

Devpac 3 for the Atari ST/STE/TT/Falcon030

By HiSoft

Copyright © 1992 HiSoft. All rights reserved.

Program:

designed and programmed by HiSoft.

Manual:

written by Alex Kiernan, David Nutkins and Keith Wilson.

This guide and the Devpac 3 program diskettes contain proprietary information which is protected by copyright. No
part of the software or the documentation may be reproduced, transcribed, stored in a retrieval system, translated
into any language or transmitted in any form without express prior written consent of the publisher and copyright
holder(s).

HiSoft shall not be liable for errors contained in the software or the documentation or for incidental or consequential
damages in connection with the furnishing, performance or use of the software or the documentation.

HiSoft reserves the right to revise the software and/or the documentation from time to time and to make changes in
the content thereof without the obligation to notify any person of such changes.

Published by HiSoft The Old School, Greenfield, Bedford MK45 5DE UK

First Edition, August 1992-ISBN 0 948517 59 X

Page i Hisoft Devpac 3 Contents

CHAPTER I - INTRODUCTION 9

 9

Introduction 9
Devpac 3 Disk Contents
Making a Working Copy 10
Registration Card 11
The README File 11
Installation 11
How to use the Manual 12
A Course for the Beginner 12
A Course for Seasoned Assembler Programmers 12
Devpac Version 2 Users 13
System Requirements 13
Typography 13
Acknowledgements 14
A Quick Tutorial 15

CHAPTER 2 - USING THE EDITOR 18

Introduction 18
A word about pop-up menus and dialogs 18
The Editor's windows 22
Switching Windows 22
Entering text and moving the cursor 23
Cursor keys 23
Tab key 23
Backspace key 24
Delete key 24
The Edit menu 24
Go to top of file 24
Go to end of file 24
Goto line 24
Block Commands 25
Marking a block 25
The Clipboard: Copy, Cut & Paste 25
Saving a block 26
Copying a block 26
Deleting a block 26
Copy block to block buffer 26
Pasting a block 26

Page ii Hisoft Devpac 3 Contents

Printing a block 26
Deleting text 27
Searching and Replacing Text 27

Bookmarks 28
Disk Operations 29
New 29
Loading Text 29
Revert 29
Save As... 30
Save 30
Inserting Text 30
Delete File 30
Close 30
Change Directory 31
Quitting HiSoft Devpac 31
Configuring the editor 31
Auto-indent lines 32
Auto-save configuration 32
Cursor mode numeric pad 32
Hide mouse when typing 32
Make backups 32
Show matching parentheses 33
Stop at end of line 33
Save files on Quit 33
Save files on run other 33
Tab setting 33
Text Buffer 33
Cursor 34
Load... 34
Saving preferences 34
Reset 34
Running other programs 34
Run with Shell... 37
Setting the Path 38
Environment... 38
Miscellaneous Commands 39
Fonts... 39
About Devpac-3... 39
ASCII Table... 40
Help Screen 40
Desk Accessories 40

Page iii Hisoft Devpac 3 Contents

Automatic Launching 41
The Program Menu 41
Assemble 41
Check 42
Output Symbols 42
Running Programs 42
Run with GEM 42
Run Directory 43
Debug 43
Mon 43
Debugger options 43
Assembly Errors 45
Resident Tools 46

CHAPTER 3 - THE ASSEMBLER 47

Introduction 47
Invoking the Assembler 47
From the Editor 47
The Control dialog 47
Running the assembler 50
Assembly Process 53
Return Codes 53
Binary file types 53
Types of code 55
Assembler Statement Format 55
Label field 56
Mnemonic Field 56
Operand Field 56
Comment Field 57
Expressions 57
Local Labels 64
Instruction Set 65
Word Alignment 65
Assembler Directives 66
Assembly Control 67
Assembler Directives 75
Repeat Loops 78
Listing Control 78
Label Directives 80
Floating Point Directives 83

Page iv Hisoft Devpac 3 Contents

Conditional Assembly 84
Macro Operations 86
Output File Directives 92
Atari Executable (ATARI, L0) 92
GST Linkable (GST, L1) 94
DRI Linkable (DRI, L2) 97

Motorola S-records (SREC, 16) 98
Lattice C linkable (LATTICE, 17) 99
Directive Summary 102

CHAPTER 4 - THE DEBUGGER 105

Introduction 105
Mon Concepts 105
Exceptions 105
Front Panel Display 107
Symbolic Debugging 108
Mon Dialogs 109
Command Input 109
Mon Overview 110
Mon Reference 112
Numeric Expressions 112
Window Types 114
Cursor Keys 117
Window Commands 118
Other Alt- Commands 121
Screen Switching 122
Breaking into Programs 123
Breakpoints 123
History 125
Quitting Mon 126
Loading & Saving 126
Searching Memory 129
Miscellaneous 130
Auto-Resident Mon 135
Command Summary 135
Debugging Stratagem 137
Hints & Tips 137
Bug Hunting 137
AUTO-folder programs 138
Desk Accessories 138

Page v Hisoft Devpac 3 Contents

Exception Analysis 139

CHAPTER 5 – CLINK THE LINKER 141

A simple CLink command line 141
Concepts 141
ALVs 141
Near DATA/BSS 141
Directives 142
Input directives 142
Output directives 142
Map files 144
Options 145
'WITH' files 146
CLINKWITH; the Clink environment variable 147
Reserved symbols 148
CLink Messages 149
CLink Warnings/messages 149
Clink Errors 149

CHAPTER 6 - OTHER TOOLS 154

S-record Splitter 154
Command line examples 154
Ramdisk 155
Symbol Strip Utility 156

APPENDIX A - GEMDOS ERROR CODES 157

APPENDIX B - DEVPAC ERROR MESSAGES 158

Errors 158
Warnings 163

APPENDIX C - TOS MEMORY MAP 165

The Different Sorts of RAM 165
Processor Dump Area 165
Base Page Layout 165

Page vi Hisoft Devpac 3 Contents

Hardware Memory Map 167

APPENDIX D - GST SUPPORT 168

LinkST, The GST format linker 168
Introduction 168
Invoking LinkST 168
LinkST Running 169
GSTlib, The GST format librarian 174

APPENDIX D - CALLING THE OPERATING
SYSTEM 177

GEMDOS - Disk and Screen I/O 177
Program Startup and Termination 178
GEMDOS Summary 179
BIOS - Basic I/O System 190
XBIOS Extended BIOS 194
GEM Libraries 208
GEM AES Library 209
Application Library 210
Event Library 210
Menu Library 211
Object Library 211
Form Library 212
Graphics Library 212
Scrap Library 213
File Selector Library 213
Window Library 214
Resource Library 214
Shell Library 214
GEM VDI Library 216
Control Functions 216
Output Functions 217
Attribute Functions 218
Raster Operations 219
Input Functions 220
Inquire Functions 220
AES & VDI Program Skeleton 221
Desk Accessories 221

Page vii Hisoft Devpac 3 Contents

Linking with AES & VDI Libraries 222
Menu Compiler 222
VT52 Screen Codes 223
Cookie Jar 224

Operating system version numbers 226
The OS header 226
Changing window colours 228

APPENDIX E - THE FLOATING POINT CO-
PROCESSOR 229

Extended precision 229
Double precision 229
Single Precision 230
Packed Decimal 230
FPCR Floating point control register 231
FPSR Floating point status register 231
FPIAR Floating point instruction address register 232

APPENDIX F - CONVERTING FROM OTHER
ASSEMBLERS 234

Atari MadMAC 234
GST-ASM 234
MCC Assembler 234
K-Seka 235
Fast ASM 235

APPENDIX G - NEW FEATURES 236

Summary of Version 3 Improvements 236
The Editor 236
The Assembler 236
The Debugger 237
Integration 237
New tools 237
Features added to Devpac ST 2 237

APPENDIX H - TECHNICAL SUPPORT 239

Page viii Hisoft Devpac 3 Contents

APPENDIX I - 240

BIBLIOGRAPHY 240

Atari 240
680x0 241
Algorithms & Data Structures 242

Chapter I - Introduction

Introduction

HiSoft Devpac 3 (called simply HiSoft Devpac from now on) is a complete package for the
production of fast, efficient assembly language programs on your Atari computer.

There is an editor for the creation and editing of your assembler source code, a linker for
building your programs together with other object files, a debugger for helping you to stamp
out those nasty bugs and, of course, an assembler to turn your source code into speedy,
compact machine code.

This chapter is an introduction to this manual which aims to cover all aspects of installing and
using HiSoft Devpac on your Atari computer - it does not attempt to teach you 680x0
programming although the accompanying 68000 pocket book and the examples should be of
assistance in this regard. For further reading, you should consult the Bibliography.

Please spend some time and effort getting to know and learning how to use the manual so
that you can gain the maximum benefit from HiSoft Devpac.

The rest of this section explains how to use the manual, whether you are a beginner or an
expert, how to use your computer to best effect with HiSoft Devpac and, finally, we outline
the different type styles that we have used throughout the manual to (hopefully) make it easy
and enjoyable to use.

Devpac 3 Disk Contents

Devpac 3 is supplied on one double-sided 3.5" disk. Please note that the following list of files is
intended as a guide only; subsequent versions of Devpac may contain extra files.

DEVINST.RSC,DEVINST.PRG,DEVINST.DIR,DEVINST.INF

 The installation program and its support files.

DEVPAC.PRG The multi-window editor and control program.

HISOFTED.INF The editor preferences file.

READ.ME A text file including latest details about Devpac 3; please read
this file carefully before contacting our technical support
department with any queries.

AMON \ Auto-resident versions of Mon, the debugger.

Introduction Hisoft Devpac 3 Page 9

BINXCUNK.TTP Lattice C format linker.

BINXGEN.TTP 68000 version of Gen, the assembler.

BIN\MON.PRG 68000 version of Mon, the debugger

BINXSRSPLIT.TTP A utility program for users of Motorola format S-records which
splits an S-record file into its high and low byte components.

BINXSTRIP.TTP Symbol table stripper.

BIN030N 68030 specific versions of Gen, the assembler, and Mon, the
debugger.

EXAMPLES\ Some example programs including the short tutorial for this
manual.

EXTRAS\ ,EXTRAS\ AESPATH,EXTRAS\ FSEL\

 A number of 'freebies'; please see the text files within these
subdirectories for more details.

EXTRAS\MENU2ASM\ Devpac 2 compatible menu compiler.

INCDIR\AESUB.S AES library source.

INCDIR\BIOS.I BIOS definitions include file.

INCDIRXGEMDOS.I GEMDOS definitions include file.

INCDIRXGEMMACRO.I macros for AES/VDI interface.

INCDIRWDIUB.S VDI library source.

INCDIRXXBIOS.I XBIOS definitions include file.

GST\ GST linker, librarian and library files.

RAMDISK\ Reset-proof ramdisk and associated files.

Making a Working Copy

Before using Devpac 3 you should make a back-up copy of the distribution disk and put the
original away in a secure place; safe from extremes of temperature, magnetic fields, moisture
and children! The disks can be backed-up using the Desktop or any backup utility - before
making any backup always write-protect the master to prevent accidental erasure.

The disk is not copy-protected to allow easy back-up and to avoid inconvenience; remember
though that the software and this manual are protected by international copyright laws and
you are only permitted to copy the software for your own personal use. If this sounds
officious, look at it another way - if you give away copies of Devpac 3 to your friends we will
not receive enough revenue from the sale of the package to improve this and other products.
We want to help you, please help us in return.

Introduction Hisoft Devpac 3 Page 10

Registration Card

Enclosed with this manual is a registration card which you should fill in and return to us in
order to register your purchase of Devpac 3. This will entitle you to a free period of technical
support and will enable us to keep you informed of future developments to our software.

For details of our technical support services, please refer to Appendix H in this manual.

You will need to quote your serial number (to be found on the disk label) to obtain technical
support and you may find it useful to make a note of it here:

Serial No.

The README File

As with all HiSoft products Devpac 3 is continually being improved and the latest details that
cannot be included in this manual may be found in the READ.ME file on the disk. This file
should be read at this point, by double-clicking on its icon from the Desktop. It will also
contain last-minute details on the installation process.

Installation

Whether you are a beginner or expert you should now run the installation program from
your back up copy of the distribution disk. The GEM-based installation program is designed
to ease the building of various standard configurations for the HiSoft Devpac system.

For hard disk owners, the installation program will copy the files that you need to your hard
disk. If you are the type of person who doesn't like installation programs that write things to
your hard disk, you can view the files that would be copied, and copy them yourself. The
installation takes note of your hardware configuration and only copies files that could be of
use to you.

By default, the installation program (for floppy based installations) doesn't copy the tools for
using the GST format as most people don't need this.

The installation program for hard disk users deliberately does not automatically install a
ramdisk. This is because many users will already have their own preferred ramdisk.

For users of floppy disk based systems, the installation program will produce a work floppy
which contains the essential tools for your machine configuration, this disk can also be used
to keep small programs of your own.

If you are using a non-hard disk system and wish to use larger than normal capacity (e.g.
800K) floppy disks, you should format a floppy using your favourite extended formatter prior
to running the installer; you must use the volume name DEVWORK for this disk. If you
intend to use standard floppies then the installation program will format these for you.

Introduction Hisoft Devpac 3 Page 11

We strongly suggest that you start by using the set-up recommended by the installation
program until you are sufficiently familiar with the package to re-configure it to meet your
unique requirements.

To run the installation program, double-click on DEVINST.PRG from your backup of disk 1
in Drive A. Note that the installer expects to find its subsidiary files in the current directory.

How to use the Manual

We have designed this manual to tell you about using HiSoft Devpac on the Atari computers.
We have packed a great deal of information about the package into the manual and, in order
to help you use it efficiently and easily, we will now plot recommended courses through the
manual, whether you are a beginner to assembly language or a seasoned expert.

A Course for the Beginner

If you are a newcomer to assembly language then we recommend that you read one of the
books in the Bibliography alongside this manual.

This chapter is an introduction to using Devpac and covers the contents of your master disk,
making a back-up copy of it, installing Devpac and registering your purchase.

At the end of this chapter there is a simple tutorial which you should follow to familiarise
yourself with the use of the main parts of the program suite; it is certainly worth working
through.

Chapter 2 considers the editing environment with an overview of using the package and is
well worth reading; much of Chapter 3, detailing the assembler, is liable to mean little until
you become more experienced but should be used as a reference. The overview of the
debugger in Chapter 4 is recommended, though the detail of this package can be left for a
while. Chapters 5 and 6 can be omitted unless you are linking your programs together or using
S-records. Looking at and running the supplied source code should be helpful.

The Appendices are mainly for reference and you will only need to dip into them
occasionally.

We hope you find HiSoft Devpac easy and friendly to use, please do not hesitate to write to
us with any suggestions for improvements and/or alterations.

