charactera ({(letters and numbera) on the screen aa well. Each
character occuplea a rectangle four pixels wide and aix pixels
high {including the Poff" pixela that aseparate adjacent
charactaera). The TV acreen can hold seven lines of Len
charactera each., ONEC ia called to set the pixel bita necessary
{and elear the pixel-bita that are not necessary) to place a
charaeter onto the TV sereen at the selecled poasitlon.

ng Procedure:

1. Place the line number o the character poaition on the acreen
te be [illed into locatlon 8F. The line number i3 a number
between zero (apeeifying the top line of charactera) and aix
(specifying the bottom line of charactera).

2. Place the character number of the character position on the
acreen to be filled into locatlion 8E. The character number ia
a number between zerc {apecifying the lelt side of the acreen)
and nine (apecifyling the right aide of the screen). MNeither
the lin® nor character numbers are checked Lo see il they are
legal valuea. The uae of illegal values may produce varlious
problems with the display or with the user program.

3. Place the ASCIT code (see Appendix B) lor the character to be
displayed Into memory location 98 + character number (e.g.,
when diasplaying the character at character number 9, place the
ASCII code into location 98 + 9 = A1),

MagiCard Monltor Subroutlnes PAGE T-0

§, Execute the instruction "JSR [A] FBET".
Outputa: None

S5ide Effects:
The accumulater, X index regiater, Y indax regiatar, and
condition eodea are altered.
Locationa 82,83 and 90 through 97 are modified,
This routline cannot be called more than twice between calla Lo
DSPL if loas ol TV synchronlzatlon ia to be avolded.

Example: The lollowing program [ragment sets the plxel-blts required
to diaplay the letter "Z" 4in the bottom right-hand corner of the

TV acreen:

LDA [I] 09 load 09 into acoumulator

5TA [Z] BE atore into location 8B

LbA [I] 06 load 06 into accumulater

5TA [Z] BF atore into location 3F

Lba [I] sSA load ASCII for "Z" into accumulator
STh [Z]1 M atore inta A1

JSR [A] FR&T aall QNEC

7.5 Place a Line of Characters Into the Dlaplay

Hame: DOLN
Address: FCCH

Deseription: Set the pixel-bits neceasary to diaplay an entire line of
charactera. This subroutlne ls simlilar to subroutine ONEC except
1t works with an entire lime of characters---not just one.

Calling Procedure:

1. Place the line number into location BF. The line number is a
value From =zero (apecifying the top of the TV scresn) bto aix
(apecilfying the bottom of the TV =oresen).

2. Place the ASCII codea (aee Appendix B) lor the characters to
be diaplayed into locations 08 through A1 (location 98 i3 for
the left most character on the screen).

3. Execute the instruction "JSE [A] FCC8".

Dutputa: None

Side Effecta:

The acoumulator, X index regiater, Y index register, and
condition codes are altered,

DOLN ealla the D3SPL aubroutine to keep the diaplay golng;
however, it deatroys the contents of locations BA and BR. To
find out the value of the key currently presased on each
keybgard econtroller, i1t Is neceszary to call DSPL alfter the
return from DOLN.

Upon return from a call te DOLN, about hall the time between

calls to DSPL necesaary for TV aynchronization will have
elapaed.

MaglCard Monitor Subroutines PAGE T-T

T«6 Fill the Line Bulfer With Blanka

Hame: BFIL
Addreas: FDAC

Description: This subroutine fills locations 98 through A7 with the
ASCII code for a blank character (20). This range of memory
locationa is vaed by the DOLN subroutine te =et the pixel-bitas
necesasary to diaplay a line of charactera, It ia often desired
to display a 1line of text that contains blanks in many of the ten
character positions. To do this, wyou ecan eall the BFIL
aubroutine, place the ASCI1 values for the nonblank characters
into the proper places, and the call the DOLN subroutine.

Calling Procedure
Execute the inatruction: JSR [A] FDAC

Qutputa: MNWone

S5ide Effects
The accumulator i3 set to 20.
The X index regiater i3 aet to zero.
The H=flag iz clear.
The Z-Clag is sat.

7.7 Seroll the Pixel-bits Up One Character Line

Name: SCHL
Addresa: FDED

Deaceription: This subroutine modifies the pixel-bita aueh that when
the DSPL subroutine ia called again, each pixel on tha TV aereen
will be moved up 6 pixel linezs (or equivalently, one line af
charactera}. The lormer top six rows of pixel-bits are lesl and
the new bottom slx lines of pixel-bits will contain a random bit
pattern. It is expected that the DOLN subroutine will be ocalled
to set the plxel-bits for the bottom of the aereen with the
values needed to diaplay a new line of text. Thisa subroutine is
used by the MagiCard Monitor program when it performs the hex
dump and instruction dump functiona,

Calling Procedure:
Execute the inatruction "JSR [A] FDBED"

Qutputs: None

Side Effecta:

The acoumulator 13 =set to 20.

The X and ¥ index registers are sat to zara.

The condition codes are altered.

Memory locationa 98 through A1 are aet ta 20 (ASCII blanks).

Hemory location BF ia set te the value 06.

SCRL ealls the DSPL subroutine three tlmes during lts execution
in order to maintain the TV plecture aynohronization. The

MagiCard Monitor Subroutinea PAGE T7-8

keyboard data returned by DSPL i3 lgnored so the pecord of a
neWw key being pressed will be loat il it occurs durlng the
eall to SCRL. In practice, however, the call to SCAL 13 short
enough that Gthe loas of key press data 13 almoat never
noticeable.

Note that SCRL leavea things very well aet up &to set the
plxel-bita Ffor a new line of text by calling DOLN.

7.8 Convert a Byte of Data Into ASCII

Name: HNUMC
Addreaa: FCB1

Desgription: This subroutine takes as input a one byte number and
produces as output the two ASCII ecode walues that are the
hexadecimal representation of the number. The HNUMC subroutine
can be wsed in conjunction with the ONEC (or DOLN) subroutine and
the DSPL subroutine to display the hexadecimal representation of
o number on the TV acreen.