A Course for Seasoned Assembler
Programmers

If you are experienced in the use of 680x0 assembly language but have not used a member of
the Devpac family before then here is a very quick way of assembling a source file:

Load DEVPAC.PRG, Press Alt-L and select your file which will load into the editor. Using the
first four entries on the Options menu select the options you require. You should also select
Format - ST RAM from the Assembler options - Control dialog.

Pressing Alt-A will start the assembler; any assembly errors will be remembered and on

Introduction Hisoft Devpac 3 Page 12

return to the editor you will be placed on the first one. Subsequent errors may be found by
pressing Alt-J.

To run your successfully-assembled program press Alt-X (note that the Run command this is
available whether assembling to disk or memory).

As a quick introduction to the debugger the example at the end of this preface is
recommended. If you have any problems please read the relevant section of the manual before
contacting us for technical support.

The Appendices are for general reference and it is worth glancing through all of them to
acquaint yourself with their contents.

Good luck, we hope you find HiSoft Devpac a powerful, flexible and easy-to-use
development system. Of course, we welcome any written comments you may have on how
we might improve both the program and the manual.

Devpac Version 2 Users

Turn to Appendix F and read the section summarising the new features, then read Chapter 2
which covers the editor. The beginning of Chapter 3 covers the new assembly options.

System Requirements

HiSoft Devpac will run on any Atari 680x0 computer (ST, STE, Mega, TT, Falcon etc.) with at
least 512Kb of memory and a double-sided disk drive. You will undoubtedly find it useful for
this and other programs to purchase a second disk drive or hard disk.

Users with only 512Kb of RAM may run out of memory when attempting to assemble larger
programs or in other circumstances. The installation of a RAM-disk or other device on a
512Kb machine will restrict HiSoft Devpac.

If you are short of memory, remember that the least memory hungry thing is to assemble a
one line program (consisting of an include statement) from a CLI. Upgrades to a megabyte of
memory are available at very reasonable prices and we strongly recommend this, not just for
HiSoft Devpac but for general use too.

Typography

In order to make the manual easy to read and to convey the maximum information as clearly
as possible, we have adopted certain typefaces and type styles throughout the manual.

Typefaces

Palatino General text.

Introduction Hisoft Devpac 3 Page 13

Futura oblique Chapter and sub-Chapter headings and

Monospace Used to show something that is typed in at
the keyboard or displayed on the screen.
Predominantly used in program listings and
references to function

names, variables etc.

Avant Garde
Used for filenames, menu selections

and button names. Also used to

denote legends on single keys such as Alt
(the Alternate key) and Control.

Type styles

The italic style is used mainly for emphasis.

Special Characters

[] Within syntax descriptions, information enclosed in [] is

optional.

Indicates repetition in syntax descriptions.

Vertically-spaced dots show that some part of a program has been omitted.

Acknowledgements

The trademarks (both registered and otherwise) of various companies are used
throughout this manual. In particular:

HiSoft Devpac, Power BASIC, HiSoft BASIC, Gen and Mon are trademarks of HiSoft

Atari is a registered trademark of Atari Corp.

We acknowledge any other trademark used but not listed above.

We would like to thank the following people for their invaluable help in the production of
HiSoft Devpac and this manual:

Andy Pennell for his hard work in programming the original Devpac, Julia for holding the
fort when lesser people would have deserted, Marlynne for her tenaciousness and tact, Sallie
for her database work and her jodhpurs, Pauline for getting it together and all the other
unsung heroes and heroines that have kept us alive and smiling over the past 12 years!

Introduction Hisoft Devpac 3 Page 14

Introduction Hisoft Devpac 3 Page 15

A Quick Tutorial

This is deliberately a 'quick and dirty' tutorial so you can see how straightforward it is to
create, edit, assemble and debug programs with Devpac.

In this tutorial we are going to assemble and run a simple program, which contains two
errors and debug it. The program itself is intended to print a message.

To follow this tutorial you must already have installed Devpac and be in the editor. If you are
not you should run the installation program (assuming you have not already done so), then
double-click on the DEVPAC.PRG icon from your work disk.

You will then be presented with an empty window; to load the file you should move the
mouse over the File menu and click on Load.... The standard GEM file selector will then
appear and the file we want is called DEMO.S. You may either double-click on the name or
type it in and press Return to load the file. Note that the file is in the EXAMPLES directory on
your work disk.

When the file has loaded the window will show the top lines of the file. If you want to have a
quick look at the program you may click on the scroll bar or use the cursor keys.

With most shorter programs it is best to have a trial assembly that doesn't produce a listing or
binary file to check the syntax of the source and show up typing errors and so on. Move the
mouse to the Program menu and select Check.

The assembler will report an error, instruction not recognised, pressing any key will return
you to the editor. The cursor will be placed on the incorrect line and the error message
displayed in the window title bar.

The program line should be changed from MOV. L to MOVE . L, so do this, then select
Control... from the Options menu and change the setting of the Format popup menu to ST
RAM. This is very much faster than assembling to disk and allows you to try things out

ly, which is exactly what we want. immediate

bug.

If you are unsure of how any of the user interface elements work, you may like to
read the section A word about pop-up menus and dialogs now.

The assembly worked this time, so click on Run from the Program menu, and what happens?
Not a lot it would seem, except that some bombs appeared briefly on the screen - oh, there's a

Some alternate desktops (e.g. NeoDesk™) and other programs (e.g. MiNT) replace
the standard bomb handler; in this case you won't see bombs, but that program's
'bomb' handlers message...

The tool for finding bugs and checking programs is a debugger, so select Debug from the
Program menu which will call the debugger. This is described more fully later, but for now
we just want to run the program from the debugger to 'catch' any problems and find out what
causes them, so press Control-R to run the program.

On a 68000 computer, the message Address Error will appear at the bottom of the display,

with the Disassembly window showing the current instruction

 MOVE.W 1,-(A7)

This instruction causes an address error on a 68000 because the location 1 is at an odd address
which cannot be accessed with the MOVE.W instruction.

This is not the case on 68020s upwards and, you will instead see the message Bus Error, but
with the Disassembly window showing the same instruction. In this instance the problem is
because location 1 is in protected memory which cannot be accessed in user mode.

However, for all processors, the problem is the same - there should a hash sign before the 1 to
put the immediate value of 1 on the stack. To return to the editor press Control-C twice (once
to terminate your program, once to terminate the debugger), so we can fix this bug in the
source code.

Press Alt-T, to go to the top of the file, then click on Find from the Search menu. We are going
to find the errant instruction so enter:

move.w

then press Return to start.the search. The first occurrence has a hash sign, so press Alt-N to
find the next, which is the line:

 move.w c_conin,-(a7)

Ahah! - this is the one, so add a hash to change it to

 move.w #c_conin,-(a7)

then assemble it again. If you click on Run from the Program menu you should see the
message, and pressing any key will return you to the editor.

However, did you notice how messy the screen was - the desktop pattern looked very untidy
and you possibly got mouse 'droppings' left on the screen. This was because DEMO is a TOS
program running with a GEM screen - to change this, click on Run with GEM from the
Program menu - the check mark next to it should disappear. If you select Run again you can
see the display is a lot neater, isn't it? If you run a GEM program you must ensure the check
mark is there beforehand, otherwise nasty things can happen.

Although the program now works we shall use Mon, the debugger, to trace through the
program, step by step. To do this select Debug from the Program menu, the debugger will
appear with the message Breakpoint, showing your program.

There are various windows, the top one displaying the machine registers, the second a
disassembly of the program, and the third some other memory.

If you look at window 2, the Disassembly window, you will see the current instruction, which
in this case is

 MOVE.L #string,-(A7)

As the debug option was specified in the source code all program symbols will appear in the
debugger.

Let's check the area around string. Press Alt-3 and you should see window 3's title inverted.

Introduction Hisoft Devpac 3 Page 16

Next press Alt-A and a dialog box will appear, asking Window start address? - to this enter

string

and press Return. This will re-display window 3 at that address, showing the message in both
hex and ASCII.

To execute this MOVE instruction press Control-Z. This will execute the instruction then the
screen will be updated to reflect the new values of the program counter and register A7. If
you press Control-Z again the MOVE.W instruction will be executed. If you look at the hex
display next to A7 you should see a word of 9, which is what you would expect after that
instruction.

The next instruction is TRAP #1, to call GEMDOS to print a string, but hang on - would we
notice a string printed in the middle of the Mon display? Never fear, Mon has its own screen
to avoid interference with your program's, to see this press the V key, which will show a
blank screen, ready for your program. Pressing any other key will return you to Mon.

To execute this call press Control-Z, which will have printed the string. To prove it press V
again, then any key to return to Mon.

Press Control-Z twice more until you reach the next trap. This one waits for a key press so hit
Control-Z and the program display will automatically appear, waiting for a key. When you're
ready, press the q key. You will return to Mon and if you look at the register window the low
8 bits of register DO should be $71, the ASCII code for q, and next to that it will be shown as q
(unless in low-resolution).

The final trap quits the program, so to let it run its course press Control-R, you will then
return to the debugger as the program has finished. Finally press Control-C to leave the
debugger and return to the editor.

That completes our quick tutorial.

Introduction Hisoft Devpac 3 Page 17

Chapter 2 - Using the Editor

Introduction

The editor supplied with HiSoft Devpac is fully integrated with the system which means that
you can develop programs in an intuitive and interactive manner, creating and editing your
programs in the same environment as running and debugging your finished masterpiece.

Moreover, those of you with strong preferences for your own editor can dispense with the
HiSoft editor and use your own favourite package along with the command line version of
HiSoft Devpac; although you will lose the benefits of interactive development.

The editor for HiSoft Devpac is a multi-window screen editor which allows you to enter and
edit text and save and load from disk, as you would expect. It also lets you print some or all
of your text, search and replace text patterns and use any of your computer's desk-
accessories. It is GEM-based, which means it uses all the user-friendly features of GEM
programs that you have become familiar with such as windows, menus and mice. However,
if you're a diehard used to the hostile world of computers before the advent of WIMPs, you'll
be pleased to know you can do practically everything you'll want to do from the keyboard
without having to touch a mouse.

The editor is 'RAM-based', which means that the file you are editing stays in memory for the
whole time, so you don't have to wait while your disk grinds away loading different sections
of the file as you edit. As the ST/TT range of computers have so much memory, the size
limitations often found in older computer editors do not exist with HiSoft Devpac. As all
editing operations, including things like searching, are RAM-based they act extremely
quickly.

When you have typed in your programs it is not much use if you are unable to save them to
disk, so the editor has a comprehensive range of save and load options, allowing you to save
all or part of the text and to load other files into the middle of the current one, for example.

To get things to happen in the editor, there are various methods available to you. Features
may be accessed in one or more of the following ways:

Using a single key, such as a Function or cursor key;

Clicking on a menu item, such as Save;

Using a menu shortcut, by pressing the Alternate key (subsequently referred to as Alt) in
conjunction with another, such as Alt - F for Find;

Using the Control key in conjunction with another, such as Control -A for cursor word left,

Clicking on the screen, such as in a scroll bar.

The menu shortcuts have been chosen to be, hopefully, easy to remember.

A word about pop-up menus and dialogs

The editor makes extensive use of dialog boxes and pop-up menus, so it is worth recalling

The Editor Hisoft Devpac 3 Page 18

how to use them, particularly for entering text. The editor's dialog boxes contain buttons,
radio buttons, and editable text.

Exit buttons may be clicked on with the mouse and cause the dialog box to go away. Usually
there is a default button, shown by having a wider border than the others. Pressing Return on
the keyboard is equivalent to clicking on the default button. Where there are non-default
buttons, the editor allows these to be selected from the keyboard using the sequence Alt-first
letter of the button name; obviously where several buttons have the same first letter only one
may be selected!

Radio buttons are groups of buttons of which only one may be selected at a time - clicking on
one automatically de-selects all the others.

A dialog with buttons (OK, Cancel) and radio buttons (Normal, Small etc.)

Editable text is shown with a dotted line, and a vertical bar marks the cursor position.

Editable text

Characters may be typed in and corrected using the Backspace, Delete and cursor keys. You
can clear the whole edit field by pressing the Esc key. If there is more than one editable text
field in a dialog box, you can move between them using the Tab key or the j and | keys or by
clicking near them with the mouse.

More than one editable text field

Some dialog boxes allow only a limited range of characters to be typed into them - for
example the Goto... dialog box only allows numeric characters (digits) to be entered.

As well as the conventional GEM user interface facilities, the editor also uses some extensions.
To illustrate these, consider the dialog box shown below:

The Editor Hisoft Devpac 3 Page 19

The Tool Configuration dialog box

Some options are accessed via 'pop-up' menus similar to those used by Atari's new control
panel. Thus if you move the mouse over the As shown selection (by Command line) and
press down on the left mouse button, a menu like this will pop up:

A pop-up menu

This indicates that the current setting for this option is As shown. The mouse will highlight
the current selection that you are making and when you let go of the mouse this indicates that
you have made your selection. If you let go outside the pop-up menu then this is taken as
cancelling the selection.

The box beside Make resident has a cross in it, indicating that this option is selected; similarly
Report all errors is not selected. Clicking in one of these boxes, or the associated text, will
cause that option to be toggled on and off.

Run as TOS and Run as GEM are a pair of 'radio options'; the solid box indicates the currently
selected item: clicking on Run as TOS will change both boxes.

Some of the menu items on the main 'drop-down' menus now have submenus; these are
indicated by a o symbol. For example:

A sub menu

When you highlight a menu item (like Arrange Windows in the example above), the
corresponding sub-menu will appear after a short delay. You can then move the mouse to the
right to select the particular item that you want. To cancel the operation just click outside both
boxes without selecting an item or move to another item from the main menu.

If the editor doesn't have enough room to display the sub-menu to the right of the main
menu, it will do so on the left; the items are selected in the same way.

The editor also uses a number of list boxes; these allow a number of selections to be entered
(e.g. multiple INCLUDE directories, EQU symbols etc.).

A list box

The Editor Hisoft Devpac 3 Page 20

To add a new element to the list, click on the Add button, whilst an existing element may be
removed by clicking on the item (which will become highlighted) and then clicking Remove.
To edit an existing item, double-click on it. If at some point you need to reorder the entries in
the list (e.g. the order in which INCLUDE directories are searched), this may be achieved by
dragging an entry from its current position to a new position.

The Editor Hisoft Devpac 3 Page 21

The Editor's windows

Having loaded HiSoft Devpac, you will be presented with an empty window with a status
line at the top and a flashing black block, which is the cursor, in the top left-hand corner.

The window used by the editor works like all other GEM windows, so you can move it
around by using the title bar on the top of it, you can change its size by dragging on the grow
box, and make it full size (and back again) by clicking on the full box.

A GEM window

The status line contains information about the cursor position in the form of Line and Column
offsets as well as the number of bytes of memory which are free to store your text. Initially
this is displayed as 59980, as the default text size is 60000 bytes. You may change this default
if you wish, together with various other options, by selecting Preferences, described later. The
'missing' 20 bytes are used by the editor for internal information. The rest of the status line
area is used for error messages, which will usually be accompanied by a 'ping' noise to alert
you. Any message that is printed will be removed when subsequently you press a key.