Calling Procedure:

1. Place the wvalue to be converted into the accumulator

2. Place into the X index register the pemory location (with
respect to location 98) where the firat of the two ASCII code
valuea {s to be place. That 1s, if the X index register
contains a =zero, bthe first ASCII code value will be placed
into location 98. If the X index register contains an eight,
the first ASCII code walue will be placed into locabtion
98 + 8 = AD. The range of memory locations from 98 through A1
is wused by the ONEC (or DOLN} subroutine as part of the
character display procedure.

3. Execute the inatruction "JSR [A] FCB1".

Outputa:
The memory locations at the addresses 98 + X index reglster and
99 + X index reglater are f[illed with the ASCII code valuea
representing the hexadecimal value For the input value,
The X index reglster is incremented by two (80 that another eall
to NUMC will rill the next two memory locations with ASCII
code values),

Slde Effects:
The accumulator is set to the ASCII code wvalue for the least
silgnificant part of the input value.
The C and Z-flags are zero.
The H and V-Clags are altered.

7.9 Convert Half a Byte of Data Into ASCII

Hame: ENCL

Addreas: FCBA

MagiCard Monltor Subroutinea PAGE T=9

Deseription: This subroutine ia identical with aubroutine NUMC with
the following two excepblona:

1. Only the lower [our bits of the aeccumulater -are
converted into ASCII code.

2. The X index regiater is incremented by one instead of by
Ewo .

T.10 Accumilate Hex Digita

Name: PSHD
Address: FDTD

Description: This subroutine is used to accumulate a Four-hex-digit
number, one hex digit at a time. Each time PSHD ia called, the
contents of memory locations 80 and B1 are modified as followa:

1. The upper-four bits of location B1 are discarded.

2. The lower=four bits of location 81 are moved into the
upper-four bits of location A1.

3. The upper-four bits of lecation 80 are moved into the
lowar-four bits of location #1.

. The lower-four bits of location B0 are moved into Ethe
upper-rour bits of loecation 00.

5. The lower-four bits of the accumulator are moved inte
the lower-four bits of location BO.

The most useful way to think of the action of thia subroutine is
as a "shift®™ of the [our-digit hex nuwber contained in
locations B0 and B1. The most-algnificant hex diglt (the
upper-Tour bits in loeation 81) is last, and a new
leaat-significant hex digit 1is obtained from the lower-four bita
of the accumulator. The MagiCard monitor program uses thia
subroutine to accumulate the hex digits entered with the keyboard
controller (the contents of locationz B1 and BO are displayed by
Lhe monltor on the upper right-hand corner of the TV screen).

Calling Frocedure:
1. Place the value of the new hex digit into the accumulator
2. Execute the instruction "JSR [A] FD7D".

Qutputs: None

Side Effecta:
The accumulator contalns the value of the hex digit shifted out
of the upper-Tour bits of locatlon B1.
The X index register is set to zero.
The Z-flag ia set.
The N-Tlag ia elear.

HagiCard Monitor Subroutines PAGE 7-10

The C=flag 1a altered.

T.11 Add One te "Fetech Addresa™ and Compare Lo "Cend Addreaa"

Hame: TNCB
Addreaa: FC9D

Deseriptlon: One i3 added to the sixteen-bit wvalue of tha
"Feteh Addreas” (leant-aignificant byte in locatlon 86,
moat-significant byte in locatlon 87) and the reault is compared
to the wvalue of the aixteen-bit wvalue of the "Cend Addrasa®™
{least-aignilicant byte in location BC, most-significant bhyte In
loeation 8D).

Calling Procodure:
Execute the lpnstruetion "JSR [A] FCoD®.

Dutputs:
The ZI=lag i= aet ir the "Feteh Addreaa™ equals Lhe
"Cend Addresa™ (after one has been added to bthe "Fetch Address").

Side Effects:
The accumulator, C=-flag; V-Clag, and N=Clag are altered.

7.12 Add Accumulator to "Fetch Address" and Compare

Hame: BMPB
Addreas: FCOF

Deseription: The same as subroutine INCB except the ocontenta of the
accunulator 13 added to the "Feteh Addresa" inatead of one.
(Hote: The wvalue contained in the accumulator is treated as an
eight-bit unaigned number. For example, if the accumulator
contains the value "FF", then two hundred and fifty-five will be
added to the "Fetch Addreass™.)

T.13 Determine Inatruction Hame

Name: INSH

Addreaa; FCB3

Desaription: This aubroutine acecepts as input one of the posaible
inatruction opcode values; and returns as output the position of
the three-ASCII-character instruction mname within a table ol
instruction names.

Calling Procedure:

HagiCard Monitor Subroutlinesa PAGE T=11

1. Place the wvalue of the inatruction opoode into the
agcumulator,
2. Execute the instructlon "JSR [A] FC83n.

Cutputs:

The accumulator contains the position (from zero to sixty) of the
inatruction name within a table of Ilnatruction namea. The
instructlon-name table beginas at memory location FOAD. Each
entry Ain the table 1is three bytes long and containa the ASCIT
character codea for the instructicn name. If the acocumulator
returns with a value of zero, the input accumulator value was not
a legal 6502 opeode. In thia case, the assoclated table entry
(entry =zers) contains the nonexiatent Lnstruction name "ILL"
indicating an illegal instruction.

Side Effecta:
The Z, C, ¥, and H-flags are altered,
Memory location 93 ia altered,

T.14 Determine Instruction Addresaing Mode

Name: ADTY
Addresa: FCHF

Deseription: This subroutine accepta as ipput one of the posaible
inatruction opoodea,and reaturna as output the poaition of the
two=ASCII-character addresaing mode name within a table ol opcode
Nnames .

Calling Procedure:
1. Place the wvalue of the instruction opeode into the
accumulator.
2. Execute the instructlon "JSR [A] FoCUp

Qutputs:

The accumulator contalns the position (from zero to eleven) of
the addressing mode name within a table of addreasing-mode names.
Tha table begins at memory location FAST. Each entry in the
table 13 two bytes long and contalna the ASCII character codaa
for the addressing-mode name. The addressing-mode names are the
Same a3 those used by the MagliCard monitor instruction-dump
function. A negative value in the accumulator indicates that the
input acoumulator value was not a legal 6502 opcoda,

Side Effecks:
1. The Z and N=-flags are altered.
2. Hemory location 93 i3 altered.

T.15 Determine Instructlion Length

Name: INLN

MagiCard Monitor Subroutines PAGE T-12

Addreas: FCID

Description: This aubroutine accepts aa 4input one of the poasible
addresalng-mode table locations (as returned by the ADTY
subroutine), and returns as output the number of bytea In the
instruectlion.

Calling Procedure:

1. Place the value of the addresaing-mode table poasition into the
accumulator. (The 2Z-flag and N-flag values must relflect the
value in the accumulator.)

2. Execute the instruction "JSR [A] FC3D"

Dutputas
The accumulator contains the number of bytea in the lnatruction
{including the opcode byte).

Side Effects:
The Z, N, V, and C-llaga are all altered.

T.16 Other Monitor Addresses

In thia asectlion, we deacribe aome locationsa within the monltor program
that, while they are not subroutinea, are of potentlal intereat. Some
of these locationa can be jumped to by a user program ta cleanly go
back to the monitor program. Other of the locations are glven as a
guide to these who wish to examine in more detail the monliteor program
itaelf by displaying the monitor program‘s Ainstructions wia the
MagiCard "Ins Dump" function.

T.16.1 Reset Entry Point

Name: RSET
Addreas: FESF
The microprocessor starts executing instructions at this location
whenever it ls powered up or when a BRE instruction la executed (and
the I-flag in the procesaor status register is clear)., The Cfollowing
operationa are then performed:

1. The I-flag in the procesaor atatus reglater 1a cleared.

2. The D-flag in the processor atatus reglater i cleared (the
monitor program will not work in decimal mode).

3. The atack-polnter register la set to FF.
4. Memory locations B0O through A9 are set to zero,
5. The display controller is initialized.

6. All the display pixel-bita are cleared (memory locabtliona
FOOOD through FOD1).

MagiCard Monitor Subroutinea PAGE T-13

7. 1/0 port B of the RIOT is set to input mode.

8. The DOLN subroutine i3 called to set the pixel-bits needed to
diaplay the message "CMX-2" on the acrean.

9. The maln program of the HagliCard moniter 13 entered (see the
description of MAIN in the next section).

A user program can alao jump to this locatien i LIt wlshes to go back
to the MaglCard monltor program.

T.16.2 Beginning of Monitor Maln Program

Name: MAIN

Address:; FE96 This is the beginning of the main program For the
MagiCard monitor. A user program can Jump to this leeation if it is
deaired to return to the monitor program without performing the
initialization operations that would be made by a Jump to RSET.
Becauae & Jump to MAIN bypasaes these Initlallzation operationa, a
Jump to MAIN will cleanly pass control to the monitor program only if:

1. The stack-pointer register i3 set to FF.
2, The diaplay eontroller ia reasonably well initialized.

A successaflul pasa of control to the monlitor program doesa not eclear the
acreen but will cauwse a2 alngle blinking pixel to appear on the TV
screen. If this doea not happen, it is posaible that the user program
has asst the color of the diaplay to black. Thia problem ecan be cured
by atoring a number (auch as 55) into memory location 08 (this =sets
the color of the diaplay). If storing into 08 does not help, you can
try to reatart the monitor by preasing the "GCame Reset"™ awitch. This
will perform the normal monitor resat sequence, but it ia better than
powering down the Video Computer System. Finally, if all else fails,
you can regaln control of the computer by turning the power ofl
briefly.

Te16.3 Disasseambler Program
Name: DISA
Addresa: FDBE This 13 the beginning of the "instruction dump™ portion

of the MagiCard monitor program (executed when the "Ina Dump® key is
preaased),

T.16.4 Casastte Write Program

Hame: CWRT

MagiCard Monitor Subroutines PAGE 7-14

Addreas: FCPA Thia ia the beginning of the "cassette write®™ porticon
of the MagiCard monitor program (executed when the "Curite" key ls
preased).

7.16.5 Casaette Read Program

Hame: CRED
Addreas: FD34 This is the beginning of the "cassette read" portion of

the HagiCard monltor program (executed when the "Cread" key is
presaed).

7.16.6 Hex Dump Program

Hame: HEXD
Address: FE3E This 13 the beginning of the "hexidecimal dump™ portion

of the MagiCard moniter program (executed when the "Hex Dump®™ key is
preased) .

T.16.T Start User Program Execution

WName: GO
Addresas: FESB This is the beginning of the "run user program” portion

of the MagiCard monitor program (executed when the "Run®™ key is
preased),

T.16.8 Relative Address Calculation

Hame: RELC

Addreaa: FF51 This is the beginning of the
"ealculate relatlve address™ portion of the MagiCard monitor program
(executed when the "Rele® key la pressed).