Switching Windows

The editor has support for up to seven windows, which can be selected by pressing Alt-1 to
Alt-7 (on the top row of numbers, not on the numeric pad). The windows can be organised in
a number of ways and you can select this using Arrange Windows on the Edit menu. Try this
out for yourself to get the idea of how the different arrangements work.

If you have a preferred window arrangement, you can get the editor to remember your
preference by holding down Control whilst selecting the layout. The layout will then become
permanent and the editor will rearrange the windows as necessary to conform to your
preference.

You can cycle through the open windows using the Cycle Windows command from the Edit
menu (or use Control-V), by clicking on the appropriate window with the mouse or by
selecting the appropriate sub-item from the Window item on the Edit menu.

To close a window and thus free the memory used by it, click on its close box or use the
Control-W key combination.

To cut and paste between windows is just as simple as copying blocks in a single window, i.e.

The Editor Hisoft Devpac 3 Page 22

mark the block and then use the Cut command, switch windows (as described above) and
then Paste. See below for more detail on cut and paste.

Entering text and moving the cursor

To enter text, simply type on the keyboard and at the end of each line press the Return key (or
the Enter key on the numeric pad) to start the next line. You can correct your mistakes by
pressing the Backspace key, which deletes the character to the left of the cursor, or the Delete
key, which removes the character on the cursor.

Cursor keys

To move the cursor around the text to correct errors or enter new

characters, you can use the cursor keys, labelled * » | and j or the

mouse; move the cursor to a specific position on the screen with the mouse pointer and click.
If you position the cursor past the right-hand end of the line and type some text at that point
the editor will automatically add the text to the real end of the line. If you type in long lines
the window display will scroll sideways if required.

When you cursor up at the top of a window the display will either scroll down if there is a
previous line, or print the message Top of file in the status line. Similarly if you cursor down
off the bottom of the window the display will either scroll up if there is a following line, or
print the message End of file.

You can move the cursor on a character basis by clicking on the arrow boxes at the end of the
horizontal and vertical scroll bars.

To move immediately to the start of the current line, press Control *-, and to move to the end
of the current line press Control -*.

To move the cursor a word to the left, press Shift«- and to move a word to the right press
Shift -». You cannot move past the end of a line with Shift -». A word is defined as anything
surrounded by a space, a tab or a start or end of line. The keys Control-A and Control - F also
move the cursor left and right on a word basis.

To move the cursor a page up, you can click on the upper grey part of the vertical scroll bar,
or press Shift f. To move the cursor a page down, you can click on the lower grey part of the
scroll bar, or press Shiftj.

Tab key

The Tab key inserts a special character (ASCII code 9) into the buffer, which on the screen
looks like a number of spaces, but is rather different. Pressing Tab aligns the cursor onto the
next 'multiple of 8' column, so if you press it at the start of a line (column 1) the cursor moves
to the next multiple of 8, +1, which is column 9. Tabs are very useful indeed for making items
line up vertically such as the instructions in your program. When you delete a tab the line
closes up as if a number of spaces had been removed. The advantage of tabs is that they take
up only 1 byte of memory, but can show on screen as many more.

The Editor Hisoft Devpac 3 Page 23

The Editor Hisoft Devpac 3 Page 24

You can change the tab size using the Preferences command described shortly.

Backspace key

The Backspace key removes the character to the left of the cursor. If you backspace at the very
beginning of a line it will remove the 'invisible' carriage return and join the line to the end of
the previous line. Backspacing when the cursor is past the end of the line will delete the last
character on the line, unless the line is empty in which case it will re-position the cursor on
the left of the screen.

Delete key

The Delete key removes the character under the cursor and has no effect if the cursor is past
the end of the current line.

The Edit menu

The commands on the top of the Edit menu may be used to perform
the conventional Cut, Copy and Paste operations on marked blocks.

These are described under Block commands, below.

Go to top of file

To move to the top of the text, click on Goto Top from the Edit menu, or press Alt-T. The
screen will be re-drawn if necessary starting from line 1.

Go to end of file

To move the cursor to the start of the very last line of the text, click on Goto Bottom, or press
Alt-B.

Goto line

To move the cursor to a specific line in the text, click on Goto... from the Edit menu, or press
Alt-G. A dialog box will appear, allowing you to enter the required line number. Press Return
or click on the OK button to go to the line or click on Cancel to abort the operation. After
clicking on OK the cursor will move to the specified line, redisplaying if necessary, or give the
error End of file if the line doesn't exist.

Another fast way of moving around the file is by dragging the slider on the vertical scroll bar,

The Editor Hisoft Devpac 3 Page 25

which works in the usual GEM fashion.

Block Commands

A block is a marked section of text which may be copied to another section,

ock is highlighted by showing the text in reverse. While you are editing a line

deleted, printed or saved onto disk. Blocks may be marked using the
mouse, via menu items or with function keys.

A marked bl
that is within a block this highlighting will not be shown but will be re-displayed when you
leave that line or choose a command.

Marking a block

The simplest way to mark a block is to click on the first character in the block and drag the

Double-clicking will cause the word 'under' the mouse to be marked as the block. If you

The start of a block may also be marked by moving the cursor to the required place and

The Clipboard: Copy, Cut & Paste

mouse to the end of the block. The block will be highlighted by showing the text in reverse as
you drag the mouse. When you move the mouse to the bottom of the window, the window
will scroll. Conversely, moving the mouse to the top of the window, will cause the window to
scroll in the opposite direction. You may start marking a block, by clicking at the end if you
wish.

double-click and then drag, text will be highlighted a word at a time. Clicking in the left hand
margin of the window causes dragging to occur a line at a time.

selecting Block Start or pressing key F1. The end of a block can be marked by moving the
cursor and selecting Block End or pressing key F2. The start and end of a block do not have to
be marked in a specific order - if it is more convenient you may mark the end of the block
first.

HiSoft Devpac provides conventional clipboard facilities, as popularised by the Apple

The current block may be deleted using Cut from the Edit menu; selecting Paste will then

The block menu also gives you the flexibility of the following commands.

Macintosh. Once you have marked a block you may copy it to the clipboard by selecting
Copy from the Edit menu. The main text will remain as it is. The contents of the clipboard
may then be inserted at another position by moving the cursor there and selecting Paste.

insert the block that was cut (unless you have used Copy in the mean time). Thus to move a
block with this method, Cut the block from its original position and then Paste it into its new
one.

The Editor Hisoft Devpac 3 Page 26

Saving a block

O be saved by clicking on Save Block from the Block menu
or by pressing key F3. If no block is marked, the message What blocks ! will appear. If the

ng a block

nce a block has been marked, it can

start of the block is textually after its end the message Invalid block! will appear. Both errors
abort the command. Assuming a valid block has been marked, the GEM file selector will
appear, allowing you to select a suitable disk and filename. If you save the block with a name
that already exists the old version will be overwritten - no backups are made with this
command.

Copyi

A mory permitting, to another part of the text by moving the
cursor to where you want the block copied and clicking on Copy Block or by pressing key F4.

 block

 marked block may be copied, me

If you try to copy a block into a part of itself, the message Invalid block! will appear and the
copy will be aborted.

Deleting a

A m the text by clicking on Delete Block or by pressing Shift-
F5. The shift key is deliberately required to prevent it being used accidentally. A deleted block

ck to block buffer

 marked block may be deleted fro

is remembered, memory permitting, in the clipboard, for later use. This is equivalent to Cut
on the Edit menu.

Copy blo

T ck buffer, memory permitting, using
Remember Block or by pressing Shift-F4. This can be very useful for moving blocks of text

he current marked block may be copied to the blo

between different files by loading the first, marking a block, copying it to the block buffer
then switching to another window or loading the other file and pasting the block buffer into
it. This is equivalent to Copy on the Edit menu.

Pasting a block

A pasted at the current cursor position by clicking on Paste
Block or by pressing F5. This is equivalent to Paste on the Edit menu.

Printing a block

 block in the clipboard may be

The contents of the clipboard is lost if the edit buffer size is changed and after an
assembly.

A marked block may be sent to the printer by clicking on Print Block or by pressing Alt-W.
An alert box will appear confirming the operation and clicking on OK will print the block.

The Editor Hisoft Devpac 3 Page 27

T on the port chosen with the Control Panel, or will default
t s are sent to the printer as a suitable number of spaces, so
the net result will normally look better than if you print the file from the Desktop.

Block mar
h

Deleting text

he printer port used will depend
o the parallel port. Tab character

If you try to print when no block is marked at all then the whole file will be
printed.

kers remain during all editing commands, moving where necessary, and are only
e commands Delete block and Load. reset by t

T ed from the text by pressing Control - Y.

The text from the cursor position to the end of the current line can be deleted by pressing

n be re-inserted into the text by pressing Control - U, or the Undo key. This can
be done as many times as required, particularly useful for repeating similar lines or swapping
i

ately required to prevent it being used accidentally. A deleted block
is remembered, memory permitting, in the clipboard, for later use. This is equivalent to Cut
o

Delete line

he current line can be delet

Delete to end of line

Control - Q.

UnDelete Line

When a line is deleted using either of the above commands it is preserved in an internal
buffer, and ca

ndividual lines over.

Delete block

A marked block may be deleted from the text by clicking on Delete Block or by pressing Shift-
F5. The shift key is deliber

n the Edit menu.

Searching and Replacing Text

The commands on the Search menu may be used for finding and perhaps
replacing existing text. The strings involved are set up by selecting Find or

This allows you to enter the find and replace strings as shown in the

press Alt-F.

following dialog box:

The Editor Hisoft Devpac 3 Page 28

In the example above TextWindows has been entered as the find string and MyWindow as
the replace string.

If you click on Cancel, no action will be taken; if you click Next (or press Return) the search
will start forwards, while clicking on Previous will start the search backwards. If you do not
wish to replace, leave the replace string empty.

string could not be found, the message Not found will appear in the status

uld stop if TEXTWINDOWS was found; if

 the cursor.

uring the global

Bookmarks

If the search is successful, the screen will be re-drawn with the cursor positioned at the start
of the string. If the
area and the cursor will remain unmoved.

Whether test is treated as the same as TEST or Test etc. depends on which Casing button is
selected. In the example above the search wo
testoTest was selected then the search would not find TEXTWINDOWS.

To find the next occurrence of the string click on Find Next from the Edit menu, or press Alt-
N. The search starts at the position just past

To search for the previous occurrence of the string click on Find Previous from the Search
menu, or press Alt-P. The search starts at the position just before the cursor.

Having found an occurrence of the required text, it can be replaced with the replace string by
clicking on Replace from the Search menu, or by pressing Alt-R. Having replaced it, the editor
will then search for the next occurrence.

If you wish to replace every occurrence of the find string with the replace string from the
cursor position onwards, click on Replace All from the Search menu. D
replace the Esc key can be used to abort when the status area will show how many
replacements were made. There is deliberately no keyboard equivalent for Replace All to
prevent it being chosen accidentally.

To search and replace Tab characters press Control-1 when typing in the dialog box. Other
control characters may be searched for in a similar manner except for the CR (Control-M) and
LF (Control-J) characters. Alternatively, press Shift-Ins and this will display the character set
from which you may pick the required character with the mouse.

u or by using Control-Shift
and a digit key (not the numeric keypad). When you set a bookmark the corresponding item
o menu will become enabled. Then, selecting this item, or by pressing
C return you to the original position.

A further way to navigate your source text is via the use of bookmarks. A bookmark is set by
selecting the appropriate Set Bookmark item from the Search men

n the Goto Bookmark
ontrol and the digit, will

The Editor Hisoft Devpac 3 Page 29

hen you set a bookmark, the window number to which it refers is displayed in the menu.
Going to a bookmark may cause you to switch windows. Note that bookmarks that are set in

 given window are lost when you close that window.

Disk Operations

W

a

rations that involve using the disk
system; you can save and load your source file, insert text into your source,

 a disk and more.

The File menu contains many ope

delete a file from

New

Select New to open an empty window, assuming that there is one available - you are allowed
up to seven windows at once in HiSoft Devpac.

Assuming that there are no more than six windows open, New will create a window which is
empty and has no title.

Loading Text

To load in a new text fi
new window (or warn

le, click on Load from the File menu, or press Alt-L. This will open a
you if no more windows are available) or select an unused window

and then a file selector will appear, allowing you to specify the disk and filename. Assuming
y i attempt to load the file. If it will fit, the file is loaded into
m w is re-drawn. If it will not fit an alert box will appear warning
you, and you should use Preferences to make the edit buffer size larger, then try to load it

onding files will then be loaded automatically. If a file cannot be found you will be
asked if you wish to create it or may change the filename if you wish. If you use the new Atari

d.

ou do not Cancel, the ed tor will
emory and the new windo

again.

If the file can't be found a dialog box will appear, asking you if you wish to create that file.
You may do so, or alternatively modify the filename and try again.

When loading HiSoft Devpac from a CLI, you may include up to seven filenames. The
corresp

desktop (TOS 2.00 and above) and install HiSoft Devpac as a GEM takes parameters (GTP)
program then you may also enter up to seven file names to be loade

Revert

Revert will warn you that you are about to lose the text in the selected window and, assuming

The Editor Hisoft Devpac 3 Page 30

t to continue, it will then re-load the last saved version of the file that you were
e indow.
hat you choose
diting in this w

Revert will do nothing if you try to use it on a file that has not been saved previously.

Save As...

To save the text you are editing, click on Save As... from the File menu, or press Alt-S. The file
s allowing you to select a suitable disk and filename. Clicking OK or
p hen save the file onto the disk.

 with the extension .BAK (deleting any
existing .BAK file) before the new version is saved.

elector will appear,
ressing Return will t

If you click on Cancel the text will not be saved. Normally if a file exists with the same name
it will be deleted and replaced with the new version, but if Make backups is selected from
Preferences then any existing file will be renamed

Save

If you have already done a Save As (or a Load), the editor will remember the name of the file
a it in the title bar of the window. If you want to save it without having to bother
w ile selector, you can click on Save on the File menu, or press Shift-Alt-S, and it will
use the old name and save it as above. If you try to Save without having previously specified

nd display
ith the f

a filename you will be presented with the file selector, as in Save As.

Inserting Text

To read a file from disk and insert it at the current position in your text, click on Insert File
f t-1. The file selector will appear and assuming that you do not
c m the disk and inserted, memory permitting.
rom the File menu, or press Al
ancel, the file will be read fro

Delete File

You may want to delete a file from disk (if for instance you have run out of disk space whilst
t Delete File. The file selector will appear, allowing you to select a
s me. Clicking OK or pressing Return will then delete the file from the
disk. If you click on Cancel the file will not be deleted.

rying to save); click on
uitable disk and filena

Close

This is the same as pressing Control-W and will close the currently selected window. If the file
t edited in this window has been changed since it was loaded or is a new file, you
will be warned before the window is closed. You can choose to continue and lose your
changes, cancel the action or save the changes.

hat is being

Change Directory

This option allows you to move the current directory path; this can be useful when running
programs which expect all of their files to be in the same place as the program itself. After
clicking on Change Directory the file selector will appear, allowing you to select a suitable
disk and folder name. Clicking OK or pressing Return will then change the directory. If you
click on Cancel the directory path will not be changed.

Quitting HiSoft Devpac

To leave HiSoft Devpac, click on Quit from the File menu, or press Alt-Q. If changes have been
made to the text which have not been saved to disk, an alert box will appear asking for
confirmation.

This example shows that two files have changed. Clicking on Save All, As Above or pressing
Return will exit the editor saving the changes. Clicking on Cancel will return to the editor.
Leave All will ignore all the changes you have made.

If you wish to save some files but not others click on the appropriate Leave buttons. For
example if you clicked on the Leave button by ASASMTXT.S in the above example and then
pressed Return, only RASM3.S and CASETAB.S would be saved.

You can also enable and disable backups from this dialog box. This is useful if you normally
use backups, but decide that you don't require a backup of a one line change.

Configuring the editor

Selecting Preferences… from the Options menu will produce a dialog box like this:

The editor preferences box

The Editor Hisoft Devpac 3 Page 31

This box allows you to set up the editor as you would like to use it; you can then save your
customisation to disk so that the editor will always behave the same way. Here are the
different settings that you can change.

Auto-indent lines

Selecting this option sets auto-indent mode. When active, an indent is added to the start of
each new line created when you press Return. The contents of the indent of the new line is
taken from the white space (i.e. tabs and/or spaces) at the start of the previous line. This
allows you to lay out your program neatly, by simply pressing Return.

Auto-save configuration

When this option is selected, the current preferences will automatically be saved when you
exit the editor. So when you load the editor again, the preferences will be just the same as
when you last used it.

Cursor mode numeric pad

The Cursor Mode Numeric Pad option allows the use of the numeric keypad in an IBM-PC-
like way allowing single key presses for cursor functions, and defaults to Cursor pad mode.
The keypad works as shown in diagram below:

When this option is not selected the keyboard reverts to returning the digits etc.

Hide mouse when typing

Selecting Hide mouse when typing causes the mouse pointer to disappear when you start
entering text with the keyboard. As soon as you move the mouse, or use a command that
displays a dialog box, the mouse will re-appear. This option may be disabled if you prefer to
always see the mouse on the screen.

Make backups

Selecting this option causes the editor to make a backup (with the extension .BAK) when
saving files.

The Editor Hisoft Devpac 3 Page 32

Show matching parentheses

This facility lets you check that your parentheses match. With this option enables, when you
press) the cursor will quickly move to any matching (character and then back to the current
position, thus you can ensure that you have closed the correct number of brackets in a
complex expression. If you find this cursor movement distracting then disable the option.

Stop at end of line

When this option is selected, if you press cursor left at the beginning of a line or cursor right
at the end of line, the cursor does not move. Disabling this option, causes the cursor to move
to the previous line if you press cursor left at the beginning, and to the next line if you press
cursor right at the end.

The best way to find out which you prefer is to try using each setting.

Save files on Quit

By default the editor will prompt you, if you are about to quit
without having saved all the files, you have changed.

The saving of these files can be made automatic by selecting Yes or disabled by selecting No
(but don't blame us if you forget to save your files!).

Save files on run other

This enables you to choose whether files are saved before using the Run Other and Run with
Shell commands, in the same way as that for Save files on Quit.

Tab setting

By default, the tab setting is 8, but this may be changed to any value
from 2 to 16.

Text Buffer

By default the text buffer size is 60000 bytes, but this can be changed from 4000 to 999000
bytes. This determines the largest file size that can be loaded and edited. This amount of
memory is allocated for each window in use. Care should be taken to leave sufficient room in
memory for assemblies - pressing the Help key displays free system memory, and for
assemblies this should always be at least 100k bytes. Changing the editor workspace size will
cause any text you are currently editing to be lost, so a confirmation is required if it has not
been saved.

The Editor Hisoft Devpac 3 Page 33

Cursor

By default the editor cursor is a flashing block, but this can be changed
as required.

Load...

This button lets you load a settings file. The editor settings are normally stored in a file called
HISOFTED.INF in the current directory, but the editor will 'look down' both the AES and
GEMDOS paths. If you want to use more than one set of preferences, then you can explicitly
load a settings file.

Saving preferences

To save the settings file you can either choose Save as... from the Preferences box or choose
Save preferences from the Options menu.

This latter command, on the Options menu, saves the current editor, assembler and Tools
menu preferences under the name HISOFTED.INF. If you want to call your settings file a
different name you should use Save as... in the Preferences... box, as described below.

When the editor is loaded, it looks for the HISOFTED.INF configuration file firstly in the current
directory (which is the folder where you double-clicked on the data file), then using the
system path. Saving the editor preferences this way will put the .INF file in the same place it
was loaded from or, if it was not found, it will be placed in the current directory path.

In addition to saving the editor configuration the current program buffer size, the options
from within the assembler options dialog boxes, are also saved.

Use Save as... from the Preferences box to save a settings file with a name other than
HISOFTED.INF; an extension of .INF is still usual.

With this option you can save a number of different settings files under different names;
however the editor always loads the settings file called HISOFTED.INF when it starts up so that,
if you want to make a particular settings file the default, you will need to re-name it to
HISOFTED.INF.

Reset

Clicking on this box causes the settings to be reset to their default values; useful if you have
made a complete mess of your options.

Running other programs

There are three ways that you can execute other programs from within the editor; Run
Other..., Run with Shell... and by a selection from the Tools menu. These different methods will

The Editor Hisoft Devpac 3 Page 34

now be described.

Tools Menu

The Tools menu lets you run programs of your choice from within the
editor using a single keystroke or click of the mouse.

The configuration can be saved in the preferences file, ensuring that the
same facilities can be used again, the next time that you run the editor.

The preferences file that we supply is already set up to run the tools
supplied with HiSoft Devpac.

Before you can use this facility you will need to configure each tool so that the editor can find
the appropriate file. To configure a tool, hold down the Control key and select the appropriate
menu item or press Control-Alt and the appropriate key on the numeric keypad.

This will produce a dialog box like this:

If you just want to use the default settings, you need only change the Path item so that the file
can be found; either amend this item or click on FSel and use the file selector to select the
appropriate file.

Once you have made the required changes you should press Return (or click on OK) to make
your changes permanent; alternatively pressing Cancel will ignore any changes you have
made. The other options in this box are:

Menu entry

The name typed in this field gives the name of the tool as placed on the Tools menu. Hence in
the above example the name SRSplit appears on the menu.

Command line

These options configure the way the command line is obtained for a
program which is about to be run.

The Editor Hisoft Devpac 3 Page 35

If None is selected then a program will be run as a plain GEM or TOS program with no
command line. If Prompt has been selected you will be prompted for a command line in the
same way as occurs when using Run Other.

Finally As shown allows the command line on the line below to be used. This command line
is specified in the same way as that used by Run with Shell and may have the same meta-
characters in it, as in the example above.

Directory

This sets up which directory will be the current one when the tool is
run. Current will leave the directory as that of the editor itself.

Tool's switches to the directory of the tool being run, whereas Top window switches to where
the file in the current window is stored on disk.

Save files

This option changes which files will be saved before running the tool. If you select No then no
files will be saved, selecting Yes (the default) will save all files (not just the current window),
whilst Ask... will prompt you using the Save/Leave dialog described under Quitting HiSoft
Devpac.

Path

This option specifies which program is actually to be run. If you give a full pathname, or
select one by clicking on the FSel.. button then that specific file is run. If you just use a name
then this will be treated as if you had used it as an argument to the Run with Shell command
described above.

Pause on return

This option controls whether the editor pauses after running the tool. Typically you will select
this when funning a TOS program but disable it when running a GEM program.

Report all errors

This option allows you to specify which errors the editor will bring to your attention when
returning. If this option is not selected then you will only be alerted to negative return codes
from programs, i.e. those normally indicating GEMDOS errors. Selecting it will also force
positive program error returns to be flagged.

Run as TOS & Run as GEM

These buttons select how the program is run, either as a GEM program or as a TOS program.

Running a TOS program in GEM mode will look messy but work, but running a
GEM program in TOS mode can crash the machine.

Make resident

If this item is selected then when the editor next loads it will attempt to load this tool into
memory and make it resident, i.e. merely execute the tool from memory rather than load it

The Editor Hisoft Devpac 3 Page 36

from disk each time. This is particularly useful with substantial programs like WERCS.

As well as the obvious disadvantage of permanently tying up your memory, not all programs
can be made resident.

We do not recommend running third party programs in this way. They may crash
immediately, or the second time they are run or may simple not quite work correctly possibly
destroying your valuable files in the process.

Running Tools

Running a configured tool is simple, just select the appropriate menu item or press Alt and the
appropriate key on the numeric keypad and the program will be run using the settings
described above.

Run Other…

This command, on the Tools menu (also reached by Alt-O), lets you run other programs from
within the editor, then return to it when they finish.

When you select Run Other... you will first be warned if you have not saved your source code
(unless you have modified the setting of the Save files on Run Other option in Preferences).
Then the GEM file selector will appear, from which you should select the program you wish
to run. If it is a JOS or .TTP program you will be prompted for a command line, and then the
screen will be initialised suitably.

This is the command to use for 'one-off execution of a program within the editor. If you are
likely to want to run the same program a number of times, then use the facilities of the Tools
menu. If you would prefer to specify the program to run via a command line, rather than
using the file selector then use the Run with Shell command described below.

If you include the character sequence %. (i.e. per cent followed by full stop) in the command
line (remember, you are prompted for a command line) these characters will be replaced by
the full name of the file that you are currently editing. To pass the name without its extension,
use %?.

If you need a true % to be passed type %%.

Run with Shell...

This command also lets you run other programs from within the editor, then return to it
when they finish. The keyboard shortcut for this command is Shift-Alt-O.

It differs from Run Other in that you enter the file to run as a command line. If the editor finds
that the _shell_p vector has been set up then this will be called to execute the command. This
works well with the Craft, PKS and Gulam shells as the shell can be used to run batch files
and expand file wildcards etc.

If the _shell_p vector has not been set up then the editor will look for the file to run using
the PATH environment variable, which can be set using the Environment command from the
Options menu.

The same expansion of the current filename as used by Run Other can be used by this
command. If you wish to use the same command more than once you will probably save time

The Editor Hisoft Devpac 3 Page 37

by using the Tools menu.

Setting the Path

The editor maintains a number of directory paths to make the operation of the integrated
environment natural and seamless.

Paths are routes to files. Normally you keep all files of a similar type or usage in one folder or
you may have a number of related folders all within one outer folder. For example if you
have a hard disk, you probably have a DEVPAC3 folder containing the HiSoft Devpac
program, its tools and its libraries.

In order that a program that uses these files can find them without having to ask the user for
help, both the operating system and the HiSoft Devpac editor maintain a number of directory
paths, some of which you can alter.

Here is a summary of the paths used by the integrated environment, how they are set and
what uses them:

Current directory - this is a path that is set up (initially) by the program which ran the current
program. For example, for the HiSoft Devpac editor this path will have been set up by the
Desktop, assuming of course you ran HiSoft Devpac from the Desktop. However, since the
editor allows this to be changed (via the Change Directory command on the File menu), it is
normally reset to whatever was last stored in the HISOFTED.INF file, to save you having to
change it every time you run the editor.

Most of the disk-related functions within the editor will search this path first.

GEMDOS path - this path is that contained in the PATH environment variable. It is used by
shells (e.g. Craft, PKS Shell, Gulam) to locate programs to run. It is specified as a list of , or ;
separated folder names, each of which specify a folder which should be searched when trying
to locate a file.

Within the editor it is used by Run with Shell, and to locate the named program. Other tools,
like WERCS, may use it for locating subsidiary files, such as WERCS.RSC and WERCS.INF.

AES path - this is the path used by the AES when the user calls one of the AES routines which
search for a file (shel_find and rsrc_load). Internally the format of this variable is identical to
the GEMDOS path (in fact it is the GEMDOS PATH for the AES program!), although the AES
provides no way of altering it and merely sets it to A:\ for a floppy based machine or C:\ for a
hard disk machine.

Environment...

The Environment... option allows the environment variables used by the tools which are run
to be altered. Only the variables which are needed are shown:

The Editor Hisoft Devpac 3 Page 38

Miscellaneous Commands

Fonts...

The Fonts command is used to select different GEM or TOS fonts for use in the editor; it can
be selected either by clicking on Fonts... from the Options menu, or by pressing Control-G. It
displays a dialog box like this:

The GEM Font is the font that will be used by the editor to display text. In ST high resolution
and the TT resolutions, there are three fonts available as above. Changing to Small will double
the number of line displayed on the screen. With the Tiny font the characters are only 6 pixels
by 6 pixels wide but this does mean that even in ST high resolution, there are over 100
characters per line and 54 lines!

In ST medium resolution, there are only two fonts; Normal and Small. Small is 6 by 6 pixels
and thus the characters are difficult to read but this does give an extra 7 lines of text and over
100 characters per line.

TOS font is used by non-GEM programs. In ST high resolution, using 8x8 will give 50 lines
instead of 25.

You should be aware that any change of font that you make here will also be effective outside
the editor, after you leave it.

About Devpac-3...

It you select About Devpac-3... from the Desk menu, a dialog box will appear giving various
details about HiSoft Devpac, including its version number. You will also be told the amount
of free memory that is available to you and how much is used by the resident programs
including the text in the open windows.

The Editor Hisoft Devpac 3 Page 39

Pressing Return or clicking on OK will return you to the editor.

ASCII Table...

To be found on the Edit menu, this displays a pop-up dialog box at the current mouse
position, showing all the ASCII characters:

You may click on an individual character and it will be added to the text that you are editing
at the current cursor position. You can bring up this display from the keyboard using Shift-
Insert. This short cut can also be used in the editor's dialog boxes.

Note that the characters that would confuse the editor are 'greyed out' and may not be
selected. Remember that characters other than those in the standard 7 bit ASCII set are not
necessarily the same on other computers.

Help Screen

The key equivalents for the commands not found in menus can be seen by pressing the Help
key, or Alt- H. A dialog box will appear showing the cursor and function keys, as well as the
free memory left for the system.

Desk Accessories

If your system has any desk accessories, you will find them in the Desk menu. If they use their
own window, as Control Panel does, you will find that you can control which window is at
the front by clicking on the one you require.