APPENDIX A

HEXADECIMAL DECIMAL CONVERSION TABLE

Second Hex Digit

First Hex ¥ 1 2 3 4 5 [T 8 9 A B c 1] E F
Digit

o o} 1 2 3 4% s & 7T B % W0 11 12 13 W 15

1 1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 W

32 33 34 35 36 3T 3B 39 4O 41 U2 43 44 45 W6 N7
48 ug s5p 51 52 B3 54 55 R BY 58 59 6D &1 B2 63
64 65 66 BT 6B B9 TO TV T2 T3 T4 75 TF6 T 18 9
80 B1 B2 B3 BY B5 BH BT BB By 90 91 92 93 94 95
gt 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 M0 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 166 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 18T 188 189 190 191
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
o2l 225 226 227 228 229 230 2371 232 233 234 235 236 237 238 239
240 2471 242 243 244 245 246 247 248 249 250 251 252 253 254 255

MO0 DS -] U LR

To find the hex equivalent of a decimal number, [irat find the decimal
number in the chart, and then read off the firat and second hex digits from
the row and columm the decimal number is found in. To find the decimal
aquivalent of a hex number, locate the proper row and column pointed to by
tha firat and second hex digits, then read off the decimal antry. For

example, hex AB ia decimal 171; decimal 212 13 hex DU.

APPENDIX B

MagiCard Charaater Sct

The MagiCard character diaplay asubroutine usea a subset of the
PASCII™ character set to specify the character to be diaplayed. The
misaing ASCII codea 00 - IF map to W0 - SF and 60 - 7F map to
20 - 3F. The poaslble ASCIT character codes and the corresponding

character for each are given below:

ASCII Code Charactar | ASCII Code Character

.......... SR N RN R B M

20 blank | 40 [}
21 ! [41 A
22 " I 2 B
23 [| W3 c
24 5 | Ly 2]
25 b | s E
26 3 | 46 F
27 : | uy G
28 { [Lg H
29) | 49 I
2A L [g J
2R +* | 4o K
2C 3 I i L
2D - |] M
2B * | LE H
2F i | 4F 4]
30 0 | 50 P
i 1 I 51 Q
32 2 | 52 R
33 3 | 53]
3y 1 | 54 T
35 5 | 55 U
36 6 | 56 v
ar T | 57 W
38 8 | 58 X
i9 g | 59 Y
34 : | SA z
38 H | 5B [
3c ¢ I 5C Y
3D 5 I 5D]
3E 3 | 5E .
3F 2 | 5F

HagiCard Character Seat PAGE B=2

On thia and the next page, we 1llustrate how Lthe MagiCard

diaplays each of ita characters on the TV screen.

20 121 noe2 i 23 $ 24 25 k26 " 27
B X XX b8 44 X X X
L X XX Ix o X XX X
A X X X X
N XX XX X XX
K X XXX X XX
(28) 29 *2A + 2B y 2C - 2D « 2E f 2F

X X

X X X X X
X X XX xxx XXX X

X X X X X X

X X X
0 30 TN 2 32 3133 b 34 5 35 6 36 T 37
X b 4 xxx XX X rxx xxx xxx
XX X X X XX X X X
XX X XXX XXx XX XXX xXX X
XX X X X X X XX X
X X XxX XXX X XxXx Xxx X
B 38 9 39 1 3 i 3B <3 = 3D » 3B T 3F
ox xxx X X X
Xx XX X X X XXX X X
X XXX X X X
XX X X X XxXx X

MagiCard Charactar Set

PAGE B-3

g U0 A U1 Bh2 C 43 D 44 ENU5 F U6 G T
XX xx X XX AXK XXX
XX Xx XX X X X XX
XX XX XX XXX XXX XX XXX XXX
Xxx 6 3 XX X - X X X
g 4 b Xxx XX xxx % XXX
H 48 I kg J ha K uB L4c M4 HNAUE 0N
7 X X X x XX
4 - X X X 848
X% % % XX X XX X XXX
b < X XX X% % X X XXX XX
XX X XXx XX XXX IXx X XXX
P 50 Q 51 R 52 553 T SA U 55 V56 W ST
XX XX X X X
XX XxXx X X XX XX XX
X XX XX X X X X XX X X
X LXX £ X 4 x XXX X XEX
X x X XK X X X XX
% 58 Y 59 Z 5A [5B 5C 15D ~ 58 _ SF
' 9 XXX XX XX X
XX X X X X XX
Xx X X X be X
X X X X X X X
e X XXX xrX xx X b 36 4

o e o s o

First Hex
Digit

MADOD®» O o~ v Il b= O

First Hex
bigit

TMEOOm >0~ D EWh -

o
BRE
BPL
JSR

RTI
BVC
RTS
ovs

BCC
LDY I

CPY I
BHE
CPX I
BEQ

PHP
cLe
PLP

PHA
CLI
PLA
SEI
DEY
TYA
TAY
cLv
INY
CLD
INX
SED

APPENDIX C

6502 INSTRUCTION SUMMARY

1
ORA
ORA
AND
AND
EOR
EOR
ADC
ADC
STA
STA
LDA
LDA&
CMP
CHP
SBC
SBC

W

ORA
ORA
AND
AND
EOR
EQR

ADC

STA
LDA
LDA
CMP
CMP
3BC
SBC

R R R R I R - R

Second Hex Digit

x)
b 3
x)
b
Xl
15y
X}
b
X}
1
X)
"
x)
I}
X
"

2

LDX I

3

BIT Z

3TY 2
aTY ZX
LDY 2
Lby ZX
CPY Z

CPX Z

Second Hex Digit

A
ASL Ace

ROL Aceo
LSR Aco
HOR Aecc
TXA
TXS
TAX

TSX
DEX

NOPF

B A

BIT

JMP ()
3TY

LDY
LDY X
CPY

CPX

D
ORA
ORA
AND
AND
EOR
EOR
ADC
ADC
STA
STA
LDA
LDA
CHMP
CMP
SBC

SBC X

%

X

ZX

X

E
ASL
ASL X
ROL
ROL X
LSR
LSRR X
ROR
ROR X
STX

LDX
LDX ¥
DEC
DEC X
INC
INCG X

6502 IMSTRUCTION SUMMARY Fage C-2

Accumulator Inatructlona

Addressing Mode
opération Imm Aha z-page ind,x 1ind,y 2.,X abs,x aba,y

1 A z 9 i's X X Y
ADC 69 &0 65 61 T 75 7D 79
AND 29 2n 25 21 31 35 3D 39
CHP c9 CD cs c1 D1 DS DD D9
EOR hg up 45 LR 51 55 5D 59
LDA A9 AD A5 Al B1 BS BD BY
DRA 09 an 05 01 n 15 1D 19
SBC ED ED ES E1 F1 FS FD Fa
5TA ap a5 a1 31 95 gD 99