For example, if you have selected the Control Panel it will appear in the middle of the screen,
on top of the editor window. You can then move it around and, if you wish it to lie 'behind'
the editor window, you can do it by clicking on an editor window, which brings the editor
window to the front; you can then re-size it so you can see some part of the control panel's

The Editor Hisoft Devpac 3 Page 40

window behind it. When you want to bring the control panel back to the front just click on it
and the editor window will go behind. The editor's cursor only flashes and the menus only
work when an editor window is at the front.

Automatic Launching

You may configure HiSoft Devpac to be loaded automatically whenever a source file is
double-clicked from the Desktop, using the Install Application option.

To do this you first have to decide on the extension you are going to use for your files, which
we recommend to be .S for assembly language files. Having done this, go to the Desktop, and
click once on DEVPAC.PRG to highlight it. Next click on Install Application from the Options
menu and a dialog box will appear. You should set the Document Type to be S (or whatever
you require), and leave the GEM radio button selected. Finally click on the OK button (if you
press Return it will be taken as Cancel).

Having done this, you will return to the Desktop. To test the installation, double-click on a
file with the chosen extension which must be on the same disk and in the same folder as
HiSoft Devpac and the Desktop will load HiSoft Devpac, which will in turn load in the file of
your choice ready for editing or compilation.

Note: To make the configuration permanent, you have to use the Save Desktop option.

The Program Menu

The Program menu contains commands for assembling and running your
program. The commands on it are used to communicate with the other
parts of the package, the assembler, the debugger and, not least, the
program that you are developing.

Assemble

This command will assemble the file that is currently being edited using that have been set up
using the Assembler Options dialogs, which are described in detail at the beginning of the
next section.

If you are compiling to memory and get a program buffer full error when you assemble
something you should change the number given by Buffer size... on the Format popup menu.
There is of course a penalty for this - the bigger the program buffer size the smaller the
amount of memory left for the assembler itself to use while assembling your program. If the
assembler itself aborts with Out of memory it means there is not enough left for a complete
assembly - you should reduce the buffer size, or if this still fails you will have to assemble to
disk.

When you assemble to disk the program buffer size number is ignored, giving maximum

The Editor Hisoft Devpac 3 Page 41

The Editor Hisoft Devpac 3 Page 42

room in memory for the assembler itself. If you haven't saved your program source code yet
the file will be based on the name NONAME.

If there were any errors the editor will go to the first erroneous line and display the error
message in the status bar. Subsequent errors (and warnings) may be investigated by pressing
Alt-J.

If you have any include files loaded in other windows, these will be read directly from
memory; there is no need to save them to memory before saving them. If the first error occurs
in such an include file, then the editor will automatically switch to the appropriate window to
show the error.

Check

Check or Alt-Y is just like assemble except that it does not produce output to memory or disk.
If you know that your file contains errors this operation is slightly quicker than a normal
assembly, even than an assemble to memory.

Output Symbols

This is used to produce a .GS file from an include file. The pre-assembled symbol table that is
produced will then be loaded when you assemble a file that includes this file. Pre-assembly is
described in detail in the next chapter.

Running Programs

If you click on Run from the Program menu or press Alt-X you can then run a program
previously assembled into memory. When your program finishes it will return you to the
editor. If the assembly didn't complete normally for any reason then it is not possible to run
the program.

If your program crashes badly you may never return to the editor, so if in doubt save your
e before using this, or the Debug command. source cod

If only non-fatal errors occurred during assembly (e.g. undefined symbols) you
will still be permitted to run your program at your own risk.

Please Note

When issuing a Run command from the editor the machine may seem to 'hang up' and not
run the program. This occurs if the mouse is in the menu bar area of the screen and can be
corrected by moving the mouse. Similarly when a program has finished running, the machine
may not return to the editor. Again, moving the mouse will cure the problem. This is due to a
feature of GEM beyond our control.

Run with GEM

Normally when the commands Run, Debug or Mon are used the screen is initialised to the
normal GEM type, with a blank menu bar and patterned desktop. However if running a TOS

program this can be changed to a blank screen with flashing cursor, by clicking on Run with
GEM. A check-mark next to the menu item means GEM mode, no check mark means TOS
mode. The current setting of this option is remembered if you save the editor preferences.

Running a TOS program in GEM mode will look messy but work, but running a
GEM program in TOS mode can crash the machine.

Run Directory

Selecting Directory on the Program menu lets you choose the directory path that will be
passed to any programs that you run in memory. If you select Current then the editor's
current directory will be used; when Top Window is select the directory corresponding to the
top most window will be used.

This can be useful if your program needs to load subsidiary files as it can find them
immediately even if you have loaded the editor from another folder. Remember that you can
change the editor's current directory using the Change Directory command from the File
menu.

Debug

If you wish to debug a program previously assembled click on Debug from the Program
menu. This will invoke Mon to debug your program, included any debugging information
specified. The screen type selected is determined by the Run with GEM option, described
above.

Mon

This item will invoke Mon in a similar way to if it was invoked by double-clicking on the
program icon from the desktop, but instantly, as it is already in memory. You will return to
the editor on termination of the debugger. The screen type selected is determined by the Run
with GEM option, described above.

Debugger options

The integrated assembler makes available the debugger, Mon. The options for the debugger
(set via Control-P inside Mon) may also be set up within the integrated environment:

If you wish to use an alternative debugger (e.g. DB from Atari) this can be done by

The Editor Hisoft Devpac 3 Page 43

naming a copy of the debugger MON.

The integrated assembler will notice such uses and not pass the debugger strange options!
Note that you should only make Mon resident (using the Resident... option), attempting to
make other debuggers resident will almost certainly crash the machine.

Auto '©'/'_' prefix labels

With this option set Mon will try prefixing symbols by _ and @ if it cannot find a label, so that
if you enter main and there is no label called main, then Mon will try _main or if this doesn't
exist then it will try @main.

Auto-load source

Using the default settings, Mon will automatically load a source file and run your program
until the label specified in the Start at label field, (i.e. the beginning of your main program),
ready for you to set a breakpoint in the code. Mon loads the source file corresponding to the
first module with debug information in the file that you are debugging.

Display 'ZAn' in disassembly

This option allows advanced programmers to enable the display of the normally hidden Z
registers used by some 680x0 instructions.

Note that the Display 'ZAn' in disassembly option will be disabled if running on an ST.

Enable timed screen switching

Defaulting to On, this causes the display to switch to that of your program only after 20
milliseconds. It should be switched off when a program is about to change a screen's address
or resolution and then turned back on afterwards.

Follow TRAPs

By default, single-stepping and the various forms of the Run command treat TRAPs, Line-A
and Line-F calls as single instructions. However by turning this option On the relevant
routines will be entered allowing ROM code to be investigated.

Ignore cartridge area

When this option is selected the Find command will not search the ROM cartridge area of the
memory map. You should select this is you have hardware other than a ROM in this slot.

Ignore label case

This option defaults to On. If it is set to On then if you enter fred in an expression the
subsequent search will give the value of the first symbol that matches this, ignoring case, thus
finding FRED, fred or Fred. This option is useful for lazy typists who use the same name with
different casing.

Interpret relative offsets

This option defaults to On and affects the disassembly of the address register indirect with

The Editor Hisoft Devpac 3 Page 44

The Editor Hisoft Devpac 3 Page 45

offset addressing modes, i.e. xxx(An). With the option on, the current value of the given
address register is added to the offset and then searched for in the symbol table. If found it is
disassembled as symbol (An). This option is required to show the addresses of your global
variables if they are accessed via an address register.

Symbol significance: sig

This option specifies the number of characters the debugger treats as significant for
identifiers. This can be useful if less than the default of 22 is required.

Source line numbers

Mon can either show line numbers in your source window in
decimal, hex or not at all.

Start at label: label

When an executable file is loaded normally Mon stops at the first location in the program. If a
different label is specified using this option (e.g. main for C, REF0001 for HiSoft BASIC),
then the program will instead be stopped at that point; this means you can start debugging at
the start of your code, rather than the going through the compiler's startup code.

Assembly Errors

When the assembler detects an error or something that may be an error (a warning) it
generates a message; these errors are remembered, and can be recalled from the editor; the
message is followed by the line and file in which the error was detected.

When you return to be editor you can use Alt-J to move to the next error with the error
message displayed in the status line. If you have a large number of errors the editor may not
be able to remember them all. Alt-J goes to the next error regardless of the position of the
cursor; it will switch windows is required. To go to a previous error use Control-J. The editor
takes account of any insertions or deletions automatically so that unless one error (like a
mistake in a definition) has caused multiple errors you should only need to compile once.

There's also the Shift-Alt-J command which finds the next error after the cursor in the current
window. It is the appropriate one to use if you have got a number of include files and want to
fix all the errors in one file before going on to the next one. You can also use it to find the first
error in a file by typing Alt-T (to go to the top) and then Shift-Alt-J.

Occasionally the assembler will spot errors somewhat later than you might expect. This is
usually because the text up to the point it has read is allowed in a certain context. If you have
missed something out at the end of a line, then the error may be detected at the beginning of
the next line.

On occasions the assembler will generate more than one error message as a result of a single
error in your program; do not be put off by this. If you get confused, just re-assemble.

Incidentally, if you start a assembly of a large program you can break out and returned to the
editor using the key combination Shift-Shift when using the integrated assembler.

See the Appendix B - Devpac error messages for details of all the error messages produced.

Resident Tools

This command, on the Options menu, lets you control how the Devpac programs are loaded
into memory.

There are two different ways that the editor can load a tool which it needs. Firstly, by default,
the tools (assembler and debugger) will be read into memory when the editor starts up. If,
however, you are low on memory, unchecking the boxes will only load the tool when

necessary.

A tool will be loaded by the editor when needed and then removed after use; you
do not have to have the tool permanently resident in order to use it.

To pre-load non-program files (such as include files or pre-assembled symbol files) we
recommend copying them into a RAM disk.

The Editor Hisoft Devpac 3 Page 46

Chapter 3 - The Assembler

Introduction

Gen is a powerful, fast, full specification 680x0/6888x/68851 assembler, available instantly
from within the editor or as a standalone program. It converts the text typed or loaded into
the editor, optionally together with files read from disk, into a binary file suitable for
immediate execution or linking. It can also produce a memory image for immediate execution
from the editor.

Invoking the Assembler

From the Editor

Before using the assembler you will probably need to set up the assembler's options to reflect
your preferences. This is achieved via the first four entries on the Options menu.

The Control dialog

The control dialog

This dialog is used to control the assembly process.

Ignore multiple includes causes the assembler only to assemble an include file the first time
that it is included. This leads to slightly faster assembly times and is most useful when using
the operating system include files which may be called more than once. However you should
not use this option if the multiple includes are each intended to generate code.

Low memory assembly lets you reduce the memory requirements of the assembler by causing
it never to cache include files in memory. Under normal circumstances you should leave this
button unchecked, and select it only if the assembler runs out of memory.

The No warnings option suppresses the generation of assembler warnings.

The Assembler Hisoft Devpac 3 Page 47

The Debug symbols popup lets you choose which symbols to include in
the executable.

You normally include symbols in a file so that you can see them when using the debugger.
The choices correspond to the following OPTs:

None NODEBUG
Normal DEBUG
Exports XDEBUG

Note that the different options have different effects depending on the format of code being
generated; you should refer to the Output File Directives section.

Choosing Line debug includes information about the code addresses
corresponding to the line numbers in your program.

Two formats are available: Standard which uses LINE debug hunks that are compatible with
Lattice C. Compressed uses HCLN hunks which need approximately one quarter of the space
of LINE hunks but are not supported by Lattice C. Beware that even using the compressed
format increases the size of your program substantially. Mon understands both formats.

The Format popup lets you select the output format produced by the
assembler; Atari Executable, Linkable (GST, DRI or Lattice), S-records
or to RAM. The differences between these are detailed later.

Normally you will want to use Atari Executable or one of the RAM options. The final option
on this menu is Buffer size... which brings up the following dialog:

This sets the size of the buffer that is used when assembling to memory.
You will need to change this if you get a Program buffer full error message
from the assembler.

The 'EQU' symbols list box enables you to initialise the values of labels; each label has the
form: label=value, e.g.

FALCON030=1

would set the label FALC0N030 to have the value 1. Note that omitting value causes the label
to be set to the value 1.

The 'INCLUDE' directories list allows you to set up a list of directories that will be searched for
include files. Typically you will set this up to point to the main directory for your operating
system include files.

The Pre-assembled includes list allows you to set up any pre-assembled header files that will
be loaded before assembly begins. Such header files contain the symbol table information for
macros and absolute labels and are produced using the Output Symbols command from the
Program menu. These files are described in detail later.

Output is used to override the default name for the assembler's output file which is the same
as the main file but with a .PRG extension if executable, with a .O or .BIN extension if linkable
or a .MX extension if S-records are being produced. Even if you have specified an output
filename with this option you will still need to ensure that you have selected one of the disk

The Assembler Hisoft Devpac 3 Page 48

based formats.

The Listing dialog

The Listing dialog

The List symbol table, List macro expansions, List conditionals only and First pass listing options
should be self explanatory. Generating a listing on pass one is only normally useful when
debugging complex usage of conditional assembly.

The Listing popup enables you to select an assembly listing. None will suppress
the listing, Screen and Printer will direct it to the appropriate device.

Disk will send the listing to a file based on the source filename but with the extension .LST. You
may set your own file or device for the listing file using the List to item.

Tab size sets the size of tabs in listing files.

The Options dialog

The Processor popup lets you select for which main processor the assembler
will generate code. If you are writing a program that is to run on all Atari TOS
computers leave this as 68000.

If you are writing a program specifically for the TT or Falcon030 then you should select
68030.

The 68881/2 maths coprocessor and 68851 memory management unit check boxes enable
the instructions for these coprocessors. Note that the 68851 should only be selected if you are
generated code for a 68020/68851 combination; the 68030 and 68040 processor options
automatically enable the MMU instructions for those particular chips. Equally it is not
necessary to select the maths co-processor when using the 68040.

Use Case insensitive labels to select whether labels are case dependent or not; if checked, then
Test and test would be treated as the same label, when not checked they are treated as
different.

The Assembler Hisoft Devpac 3 Page 49

The Assembler Hisoft Devpac 3 Page 50

Symbol significance lets you define the number of characters that will be considered when
labels are compared. The default value is 127 characters, the maximum. The minimum value
is 8.

The Default branch size popup sets the default size for branch
instructions.

Using Word (the default) gives the same code as produced by 68000-only assemblers.

The remaining options correspond to the following OPT directives; these are described in
detail below.

Add automatic PC-relative AUTOPC
Allow narrow zero operands ALLOWZERO
Base displacement default word BDW
Check absolutes for missing # CHKIMM
Check memory bitfield offsets CHKBIT
Ensure PC-relative code CHKPC
No even indirection checking NOEVEN
No expression type checking NOTYPE
No supervisor instructions USER
Outer displacement default long ODL
Underscore for local labels LOCALU

The Optimisations dialog

This dialog controls the optimisations that will be made automatically by the assembler. Most
of these can be set to one of Yes (Y), Warn (W) or Off (N); when W is selected the assembler
makes the optimisation and issues a warning so that you can see where it is modifying your
code. Switching an optimisation on (Y) causes it to be made without any warning.