One-Oparand Instructlons

Addresaling Mode

operation Acc Aba L-page Z,x aba,x

A Z ZX X
ASL o] 0E 06 16 1E
DEC CE ch Db DE
THC EE E& Fb FE
LSR La 4E i 56 SE
ROL 2h 2E 26 36 3E
ROR B 6E 66 Th TE

Index Regiater Inatructionsa

Addresaing Mode
operation Imm Aba E-page Z,X Abs,x Z,¥ Aba,y

I A z X X Y ¥
CPX ED EC EY
CPY co cc [ad!]
LDX A2 AE AG B6 BE
LDY AD AC Al Bl BC
5TX 8E Ba 96
5TY B¢ oy a9y

Hiacellaneous Inatructiona

DEX CA BCC 90 cLc 18 FHA 48 HOP EA
DEY 88 BCS BO SEC 38 FHF 08 BRE Do
INX EB BEQ FO cLD b8 FLA 68 BIT 4 2C
INY CB BEMI 30 SED FB PLP 28 BIT Z 24
TAX AA BHE DO CLI 58 RTI HO JSR 20

TAY AB BFL 10 SEI 78 RTS 60 JMP A AC

TSX BA BVC 50 CLY BE JHP () 6C
TXA Ba BYS 70O
TXS 9A

TYA 98

APPENDIX D

"Life"--a sample program

When we looked lor an ldea for a typleal moderately large sample
program, the "Life" game invented by Prof. John Horton Conway of the
Univeraity of Cambridge seemed a1 npatural cholce. Life was [irst
presented Dby Martin Gardner in the Mathematical Gamea section of
"3clentific American™ inm October 1970, then again in Febuary 1971
along with an intreductlion to rellular autcmata theory, [rom which the
gamie was evolved. Since then the game has achleved & continuing
popularity, with numercus articles appearing in such magaznines as
"Byte®™ and "Kilobaud", references in seriocus mathematiecal texts and
aporadic newslaetters.

Life conaista of rules that govern the development of patterns of
dots on a rectangular grid. Each dot 1a consldered Lo be a "live
cell™; a cell (or grid elemeni) that is empty Ja conaldered Lo be
fdead". Each ecell hdas eight nelghbors surrounding it. By counting
the living neighbors of each cell (empty or not) and applying the
following rulea to all the cells in a grid at once, a new "generation"
is formed.

1. Any live eell with 2 or 3 live neighbora survives,

2. Any live cell with 0 or 1 living neighbors dies (of
lonelineas).

3. Any 1live cell with 4 or more neighbors dies {of
overcrowding),

4. Any empty (or dead) eell with exactly 3 live neighbors I=s
"born® (comes to 1life),

Even patterns aof only a few dota can evolve in surprlaing and
interesting ways. 3Some patterns are staltie, U dots arranged adjacent
to each other in a square is the simplaest example, Some patterns
oscillate;, and return to their initial eonfiguration after 2 to
hundreds of generationz in Zome cases. Three dots in a vertical line
will alternate with 3 dota in a horizontal line, to make the simplest
cacillator. A very simple pattern will often explode 1into chaotie
activity belfore eventually settling down to statiec or cscillating
components. Try 3 vertical dots (l1ike the simple oscillater), with 2
dots added. Add a dot in contact with the center cell on the right,
and another in contaszt with the bottom cell on the left, Poaition
thia pattern about 1/3 of the way from the left edge of the tv sercen
and below the center of the screen vertically; this will forestall
the disruption thal pccurs when the pattern hits the edges of the (U0

"Life"==a sample program PAGE D-2

x 42 deeimanl) grid area.

Look eapeclally for & small pattern of dota that wigglea along
diagonally and "flys™ Gto the edge of the screen. Thia i3 called a
fglider" and is the simplest example of a traveling pattern. It 1is
often interesting to lollow the progress of parts of the debria of a
developing pattern. For example, look for a pattern like a small 4
that appears as part of the above 5 dot pattern, which in isolation
has an intereating life of its own.

To run Life, enter it intoe the computer and begin execution at
F15E. Life ia long, sc disassemble it to check for key-in errors and
save it on caasette if you have bullt the interface. While running, a
alightly rlickering "cursor" dot will appear in the center of the
screen. It can be moved around by pressing kKeya on the lelt
econtroller. L2 moves it up, LY moves it left, L6 moves It rlght and
L8 moves it down. LS causes the dot abt the cursor locatien to change
from live to dead or vice versa. LO causes the current pattern to be
updated to the next generation. This will continue as long as LO is
held down, Notice that TY ayne ia loat during generation updating.
If any left key (except LD) 45 held down, the cursor i3 suppressed and
you can see what ia "under®™ it. The cursor itsell is not a live cell
and ita poaition haa no affect on forming new generationsa. Ta clear
the screen wWhen 1t 13 cluttered, presa "game reset®™ and run the
praogram again.

We programmed Life juat the way any user might. Firat we decided
how the game should look and what compromises we would accept to make
it easy to program the [{irat version. Then we Aidentified the major
componenta and Clow of the program, including sections that should be
subroutines, This is often done with boxea and arrows, arranged in
diagrama call flowcharta, HNext we wrote oubt the program in text linea
that would each be implementable aa a few 6502 instructlons. Names
ware used for satorage locationa., We examined the text for logical
flawa and disagreements with our overall plan. Then we assigned
addressea for the named atorage locatlons. HNext we wrote the right
alde of the listing, atlll using names for many storage locations, and
label names for locations that were the targets of long or [requent
Jumps and branches. We then asaigned F100 aa the address of the [irat
location of the program and counted bytes carefully through the code,
asalgning addresaes to labeled lnstructlons. Next we looked up the
opeodes and wrote the left side of the listing (the actual Hex),
filling in addressessz at the sama time. Finally, the long relative
branches were calculated (using the Rele key) and written on the hex
liating as it was being keyed in.