The exact code transformations that these options perform are detailed below.

Running the assembler

Having selected your required options you should select the Assemble menu item from the
Program menu or press Alt-A to start the assembly. At the end of assembly if any errors
occurred the cursor will be positioned on the first offending line.

If you wish to check the syntax of a program rather than actually assembling it to memory or
disk, you can use the Check item from the Program menu - this is exactly like a normal

assembly but it does not output any code; the keyboard shortcut for this is Alt-Y.

The final form of assembly is to produce a pre-assembled header file so that you can use it via
the Pre-assembled includes item on the Assembler options - Control dialog. To produce a pre-
assembled file select Output Symbols. Note that files that are used in this context may not
contain code - only definitions of macros and constants.

Assembly to Memory

To reduce development time Gen can assemble programs to memory, reducing disk access
time. Such programs may self-modify if required as a re-executed program will be in its
original state.

You should be careful when running from memory under the 68020 processor and above;
these chips have an instruction cache and, if you modify an address that is already in the
instruction cache, your new code will not be executed!

Stand-Alone Assembler

You can invoke the assembler from within the editor or from the Shell or CLI using the
standalone assembler.

The standalone version of the assembler is called GEN.TTP and, if it is called without a
command line, you will be prompted for one conforming to the rules below; enter the options
you want and press Return or press Return immediately to abort.

At the end of an assembly invoked from the editor, Gen will automatically return to the
editor. If a command line has been supplied manually the assembler will not wait for a key at
the end of the assembly as it assumes it has been run from a CLI or batch file.

Command Line Format

The Gen command line consists of a series of options and the name of the main file that you
wish to assemble. There may be options before and/or after the filename. You can use any of
the long forms of OPT option names directly by preceding them with the + character. These
are described in detail later.

The additional options that can be used from the command line are as follows; the
corresponding OPT directive is shown in parentheses, where relevant. The latter options may
be used on the command line with a leading +.

-B no binary file will be created.

-C case insensitive labels (+NOCASE).

-D debug (+DEBUG).

-E allows labels to be set; assignments must be separated by commas; see below for
further details.

-H specify the pre-assembled header files that are to be loaded before assembly starts.
Multiple files may be separated with a comma.

-I specify include directories to be searched (follow immediately with path). These
directories will be searched when the assembler is opening include files; they should

The Assembler Hisoft Devpac 3 Page 51

normally be terminated with a slash.

-L GST linkable code (+GST).

-L2 DRI linkable code (+DRI).

-L6 output Motorola S-records (+SREC).

-L7 Lattice linkable code (+LATTICE).

-M use low memory (slower) assembly mode. See the section on integrated options in the
previous chapter. Not the same as OPT M+.

-O specify output filename (which should follow immediately after O).

-P specify listing filename (which should follow immediately after P), defaults to source
filename with extension of .LST. This may be any device.

-Q pause for key press after assembly.

-S include a symbol table at the end of the listing.

-T specifies the tab setting for listing. For example -T10 uses a tab setting of 10.

-V specify options as if they were specified using OPT on the second line of the main
source file; note it is normally easier to us the +option format.

-X use extended format symbols in executable (+XDEBUG).

-W specify a file that contains a list of options to be used (which should follow
immediately after W). There may only be one -W file per assembly and this option may only be
used on the command line.

-Z enable listing on pass 1. The information in the code field may be incorrect but this
can be used to find mistakes when omitting an ENDC (+LIST1). This is provided for backward
compatibility; +TRACEIF can normally be used to find such errors more quickly.

The default is to create a executable binary file with a name based on the source file and
output file type, no listing, with case sensitive labels.

Some examples of command lines:

gen test -b

assembles test..S with no binary output file.

gen test -oc:\test.prg -p

assembles test.s into a binary file c:\test.prg and sends a listing file to test. 1st.

gen test -l1dpprn:

assembles test.s into GST linkable code with debug and a listing to the parallel port; a listing
to the serial port can be obtained by specifying aux: as the listing name.

gen test +GST +DEBUG -pprn:

The Assembler Hisoft Devpac 3 Page 52

achieves the same effect.

gen test -wtest.opt

assembles the file test.s using the options contained in the file test.opt.

Defining Labels on the Command-Line

The -E option allows symbols to be defined at assembly time without having to change the
source file. This option can be followed by one or more assignments of the form

symbol=expression

where symbol and expression follow the normal rules of the assembler and may contain
values that have been defined previously. Multiple assignments must be separated by
commas. If you omit the =expression, then the symbol will be assigned the absolute value
1.

Assembly Process

Gen is a two-pass assembler; during the first pass it scans all the text in memory and from
disk if required, building up a symbol table. If syntax errors are found on the first pass these
will be reported and assembly will stop at the end of the first pass, otherwise, during the
second pass the instructions are converted into bytes, a listing may be produced if required
and a binary file can be created on the disk. During the second pass any further errors and
warnings will be shown, together with a full listing and symbol table if required.

If started from the command line assembly may be aborted by pressing Control-C, although
doing so will make any binary file being created invalid as it will be incomplete and should
not be executed.

Assemblies started from the editor may be aborted by holding down both Shift keys.

Return Codes

If using the comand line version of the assembler from batch- or make-files, you may exploit
the codes the program returns. These are:

100+ initialisation failure
20 fatal error
10 error(s)
5 warning(s)
0 OK

Binary file types

There are five main types of binary files which may be produced by Devpac, for different
types of applications. They are Atari executable, DRI linkable, GST linkable, Lattice linkable
and Motorola S-records.

The Assembler Hisoft Devpac 3 Page 53

Devpac can also assemble executable code directly to memory when using the integrated
version allowing very fast edit-assemble-debug-run times.

When producing linkable code, Devpac does not produce an executable file, but a file that
needs to be processed by a linker to produce an executable file. An advantage of using this
format is that your program can be linked with the output of a high level language compiler
such as HiSoft BASIC. You can also use linkable code to split your assembly program into a
number of modules.

Motorola S-records are the industry standard method of programming EPROMs and for
standalone systems that use the 680x0 family of processors. The code produced is an ASCII
file that runs at a particular address. As a result S-records are not suitable for executing
directly under TOS but are ready for downloading to an EPROM programmer or stand-alone
system.

The type of executable file may be specified using the assembly options box, by using - L on
the command like or OPT and then the format name within the source code. Such a directive
must be placed before any code is generated and to avoid any confusion should be before any
module or section directives.

The different possibilities are summarised in the table below:

Lx OPT name Result Extension
0 ATARI Atari executable .PRG
1 GST GST linkable .BIN
2 DRI DRI linkable .o
6 SREC Motorola S-records .MX
7 LATTICE Lattice C linkable code O

Thus you can select Lattice C linkable code from the assembler options box or by using a
command line like:

test -17

or by including

 opt LATTICE

at the start of the file.

For the curious, L values of 3,4 and 5 are used by other products in the Devpac family -
ensuring source code compatibility across the range.

Output Filename

Gen has certain rules regarding the calculation of the output filename, using a combination of
that specified at assembly time (either in the Output to: field in the assembler control options
box or using the - 0 option on the command line) and the OUTPUT directive:

If an output filename is explicitly given at assembly time then

 name=explicit filename

The Assembler Hisoft Devpac 3 Page 54

else if the OUTPUT directive has not been used then

 name=source filename + .PRG, .BIN, .O or .MX

else if the OUTPUT directive specifies an extension then

 name=source filename + extension in OUTPUT

else

 name=name in OUTPUT

Types of code

Unlike most 8-bit operating systems, but like most 16-bit systems, an executable program
under TOS will not be loaded at a particular address but, instead, be loaded at an address
depending on the exact free memory configuration at that time.

To get around the problem of absolute addressing the TOS file format includes relocation
information allowing TOS to relocate the program after it has loaded it but before running it.
For example, the following program segment

 move.l #string,a0

 .

 .

 .

string dc.b 'Press any key',0

places the absolute address of string into a register, even though at assembly time the real
address of string cannot possibly be known. Generally the programmer may treat
addresses as absolute even though the real addresses will not be known to him, while the

assembler (or linker) will look after the necessary relocation information.

For certain programs, normally games or for S-record production an absolute start
address may be required, for this reason the ORG directive is supported.

The syntax of the language accepted by the assembler will now be described.

Assembler Statement Format

Each line that is to be processed by the assembler should have the following format:

Label Mnemonic Operand(s) Comment

start move.l dO,(aO)+ store the result

Exceptions to this are comment lines, which are lines starting with an asterisk or semicolon,

The Assembler Hisoft Devpac 3 Page 55

and blank lines, which are ignored. Each field has to be separated from the others by white
space - any number or mixture of space and tab characters.

Label field

The label should normally start at column 1, but if a label is required to start at another
position then it should be followed immediately by a colon (:). Labels are allowed on all
instructions, but are prohibited on some assembler directives, and absolutely required on
others. A label may start with the characters A-Z, a-z, @ or underline (_), and may continue
with a similar set together with the addition of the digits 0-9 and the period (.). Note that the
@ character is allowed as the first character except when followed by a digit from 0-7 when it
is taken as the start of an octal number.

Labels starting with a period are local labels, described later. Sequences of digits terminated by
a $ are also local labels. Macro names and register equate symbols may not have periods in
them, though macro names may start with a period. By default the first 127 characters of
labels are significant, though this can be reduced if required. Labels should not be the same as
register names, or the reserved words SR,CCR,USP or any of the other special registers
described under Special Addressing Modes below.

By default labels are case-sensitive though this may be changed.

Some example legal labels are:

test, TEST, _test, _test.end, tests, _5test, @test

Some example illegal labels are:

5test,_&e, test>,

There are three reserved symbols in Devpac, all starting with two
underline characters. These are __LK, __RS and __G2.

Mnemonic Field

The mnemonic (or opcode) field comes after the label field and can consist of 680x0 assembler
instructions, assembler directives or macro calls. Some instructions and directives allow a size
specifier) separated from the mnemonic by a period. Allowed sizes are .B for byte, .W for
word, .L for long and .S for short. In addition floating point instructions may also have sizes of
.X for extended, .D for double, .P for packed decimal and .S for short floating point. Some of
the MMU instructions have a size of .D indicating a double long word (64-bits).

The specifiers which are allowed depend on the particular instruction or directive. Gen is
case-insensitive to mnemonic and directive names, so Move is the same as move and the same
as mOvE, for example.

Operand Field

For those instructions or directives which require operands, this field contains one or more
parameters, separated by commas. Devpac is case-insensitive regarding register names so
they may be in either, or mixed, case.

The Assembler Hisoft Devpac 3 Page 56

Comment Field

Any white space not within quotation marks found after the expected operand(s) is treated as
a delimiter for a start of the comment and will be ignored by the assembler.

Examples of valid lines

 move.l d0,(a0)+ comment is here

loop TST.W dO

lonely.label

 rts

* this is a complete line of comment

; and so is this

 indented: link a6,#-10 make room

a_string: dc.b 'spaces allowed in quotes' a string

Expressions

Gen allows complex expressions and supports full operator precedence, parenthesis and
logical operators.

Expressions are of two main types - absolute and relative - and the distinction is important.
Absolute expressions are constant values which are known at assembly-time.

Relative expressions are program addresses which are not known at assembly-time as the
TOS loader can put the program where it likes in memory. Some instructions and directives
place restrictions on which types are allowed and some operators cannot be used with certain
type-combinations.

Symbols used in expressions will be either relative or absolute, depending on how they were
defined. Labels within the source will be relative, while those defined using the EQU directive
will be the same type as the expression to which they are equated.

The use of an asterisk (*) denotes the value of the program counter at the start of the
instruction or directive and is always a relative quantity.

Operators

The operators available, in decreasing order of precedence, are:

unary minus (-) and plus (+)

bitwise not (~)

shift left (<<) and shift right (>>)

The Assembler Hisoft Devpac 3 Page 57

bitwise And (&), Or (!) and Xor (^)

multiply (*) and divide (/)

addition (+) and subtraction (-)

equality (=), less than (<), greater than (>), inequality (<>), less than or equals (<=), greater
than or equals (>=)

The comparison operators are signed and return 0 if false or -1 ($FFFFFFFF) if true. The shift
operators take the left hand operand and shift it the number of bits specified in the right hand
operand; vacated bits are filled with zeroes.

This precedence can be over-ridden by the use of parentheses (and). With operators of equal
precedence, expressions are evaluated from left-to-right. Spaces in expressions (other than
those within quotes as ASCII constants) are not allowed as they are taken as the separator to
the comment.

All expression evaluation is done using 32-bit signed-integer arithmetic, with no checking of
overflow.

Note that | (vertical bar) may be used as a synonym for ! (or) and that ! = may be used as a
synonym for <> (inequality).

Numbers

Absolute numbers may be in various forms:

decimal constants, e.g. 1029

hexadecimal constants, e.g. $12f

octal constants, e.g. @730

binary constants, e.g. %1100010

character constants, e.g. 'X'

$ is used to denote hexadecimal numbers, % for binary numbers, § for octal numbers and
single ' or double quotes " for character constants.

The default base for numbers may be changed using the RADIX directive.

Character Constants

Whichever quote is used to mark the start of a string must also be used to denote its end and
quotes themselves may be used in strings delimited with the same quote character by having
it occur twice. Character constants can be up to 4 characters in length and evaluate to right-
justified longs with null-padding if required. For example, here are some character constants
and their ASCII and hex values:

"Q" Q $00000051
'hi' hi $00006869
"Test" test $54657374
"it's" it's $69742770
'it''s' it's $69742770

The Assembler Hisoft Devpac 3 Page 58

Strings used in DC.B statements follow slightly different justification rules, detailed
with the directive later.

Floating point constants

Floating point constants are only allowed as arguments for floating point instructions and
FEQU directives. Such constants may either be expressed in hexadecimal or conventional
decimal notation. Hexadecimal floating point constants should be preceded by : or $; the
colon is the Motorola standard. When using hexadecimal the way in which the value is
interpreted depends on the size used in the instruction. Thus

 fmove.x #$400000008000000000000000,fpO

 fmove.s #$40000000,fpO

 fmove.d #:4000000000000000,fpO

 fmove.p #$000000020000000000000000,fp0

 fmove.s #2.0,fpO

all load the floating point, register FPO with the value 2.0.

For a description of the floating point formats see Appendix E.

Decimal numbers consist of one or more decimal digits followed by an optional fractional
part consisting of a full stop (period) and an arbitrary number of decimal digits, optionally
followed by an exponent consisting of the letter E or e and a signed decimal exponent. The
maximum values allowed depend on the size of the appropriate instruction.

 fmove.s #2,fp0

 fmove.x #2E1,fpO

 fmove.x #12345.678e-789,fp1

 fmove.x #0.001,fp2

 fmove.x #-1.2345E1234,fp3

The only operator that is allowed in floating point expression is the unary minus (-) operator.