We disassembled (Ins Dump) to check for errors and saved Lhe
program on cassette, It ran GEthe flirsat time! Often even a short
program will not work at Cirat, but care in planning, especlally with
the early text version, will yield working programs much more olten
than the "hacker®™ approach Cavored by some programmera. I the
program had been much longer, we would have tested it in parts. For
example, the key input section +<an be run without the generatlion
update code. In professicnal programming publications, techniques to
produce correct programs gquickly have rocelved much attention recently
under the name “"structured programming®.

Even if you enjoy thia pregram, you will probably notice a number
af Lhinga that you might wanl to improve, which we lgnored [n Lhe

"Life"-=a samplé program PAGE D=3

intereast of a short and simple program. Examplesa inolude:
maintaining aynec (if mnot the plcture) during generation updating,
handling of the edges of the grid to really use those cella (perhapa
with wrap around), counting the number of generationa, plotting and
moving whole patterns instead of aingle dota, and better controller
capability (diagonal motlion, Jjoysticks). If you are really
enthusiastic about Life, you may be Intereated 4in our "Lifecard”
module which will scon be available., It features a 96 x B0 (decimal)
game grid and display, all the improvements mentioned above and more,

Memory Usage: (alse F300 - F3D1 dis used as a copy of the
display)

name locatlon uag

MZ BO Mask of bit for (HO,V-) position,
also for cursor position.

AZ B Addresa offaet for (HO,V-) poaltion,
alac for cursor positlon.

H+ B2 Hask of bit for (H+,V-) position,
alaoc temporary storage.

A+ B3 Addresa offset for (H+,V=) poaition.

CZ BY =0 if vertical middle cell at center 1a empty,
elae =FF.

C+ BS =0 il vertical middle cell at right ia empty,
elae =FF.

N~ Bb6 NHumber of nelghbors in leflft 3 cells.

NZ BT Number of nelghbora in center 3 cells,
including target cell.

N+« B8 Humber of neighbors in right 3 cells,

HC B9 Horizontal cursor position (00 - 27).

Y& Bg Vertical curasor position (00 - 29).

DOT BB Value of dot at cursor position (on = FF, off = 00).

Note the "<" to mark places where the Rele key was used to
calculate relative branchesa.

F100 A9 00 COPCL: LDA I QO ;Copy and eclear subroutine
85 8C BTA 2 BC jaet addresa
A9 FT LDA I FT :
85 8D STA Z 8D ;for STPM
AD D2 DY I D2
F10A BY FFEF L1: LDA ¥ EFFF
84 DEY ;Copy diaplay to
20 FTFF J3R STPM: jUth page of memory
F111 DO FT BNE L1s
Ag FH LDA I FY jReset STPM addresa
85 8D STA 2 8D ;to display.
A9 00 LDA I 0O
AD D2 LY I D2
F11p 88 L2: DEY
20 P7FF JSR STPM: ;Clear diaplay.
D0 FA BHE L2
60 RTS
F122 A5 B2 WXH: LDA Z : iS5et up for next point.

85 Bo STA Z MZ: iMZ = M#

"Life"--a sample program FAGE D=4

AS B3 LDA Z A+:
65 B1 STA Z AZ: JAZ = A+
A% BT LDA 2 NZ:
85 B6 STA Z N-t jH= = NZ
AS BA LDA Z M+t
F130 85 BY STA 2 NZ: iNZ = N+
A5 BS LDA 2 Ce:
85 Bl BTA 2 C21 jCZ = C+
20 BEFF J3R CALF: ;jGet V- ,H+ poaition,
a5 B2 STA 2 M+: jwe will use "secret
84 B3 STY 2 A+: jknowledge": successalve bytea
A2 0O LDX I 00 iplot vertleally down display.
86 BS STX Z Cs: iC+ = 0
F141 139 0OF3 AND ¥ F300 ;Test H+,V- poaition
Fo o1 BEQ o1 jand count it.
E8 INX
AS B2 LDA Z M+
39 01F3 AND ¥ F3IO1 ;Test H+,¥Z position
FoO 03 BEQ 03 ;and count it
Co6 BS DEC Z C+: :for both Cs (-1)
F150 E8 INX sand M+.
AS B2 LDA 2 Ma:
39 02F3 ARD Y F302 jTest H+,V+ position
FO 01 BEQ o1 sand count Lt.
EB INX
46 R8 STX Z Ne: ;N = of pight nelghbors.
E6 BE INC 2 BE iH+ = He + 1
60 RTS
P1SE 20 OOF1 ENTRY: JSR COPCL: jClear screen.
A% 1l LDA I 14
85 B9 STA 2 HC: ;Set horiz and vertical
85 BA STA 2 YC: jeursor posltlion.
Fi167 A5 B9 KEEP; LDA Z HC:
85 8E S5TA 2 BE
AS BA LDA 2 VC:
85 BF STA Z ©&F
20 BEFF JER CALP: ;Calculate curaor poaltion
F172 85 BO STA Z Mi: jand save.
84 m STY Z AL:
A2 00 LDX I 00
39 0OFOD AND ¥ FOO00 ;Teat cursor positlon.
Fo o1 BEQ 01 :00 => dot off.
ChA DEX sFF =) dot on.
85 BB STX Z DOT: ;Save cursor block atatus,
F1B0 20 GFFA KREAD: JSR D5PL: ;Display and read keys.
A4 B LDY Z AZ:
A5 BOD LDA T MZ:
59 00F0D EOR Y FODO jComplement dot at
20 FTFF JSR STPH: jeursor poaition.
AS 8 LDA Z 8A ;I no left key down,
30 EF BMI KREAD: ;loop on display.
Fi191 A5 BO LDA Z MiZ:
i3 FF EOR I FF
39 0DOFO AND Y FOOO
85 B2 STA 2 H+: jSave with bit masked off,
AS BO LDA Z Mi:
25 BB AND T DOT: ;Re-establish original
05 B2 ORA 2 $ jdot value at cursor

FI1AQ0 20 FTFF JSR STPM: sposition.

Life"==a sample program FAGE D=5

AS 82 LDA Z B2
€9 05 CMP I 05
DO 09 BNE 09
A9 FF LDA I FF j Complement final
45 BB EOR Z DOT: ivalue of dot at
85 BB STA Z DOT: joursor poalition.
4 aor JHP KREAD:
Fig2 Cg Q2 CMP I 02
Do o8 ENE 08
AS BA LDR Z VC:
FO AD £ EBEQ KEEP:
c6 BA DEC Z VC: jMove curaor up.
10 A9 < BPL KEEP: ;Unconditional branch.
cg 0y CMP I 04
F1Co DO 08 BHE 08
A5 BY LDA Z HC:
FO A1 < BEQ REEP:
c6 By DEC Z HC: ;Move cursor left
10 90 < BPL KEEP: sUnconditional branch.
C9 06 CMP I 06
DO OA BNE oA
AS BO LDA Z HC:
Fibo cC9 27 CHP I 27
10 93 < BPL KEEP:
Fib4 E6 B9 INC Z HC: iMove curaor right,
10 8F ¢ BPL KEEP: sUnconditional branch,
cg 08 CMP I 08
Do o8 BNE o8
AS BA LDA Z VC:
€9 29 CMPF I 29
F1ED 10 85 < BPL KEEP:
E6 BA INC Z VC: jMove cursor down.
A5 Ba LDA Z Ba iIf left zero not down,
Do 41 < BNE LINK: ; bypasa generation update.
20 00F1 JER COPCL: :Save display and clear,
a5 or STA T ©OF iZero Ve,
F1ED A9 00 HEXTY¥: LDA I 00
85 BE STA Z BE iZero He.
FiF1 20 22F1 JER RXH: ;Initialize lfor aweep
20 22F1 JSR NXH: jof a 1line of dota.
FiFT 20 22F1 HEXTH: JSR NXH= jUpdate for next dot.
BA TXA sGet N+
18 CLC
65 BT ADC Z NZ: ;Caleulate number
65 BE ADC Z HN=: jof neighbors.
F200 65 Bl ADC Z. CZ: iN+ + H- + NZ = CZ
cg o2 CMP I 02
30 15 BMI NEXT: ;Skip ir < 2.
cq 03 CMF I 03
FO 06 BEQ 06 jPlot ir = 3.
10 oF BPL NEXT: j3kip ir > 3.
AS BY LDA Z CZ: jMust be = 2,
FO OB BEQ NEXT: i2kip il not occupled.
F210 A5 RO LDA Z MZ: ;Plot a
Al B LDY Z Al: jdot at
cé INY jthe current poaition.
19 QOFOD ORA ¥ FOOD
20 FTFF JSR STPM:

F21B A5 8E < NEXT: LDA Z BE iLoop if H+ < 28.

*Life"==a aample program

c9 28

30 D6 <
F221 E& BF

AS BF

cg 28

30cy <
F229 UC 6TF1 LINK:
F2aC

cHp
BMI
INC
LDA
CHP
BMI
JMP

Ll

28

NEXTH:

ar V= = V= s 1.

ar jLloop Lf V- < 28.

28

NEXTV:

KEEP: ;Generation complete.

PAGE D=6

APPENDIX E

Conatructing and Connecting a Casaette Interface

Sections 6 and T of Chapter N describe the operations npeeded to
write and read programs on cassette tape. In this appendix we glve
detalls on conatructlon and connection for the casastte interface. [}
achematic of the LIinterface and a lisl of parts will be found at Lhe

end of thia appandix.

Theory of Operation

The lnterface circult is aimply & aignal buffer. The diode 1in
the monitor Input sectlon clips the negative golng parts of the audio
aignal Crom the casaette player. The reaslators provide lopedance
matening and Lsclation. The I.C. sectiona are Schmitt triggers. A
Sehmitt trigger bakes a alow rough riaing or falling asignal, Gtypical
af the cassette monitor output, and makes a eclean abrupt logic
transition. These tranaitiona are read by the A502 proceasor from the
6532 (RIOT) I/0 port A.

The pulses are recorded with Gthree different Intervals. The
shorteat interval represaents a "1" bit, the medium interval representa
a "0" and any longer interval ls a "fill" or separator signal. Each
byte la recorded as B bits, least signifieant first, plus a 9th parity
bit. Each group of 9 bita is asaeperated by a "ri11" aignal. The
parity bit is set "on"™ Al the preceeding 8 bita have an odd number of
"1" bita. Thia way of calculating the value of the parity bit 1ia
called "even parity", because in each 9 bit group an even number of
bits will always be "en™. When the tape 13 read, the parity of each
group 1ls checked and the reading atops if any group fails to have even
parity.

The part of the ecircuilt connected to the cassette precorder
microphone input aimply isclates the casaette recorder (rom the game.
The resiators provide a properly attenuated and impedence matched
signal for the recorder. The jumper which connecta pointa (b) and (e)
in the schematie 1{a in the proper position for most cassette
recordars. Most inexpenaive cassette recorders play back a signal
that i3 lnverted from the one that was recorded. If your Trecorder’s
output is not inverted, wire the jumper between pointa (a) and (b) teo
provide the extra inveraion neaded.