Allowed Type Combinations

The table below summarises for each operator the results of the various type combinations of
parameter and which combinations are not allowed. An R denotes a Relative result, an A
denotes absolute and a * denotes that the combination is not allowed and will produce an
error message if attempted.

 A op A A op R R op A R op R
Shift A * * *
operators * * *
Bitwise A * * *
operators * * *

The Assembler Hisoft Devpac 3 Page 59

Multiply A * * *
Divide A * * *
Add A R R *
Subtract A * R A
Comparisons A * * A

Addressing Modes

The available 68000 addressing modes are shown in the table below. Please note that Gen is
case-insensitive when scanning addressing modes, so dO and A3 are both valid registers.

Form Meaning Example
dn data register direct d3
An address register direct a5
(An) address register indirect (a1)
(An)+ address register indirect

with post-increment
(a5)+

-(An) address register indirect
with pre-decrement

-(aO)

d(An) address register indirect
with displacement

20(a7)

d(An,Rn.s) address register indirect
with index

4(a6,d4.L)

d.W absolute short address $0410.W
d.L absolute long address $12000.L

d(PC) program counter relative
with offset

NEXT(PC)

d(PC,Rn.s) program counter relative
with index

NEXT(PC,a2.W)

#d immediate data #26

n denotes register number
from 0 to 7

d denotes a number

R denotes index register,
either aord

s denotes size, either W or U
when omitted defaults to W

When using address register indirect with index the displacement may be omitted, for
example

 move.l (a3,d2.1),d0

will assemble to the same as

 move.l 0(a3,d2.1),d0

The modes discussed above can be used regardless of the processor type. The following are
additional modes that are only available when using a 68020 or later processor.

The Assembler Hisoft Devpac 3 Page 60

Extended Index Registers for 68020

Certain existing modes have been extended to support a scale on the index register as follows:

exp(An,Xn<.size><*scale>)

exp(PC,Xn<.size><*scale>)

If the above syntax is used then the expression must fit into 8 bits; if it is larger then the new
modes (bd, an , Xn) / (bd, PC, Xn) should be used. Suppressed (Z) registers cannot be used
with this syntax. See below.

New 68020 Modes

The new modes in their most basic form are:

(bd.An.Xn) address register indirect with index (base displacement)
([bd,An],Xn,od) memory indirect post-indexed
([bd.An.Xn] ,od) memory indirect pre-indexed
(bd.PC.Xn) ,od) program counter indirect with index (base displacement)
([bd,PC],Xn,od) program counter indirect post-indexed
([bd,PC,Xn],od) program counter indirect pre-indexed

Every item in the above is optional and within each set of brackets the item list may be in any
order. In general the meaning of the syntax is that the processor takes the sum of any items in
brackets and then performs an indirection (memory access) for each set of brackets.

For example, consider,

 move.w ([$12.w,a1,d1],$24.w),d0

and let us assume that a1 has the value $1230002 and d1 has the value $1234. Then this will
cause the processor to calculate a1+d1+$12 (giving $1231248) and fetch the long word value
from that address. Assuming $1231248 contains $12345678 then $24 will be added to this
(giving $1234569C) and finally the word contents of $1234569C will be loaded into the least
significant word of d0.

Depending on which items have been omitted, the assembler may change the choice of
addressing mode to be more optimal. If you wish to have a particular mode with missing
items then the item may be suppressed using Z-notation, i.e. specifying ZAn, or ZPC, as
required. The elements described above are further detailed below:

bd - Base Displacement

This is an expression which may be relative or absolute, word or longword in size. The
default size is long, but word may be forced by adding .W after the expression. The default
size itself may be changed with the BDW and BDL options. If the base displacement is known
on pass 1 the size can be optimised automatically by Gen using opt 08+.

Xn - Index Register, with optional size and scale

This item has the general form Xn<.size><*scale> where the size may be .W (the default)
or .L. The scale must evaluate to 1, 2, 4 or 8.

The Assembler Hisoft Devpac 3 Page 61

od - Outer Displacement

This is an expression which may be word or longword in size but must be absolute. The
default size is word, but long may be forced by adding .L after the expression. The default size
itself may be changed with the ODW and ODL options. If the outer displacement is known on
pass 1 the size can be optimised automatically by Gen using opt 09+.

New 68020 Syntax for Old Modes

The new syntax for the old modes is:

(d16,An) equivalent to exp (An)
(d8,An,Xn) equivalent to exp(An,Xn), though Xn may be scaled
(d16,PC) equivalent to exp(PC)
(d8,PC,Xn) equivalent to exp(PC,Xn), though Xn may be scaled

If any items are explicitly suppressed then a suitable new 68020 addressing mode will be
used.

Ordering Rules

Any set of items within brackets may be ordered arbitrarily, though care should be taken if
two address registers are specified; the leftmost register will be used as the base register, the
rightmost as the index register. For example the mode:

 (a3,isize,a2)

is specified the assembler will assume a3 is the base register and a2 will be sign-extended
from 16-bits, as .W is the default index size.

Data Register Indirect

The 68020 allows data register indirection, by suppressing suitable items, but take care; the
default size for index registers is word, so the line

 move.l (d3),d0

will actually be coded as

 move.l (0,za0,d3.w),d0 the (bd,An,Xn) form

which will indirect via the sign-extended value of d3; the likely correct line is

 move.l (d3.l),d0

Special Addressing Modes

CCR condition code register
SR status register

The Assembler Hisoft Devpac 3 Page 62

USP user stack pointer

In addition to the above, SP can be used in place of A7 in any addressing mode, e.g.
4(SP,d3.W)

The data and address registers can also be denoted by use of the reserved symbols R0
through R15. R0 to R7 are equivalent to d0 to d7; R8 to R15 are equivalent to AO to A7. In
general we recommend sticking to the standard register names, but this option can be useful
when porting code from other assemblers or to simplify tools which generate assembly
language.

The registers above are available on all 68000 family processors. The following registers are
only available on higher processors and in the 68851 MMU. The use of some of these registers
varies from chip to chip.

AC access control register
BACO-7 breakpoint acknowledge control register
BADO-7 breakpoint acknowledge data register
CAAR cache address register
CACR cache control register
CAL current access level
CRP CPU root pointer

DRP DMA root pointer register
DTTO, data transparent translation registers
ISP interrupt stack pointer
ITTO, instruction transparent translation registers
MMUSR MMU status register
MSP master stack pointer
PCSR MMU cache status register
PSR MMU status register
SCC stack change control register
SFC, DFC alternate function code registers
SRP supervisor root pointer
TC MMU translation control register
TTO, TT1 translation control registers
URP user root pointer
VAL validate access level register
VBR vector base register

In general, user programs running under TOS should not use these registers since they are
reserved for use by the operating system; some low level programs may find it necessary to
manipulate the cache control register if using self-modifying code.

Floating point registers

FP0-FP7 general purpose floating point registers
FPCR floating point control register

The Assembler Hisoft Devpac 3 Page 63

FPSR floating point status register
FPIAR floating point instruction address register

The addressing modes used in conjunction with the floating point instructions are the same as
those for the 'ordinary' instructions, although you should note that the floating point
instructions always use at least one floating point register.

Local Labels

Gen supports local labels, that is labels which are local to a particular area of the source code.
These are denoted by starting with a period and are attached to the last non-local label, for
example:

len1 move.l 4(sp),a0

.loop tst.b (a0)+

 bne.s .loop

 rts

len2 move.l 4(sp),a0

.loop tst.b -(aO)

 bne.s .loop

 rts

There are two labels called .loop in this code segment but the first is attached to lenl, the
second to len2.

As the local labels are attached in this way, you must have at least one real label before the
first local one.

If you wish to use global labels starting with a dot you may use OPT LOCALU to allow this an
make the underline character introduce local labels.

The local labels .W and .L are not allowed to avoid confusion with the absolute addressing
syntax.

You may also use strings of decimal digits terminated by a $ sign as local labels. This facility
has been provided for compatibility with other assemblers; we recommend the use of form
shown above as this makes programs much more readable.

Symbols and Periods

Symbols which include the period character can cause problems with Gen due to absolute
short addressing.

The Motorola standard way of denoting absolute short addresses causes problems as periods
are considered to be part of a label, best illustrated by an example:

 move.l vector.w,dO

The Assembler Hisoft Devpac 3 Page 64

where vector is an absolute value, such as a system variable. This would generate an
undefined label error, as the label would be scanned as vector .w.

To work around this, the expression, in this case a symbol, may be enclosed in brackets, e.g.

 move.l (vector).w,dO

though the period may still be used after numeric expressions, e.g.

 move.l 402.w,d0

Devpac 1 supported the use of \ instead of a period to denote short word
addressing and this is still supported in this version, but is not recommended
due to the potential for \W and \L to be mistaken for macro parameters.

Instruction Set

Word Alignment

All instructions with the exception of DC.B and DS.B are always assembled on a word
boundary. Should you require a DC.B explicitly on a word boundary, use the EVEN directive
before it. Although all instructions that require it are word-aligned, labels with nothing
following them are not word-aligned and can have odd values. This is best illustrated by an
example:

 nop will always be word aligned

 dc.b 'odd'

start

 tst.l (a0)+

 bne.s start

The above code would not produce the required result as start would have an odd value. To
help in finding such instructions the assembler will produce an error if it finds an odd
destination in a BSR or BRA operand. Note that such checks are not made on any other
instructions, so it is recommended that you precede such labels with an EVEN directive if you
require them to be word-aligned. A common error is deliberately not to do this, as you know
that the preceding string is an even number of bytes long. All will be well until the day you
change the string...

Instruction Set Extensions

The complete 68000-68040 instruction set is supported (depending on the processor selected)
together with the 68881/68882 and 68551 coprocessors. A number of standard shorthands are
automatically accepted as detailed below. A complete description of the 68000 instruction set
can be found in the supplied pocket guide. Full details of the instructions for the other chips
including syntax and addressing modes can be found in the M68000 Family Programmer's

The Assembler Hisoft Devpac 3 Page 65

Reference Manual which is available from HiSoft.

Condition Codes

The alternate condition codes HS and LO are supported in Bcc, DBcc and Scc instructions,
equivalent to CC and CS, respectively.

Branch instructions

To force a short branch use Bcc.B or Bcc.S, to force a word branch use Bcc .W or to leave
to the optimiser use Bcc. To use a 32 bit branch when 68020 or above code generation is in
effect then use Bcc.L.

When 68000/68008/68010 code generation is selected Bcc.L is interpreted as a Bcc.W with a
warning for compatibility with Devpac 1. To cause Bcc.L to be converted to Bcc.W
regardless of the processor selected then use OPT OLD as described elsewhere.

A BRA.S to the immediately following instruction is not allowed but may be converted, with
a warning, to a NOP using OPT 07+ (see the options sub-section for details). A BSR.S to the
immediately following instruction is not allowed and will produce an error.

DBRA Instruction

DBRA is accepted as an equivalent to DBF.

ILLEGAL Instruction

This generates the op-code word $4AFC.

LINK Instruction

If the displacement is positive or not even a warning will be given.

MOVE from CCR Instruction

This is a 68010 and upwards instruction, converted with a warning to MOVE from SR when
68000 only code is selected.

MOVEQ Instruction

It the data is in the range 128-255 inclusive a warning will be given. It may be disabled by
specifying a long size on the instruction.

Assembler Directives

Certain pseudo-mnemonics are recognised by Gen. These assembler directives, as they are
called, are not (normally) translated into opcodes, but instead direct the assembler to take
certain actions at assembly time. These actions have the effect of changing the object code
produced or the format of the listing. Directives are scanned exactly like executable
instructions and some may be preceded by a label (for some it is obligatory) and may be
followed by a comment. If you put a label on a directive for which it not relevant, the result is
undefined but will usually result in the label being ignored.

Each directive will now be described in turn. Please note that the case of a directive name is
not important, though they generally are shown in upper case. The use of brackets ([]) in

The Assembler Hisoft Devpac 3 Page 66

The Assembler Hisoft Devpac 3 Page 67

descriptions denote optional items, ellipses (...) denote repeated items.

Assembly Control

 END

This directive signals that no more text is to be examined on the current pass of the assembler.
It is not required.

 INCLUDE filename

This directive will cause source code to be taken from a file on disk and assembled exactly as
though it were present in the text. The directive must be followed by a filename in normal
TOS format.

A drive specifier, directory and extension may be included as required, e.g.

 include c:\devpac\includes\header.i

Include directives may be nested as deeply as memory allows and if any error occurs when
trying to open the file or read it, assembly will be aborted with a fatal error. When using the
integrated editor if an include file is loaded then this will be read direct from memory; there
is no need to save it to disk before assembly.

If you have checked the Ignore multiple includes item in the Assembler Options - Control
dialog or used the OPT INCONCE option, then attempts to include a file a second time will be
ignored.

If no drive is specified, that of the main source file will be used when trying to open the file.

For maximum flexibility, Gen allows a two ways of specifying where include files may be
found without the need to specify the full pathname as in the example above.

First, the Assembler Options - Control dialog 'INCLUDE' directories list (and its command line
equivalent the -I option) lets you set directories that will be searched to find the include files.
Second you can use the INCDIR directive itself to add to this path list.

Thus typically you use the assembler dialog to set up the directory for the system includes
INCDIR directive for any files that are specific to this particular program. and use the

The more memory the better, Gen will read the whole of the file in one go if it

Pre-assembled files

When searching for include files Gen also looks for a file with the same name as the include

Such a file is produced using the Output Symbols option from the Program menu or by using

can and not bother to re-read the file during pass 2.

file but with any extension replaced with .GS. This is assumed to be a pre-assembled symbol
table file corresponding to that file name.

The Assembler Hisoft Devpac 3 Page 68

the OPT GENSYM option. The .GS file that this produces contains the symbol table definitions
for the absolute labels and macros that are defined by the include file. It also lists the files that
the include file has included itself.

When the assembler loads a .GS file the labels and macros contained within it are added to

Thus if you Output Symbols from the Devpac include file GEMMACRO.I this will generate

If you know that your program is going to include a particular pre-assembled file you can

Note that you cannot pre-assemble files that generate code, i.e. files such as

 INCDIR pathnamelisf

The INCDIR directive lets you specify directories that will be searched for include files as well

The format for pathnamelist is a list of items separated by commas or semicolons and the

 INCBIN filename

This takes a binary file and includes it, verbatim, into the output file. Suggested uses include

The included data is forced to an even boundary, however the section counter is not forced to

 OPT option[,option ...]

There are a very wide range of options controlling all aspects of the assembly process; some

Devpac 2 and below only supported options denoted with an alphabetic character followed

Note that options specified on the command line override options specified on line 1 of the

The options are as follows:

the symbol table for the new assembly. If a definition is already present then it is ignored.
Any subsequent references to this include file and the files that it includes will be ignored.