What Kind of Casaatte Recorder to Use

Two inexpensive cassette recorders that work well with the
interface are the General Electric model 3-5001A and the Panasonia
model RQ=2T65. The Panasonie coata about $40 at discount and features
a tape posiltion counter, which makes it eaaler to Find a program Lf

Conatructing and Connecting a Casaette Interface PAGE E-2

segveral have been recorded on ane side of a casaette tape. The GE at
about hall the price is bulkier and lacks the tape counter, bubt works
satiafactorily. Both of these recorders work with the jumper as shown
in the schematic. Many portable cassette pecorders have a battery
eliminator, but these vary in dealgn and may domage your game. Always
use a battery powered casoette recorder, and operate it only on lts
batteries.

Conatruction

With only one I.C. and a lew pasaive components, thia ecirouit
can be conatructed by a wvariety of techniques. A amall piece of
circuit board with holes on 1/10 inch centers ia a convenient baae lor
the components. If you uae a socket for the I.C., conatruction will
be easier and the T.C. 13 mueh leas likely to be damaged. The
completed board can be placed in a amall plaatic bax, with the awiteh
mounted on a2 hole in the box. Be sure to provide some atrain reliel
for bthe cables so that they won't be pulled looae by handling.

The connectlon to the game Ltsell can be made in one of two ways.
One way 1a to uae male and Female controller connectors to connect the
left controller to the interface and then through to the left
controller socket on the game conscle. The obther way 13 to simply cut
ints the ecable on one of your keyboard controllera and connect
directly to the wlrea therea. You will probably [Find 1t most
gonveanient Lo eut into the cable Fairly near the connector to the game
consple. The box contalning the interface can be connected directly
Lo the controller cable. A snort connecting cable, perhaps with a
multi-prong connector to allow 1t to be disconnected, will make a more
convenlent package.

On the plugas connecting to the cassette recorder, Gthe shaft 1a
ground and the tip carries the signal. On the 1N91Y diode a band will
be found near one end of 1ta amall glass body. The end opposite the
band is to be connected to the ground part of the eircult. The 15 Ohm
realator should be rated at a2 minimum of one Wattk to handle the
largeat possible signals from the eecorder. The switen ia a DPST
(double pole single throw) though a DPDT can be wused, leaving Lhe
extra terminals on the switch unconnected. The awitch isa shown open
{or off} in the achematle. This is the switeh poaltion that
disconnecta the interface when 1t ia notr actually in uvae,

Connecting to the Video Computer Syatem

The caassette Interface 1a very easy to connect. Be =sure to
connect it with the game and caasette recopder both turned off. If it
ia attached directly to one of the controller cables, make aure this
ia the left controllar and ia plugged into the left controller aocket
on the game console. If the interface haa its own connectors, connect
it to the left controller socket and ba sure that the controller you
plug into the interface is on your left. WNext plug in the two cables
to the cassette recorder. Since the two plugs are identiecal , you will
have to label the cablea to avold confusion. Before turning on the
gamea, be aure the cassette interface switch is off. Most problema
with the keyboard controllera and cassette Iinterface are due to

miaconnected cablea or Lo Lthe cassette interface awitch being
inadvertently left on.

Conatructing and Conneccting a Casaette Inbterface PAGE E-3

Parta List

I.C. 1= THLZ1Y4 Slx inverting Schmitt trigmers,
in a 14 pin DIP
{Widely avallable by mall order.)

Resisatora 2= 100 Ohm RS 271=1311
1= B70 Ohm R& 2T1=-131T
1= 10k Ohm RS 271-1335

1- 15 Ohm 1 Watt Can use 2 27 Ohm 1/2 uatt
in parallel RS 271-006

Capacitors 1- .01 microfarad RS 272-1
1= 1.0 microfarad RS 272-1419
Obsarve polarity of this capacitor.

Dicde 1- ING14 awitching diode RS 276-1122
Switeh 1= submini DPDT RS 275-G14
A variety of awitches will work.
P1 and P2 2- plugs 1/8 inch miniatura pluga RS 274-287
Misec. Plastic box, ahielded cable

(to cassette recorder),

14 pin DIP I.C. socket

(RS 276-1999 or RS 276-1591),
aolder, wire, etoc.

Optional HMale and Female 9-pin controller
plugss DE9P and DE9S,
available from: California Digital
Box 3097B
Terrance, Californla 90503

Hote: Part numbera labeled with "RS"™ are
distributed by Radio Shack.

Cassette Interface

Pi
attach to
Q\J._H_i|::m_ left controller
cable
to cassette _ e
monitor or L 4
earphone jack
Te—»LC4 (PAT)
H
1
oL C3 (PAB)
e > LC7 (+5V)
=
to cassetie | C8(Gnd)

microphone jack

1€ 1 mhown wlowed (rom the Lop

Owner Informatlion

Your MagiCard haa been thoroughly teated at the factory and
should provide yeara of programming enjoyment. It L3 guaranteed [or
90 daysa againsE defagta In materiala or workmanship. Il you suspect
your MaglCard 112 delectlive, however, you should wrlte to ua [lrat
descriting the aymptoms--most likely you are not uaing it properly and
a2 lew words of advice will gel you up and running. We of courae
cannot be responalble for any damage due to improper use of the

MagiCard.

Repalra alfter the warranty pericd has expired will be made at
coat., Agaln, don't send us your HMagiCard before notifylng us of the
nature of the problem and getting our authorizatlon to return 1t for

repalr,

We will be happy to anawer any guesations about MagiCard operation
or programming probleéms. Please inelude a salfl-addressed stampad
envelope to [acllitate a reply. And let ws know about any
partiecularly Intereésting programs vou write and would like to share
with other MaglCard users. We intend to distribubte sample programs

for a nominal fee.

Finally, note that Abtarl and Video Computer System are trademarka
of Atarl, Ine. The MaglCard will alas work Ln Sears TeleCame, a
trademark of Sears Roebuck, Inc. A patent i3 pending on the MagiCard

dealgn.