GEMMACRO.GS. Your programs that use this include file will then load the .GS file and will
assemble more quickly. You can even delete the original include file if you wish (make sure
you have a copy of the source first, though!).

load it before assembly starts using the Pre-assembled includes dialog from the Assembler
Control dialog or via the command line -H option.

AESLIB.S may not be pre-assembled.

as those specified via the -I command line flag or Include list in the assembler control dialog.

directories should be terminated by a backslash. Pathnames that contain spaces should be
enclosed in quotes.

screen data, sprite data and ASCII files. The INCBIN directive uses the same method for
finding files as the INCLUDE directive above.

an even boundary after the include if the file is an odd number of bytes in length.

may be set with their own option letter on the command-line, all may be set with an OPT
directive within the source file, and most may also be set on the command-line using either a
leading +, or the - v option.

by + or -; however owing to the large number of options, these have been supplemented with
keywords. The old format options are still accepted.

source; this does not apply to the integrated environment.

Processor selection

P=type allows selection of processor type; type may be one of 68000, 68008, 68010,
68020, 68030, 68040 or 68332. Optional co-processors may be specified, separated by a /
and may be any combination of 68881, 68882 or 68851. Specifying a main processor will
de-select any current co-processor.

68020 Default Displacement Sizes

BDW makes any unsized base displacements used in 68020 addressing modes word-sized;
this will cause errors if you have any relocatable references as they cannot fit into a word.

BDL makes any unsized base displacements long-sized.

ODW makes any unsized outer displacements word-sized.

ODL makes any unsized outer displacements long-sized.

All of the above can be overridden on an individual basis by specifying .W or .L after the
expression. In general we recommend the use of such explicit specifiers as it makes code more
portable.

See below for automatic optimisation of long displacements into short ones.

Branch Control

OLD ordinarily a BRA.L is converted into a BRA.W with a warning, unless you selected a
68020 or higher processor in which case it will generate a BRA.L, a 32-bit PC-relative branch.
The use of this option will force BRA.Ls to always be converted to BRA.Ws, regardless of the
processor type selected. Note that this option is not available in the integrated environment.

BRW unsized branch instructions will default to BRA.W, unless optimisation type 1 is
selected when it may be promoted to BRA.S.

BRB unsized branch instructions will default to BRA.S; errors will be generated if the
branch is out of range.

BRS as above; included for Motorola compatibility.

BRL unsized branch instructions will default to BRA.L; P=68020 or P=68030 mode must
be selected for this option to be valid.

The default option is BRW.

Symbol Case Sensitivity

By default all symbols are case-sensitive, though this can be overridden on the command-line.
The default length of symbol significance is 127 characters, the maximum.

CASE symbols are case sensitive.

NOCASE symbols are case-insensitive.

Cx treat x characters as significant (x=8 -127).

The Assembler Hisoft Devpac 3 Page 69

Cx+ symbols are case-sensitive to x characters.

Cx- symbols are case-insensitive to X characters.

Although it is unlikely to be useful, it is possible to use these options at any time in a source
file and an unlimited number of times.

Listing Control

By default an assembly listing will show macro calls in the same form as those in the source.

MEX expand macro calls in the listing.

NOMEX don't expand macro calls.

By default there will be no symbol table listing, unless -S is specified on the command-line,
or the option below is used:

SYMTAB select a symbol table listing.

NOSYMTAB disable a symbol table listing.

LIST1 enable assembly listing on pass one.

N0LIST1 disable listing on pass one (default).

Pass one listing is not useful generally, because the data for the instructions may be wrong. It
can be useful when tracking down mistakes with conditional assembly and macros.

TRACEIF enable tracing of conditional assembly on pass one.

NOTRACEIF disable this tracing (default).

The TRACEIF option is designed for finding mistakes in complex use of conditional assembly
and as such is only for experienced assembly language users. Conditional assembly is
described in a later section in this chapter. TRACEIF gives a list of only the IFxx,
ELSE/ELSEIF and ENDC directives together with a display of the conditional assembly
counter.

Output File Format

ATARI,GST,DRI,SREC,LATTICE

These select the output file format and must be before the first line of the source file that
generates code; for further details please see the beginning of this chapter.

GENSYM This causes Gen to output a symbol table (or pre-assembled) file with
extension .gs rather than a conventional output file. As such this command can only be used
for include files that do not generate any code. See the section above on Pre-assembled files.

Optimisation

Gen is capable of optimising certain statements to faster and smaller versions. By default all
optimising is off but each type can be enabled and disabled as required. This option has
several forms:

The Assembler Hisoft Devpac 3 Page 70

O1+ will optimise backward branches to short if within range, can be disabled with O1-.

O2+ will optimise address register indirect with displacement addressing modes to
address register indirect, if the displacement evaluates to zero. It can be disabled with 02-.
For example:

 move.l next(a0),d3

 will be optimised to:

 move.l (a0),d3

 if the value of next is zero.

03+ will optimise absolute addresses to short-word addressing if in the signed 32 bit
range $FFFF8000 to $7FFF inclusive.

04+ will optimise instructions of the form MOVE.L #x,dn to MOVEQ if x is in the range -
128 to 127 inclusive.

05+ ADD #x and SUB #x instructions will be optimised to quick forms if x is in the
range 1-8 inclusive.

06+ not strictly an optimisation; a warning will be issued for each forward branch that
could be made short; this must be used in conjunction with option type 1.

07+ convert BRA.S to next instruction to NOP; note that this instruction is not possible, so
an error will be issued if this attempted without this optimisation.

08+ will optimise 68020 base displacements to the short form addressing if in the signed
32 bit range $FFFF8000 to $7FFF inclusive.

09+ will optimise 68020 outer displacements to the short form addressing if in the signed
32 bit range $FFFF8000 to $7FFF inclusive.

010+ will optimise ADD#x,An and SUB #x,An instructions to LEA x(An),An or LEA
-x(An),An if this is possible but not in the case when an ADDQ/SUBQ instruction is
preferable. This option is normally used in conjunction with 05+.

011+ will optimise LEA x(An),An or LEA -x(An),An instructions to ADDQ.W #x,An
and SUBQ.W #x,An if this is possible.

012+ will optimise MOVE.L #x,An to MOVE.W #x,An if possible and if another
optimisation has not been performed. This also optimises the corresponding ADD, SUB and
CMP instructions.

0+ will turn all optimising on.

0- will turn all optimising off.

01-,02- etc. will disable the relevant optimisation.

0W- will disable the warning messages generated by each optimisation, OW+ will enable
them. OWn+/- (where n is 1 -12) may be used to enable/disable a particular warning
message.

The Assembler Hisoft Devpac 3 Page 71

If any optimising has been done during an assembly the number of optimisations made and
bytes saved will be shown at the end of assembly.

Source Checking

The assembler has various ways of detecting possible programming errors, using these
options:

ALLOWZERO allow the use of 0 to specify a bitfield of width 32 or in place of 8 within
ADDQ/SUBQ for compatibility with some Motorola assemblers.

NOALLOWZERO disables the above (default).

CHKBIT will give errors if a memory bit field access attempts to reference a bit
number out of the range 0 to 7 (default).

NOCHKBIT disables the above.

WARNBIT generates warnings for the above.

CHKIMM will give errors if an absolute value is used in such a way that the assembler
thinks it should be an immediate value, for example:

 and.b $df,dl

 will generate the error # probably missing. Can be overridden on an individual basis
by specifying .W or .L after the expression.

NOCHKIMM disables the above (default).

CHKPC will force errors if any attempt is made to generate non-position-independent code.

NOCHKPC disables the above (default).

EVEN causes the assembler to check that the value of an indirection is not odd on non-byte
sized instructions to avoid address errors (default), for example

 move.l data2,d0
 datal ds.b 1
 data2 ds.b 1

 Do not confuse this option with the EVEN directive itself.

NOEVEN disables the above, useful if you are writing code to run only on a 68030.

Miscellaneous

AUTOPC forces automatic PC addressing where possible; this is done on a lexical basis,
not a value basis, and can be overridden individually by specifying .L, for example

 move.l test,a3

 will be changed to test (pc),a3. Use of this option can significantly reduce
program size and running time without a lot of extra typing. Please note however that it does
not guarantee that the code generated will be position independent. We discourage the use of
this option since it can easily cause confusion, particularly when using complex expressions.

The Assembler Hisoft Devpac 3 Page 72

 If you need to override the automatic use of PC mode then use the form (expression)
.L in a similar manner to that for short word addressing as described above under labels and
periods.

 So the example above could be forced to use absolute addressing by using the
following:

 MOVE.L (int_in).L,dO

NOAUTOPC disables the above (default).

INCONCE causes multiple includes of the same file to be ignored, i.e. included only
once. Whilst this speeds up the assembly of files that are 'protected' against multiple includes,
this will cause problems with some files that need to be processed more than once. For
example, rather than using a macro you might include a file a number of times to obtain two
copies of the same routine or data.

NOINCONCE causes include files to be re-scanned each time they re included (default).

LOCALU changes the lead-in character for local symbols to be an underscore (_)
instead of period; useful if you need to specify periods in external names.

LOCALDOT changes the lead-in character for local symbols to be a period (.) (default).

NOTYPE Disables the type-checking of the expression evaluator which is capable of
detecting incorrect type mixing; if you get an error absolute not allowed or relative not
allowed and you are sure you know that you want to do what you're trying to do, then this
will disable the checks.

TYPE restores the type checking referred to above.

NOWARN disables all warning messages.

WARN enables warning messages (default).

USER any privileged instructions used after this option will generate an error; useful for
system programmers wishing to separate user and supervisor code spaces.

SUPER permits privileged instructions to be used without errors (default).

Option Summary

Name Default Action Old form

ALLOWZERO allow narrow zero operands

ATARI TOS executable output ID
AUTOPC use PC relative addressing A+

BDW default base displacement to word

BDL defaults base displacement to long

BRB default branches to short

The Assembler Hisoft Devpac 3 Page 73

BRL default branches to long
BRS default branches to short
BRW default branches to word

CASE case-sensitive symbols C+

Cx+ case-sensitive symbols Cx+

Cx- case-insensitive symbols Cx-

CHKBIT check bit fields

CHKIMM check immediate operands 1+

CHKPC disallow non-PC addressing P+

D debug D+

DEBUG debug D+

DRI DRI format linkable L2

EVEN ensure indirections are even E+

GENSYM generate Gen symbol table file

GST GST format linkable L1

HCLN generate compressed line numbers

INCONCE process multiple includes only once

LATTICE Lattice format linkable L7

LINE generate standard line numbers

LIST1 generate pass 1 listing Z+

LOCALDOT use periods for local labels U-

LOCALU use underscores for local labels U+

MEX expand macro calls M+

NOALLOWZERO disable narrow zero operands

NOAUTOPC disable automatic PC A-

NOCASE case-insensitive symbols C-

NOCHKBIT disable bit field checks

NOCHKIMM disable immediate checks I-

NOCHKPC disable PC-only checks P-

NODEBUG disable debug D-

NOEVEN disable indirection checks E-

NOINCONCE re-process multiple includes

NOHCLN no output of line numbers

NOLINE no output of line numbers

NOLIST1 no pass 1 listing Z-

NOMEX don't expand macro calls M-

NOSYMTAB no symbol table listing S-

NOTRACEIF don't trace conditionals

NOTYPE no type-checking T-

NOWARN no warning messages W-

0+ enable all optimisations 0+

0- disable all optimisations 0-

ODW default outer displacement to word

ODL default outer displacement to long

The Assembler Hisoft Devpac 3 Page 74

OLD obsolete - treat BRA. L as BRA.W

OW- disable all optimisation warnings ow-

OWx+ enable an optimisation warning 0Wx+

OWx- disable an optimisation warning OWx-

Ox+ enable an optimisation 0x+

Ox- disable a specific optimisation Ox-

P= 68000 specify processor

SREC S-record output

SUPER privileged op-codes allowed

SYMTAB enable a symbol table listing s+

TRACEIF trace conditionals

TYPE enable type checking T+

USER privileged op-codes disallowed

WARN enables warning messages

WARNBIT warnings for bit field checks

XDEBUG specify extended debug X+

Assembler Directives

[label] EVEN

This directive forces the program counter to be even, i.e. word-aligned. As Gen automatically
word-aligns all instructions (except DC.Bs and DS.Bs) it should not be required very often,
but can be useful for ensuring buffers and strings are word-aligned when required.

 CNOP offset,alignment

This directive aligns the program counter using the given offset and alignment. An alignment
of 2 means word-aligned, an alignment of 4 means long-word-aligned and so on. The
alignment is relative to the start of the current section. For example,

 cnop 1,4

aligns the program counter a byte past the next long-word boundary.

[label] DC.B expression[,expression ...]

[label] DC.W expression[,expression ...]

[label] DC.L expression[,expression ...]

[label] DC.X fp-const[,fp-const...]

[label] DC.D tp-const[,fp-const...]

[label] DC.S fp-const[,fp-const...]

These directives define constants in memory. They may have one or more operands,
separated by commas. The constants will be aligned on word boundaries for DC.W and DC.L.
No more than 128 bytes can be generated with a single DC directive.

The Assembler Hisoft Devpac 3 Page 75

DC.B treats strings slightly differently to those in normal expressions. While the rules
described previously about quotation marks still apply, no padding of the bytes will occur
and the length of any string can be up to 128 bytes.

Be very careful about spaces in DC directives, as a space is the delimiter before a comment.

For example, the line

 dc.b 1,2,3 ,4

will only generate 3 bytes - the , 4 will be taken as a comment.

The DC.X, DC.D and DC.S directives generate floating point constants and are only available
if you have selected a maths coprocessor.

[label] DS.B expression

[label] DS.W expression

[label] DS.L expression

These directives will reserve memory locations and the contents will be initialised to zeros. If
there is a label then it will be set to the start of the area defined, which will be on a word
boundary for DS.W and DS.L directives. There is no restriction on the size, though the larger
the area the longer it will take to save to disk (except in the case of true BSS sections).

For example, all of these lines will reserve 8 bytes of space, in different ways:

 ds.b 8
 ds.w 4
 ds.l 2

[label] DCB.B number[,value]

[label] DCB.W number[,value]

[label] DCB.L number[,value]

This directive allows constant blocks of data to be generated of the size specified, number
specifies how many times the value should be repeated. If value is omitted then the default
value, zero is used.

 FAIL

This directive will produce the error user error. It can be used for such things as warning the
programmer if an incorrect number of parameters have been passed to a macro.

 MACHINE number

This directive sets the processor for which code is generated and should be one of:

MC68000 MC68008 MC68010

MC68020 MC68030 MC68040

MC68332 CPU32

The Assembler Hisoft Devpac 3 Page 76

The last two items are equivalent. Note that you can also use the OPT p= option which also
allows co-processors to be selected.

 OUTPUT filename

This directive sets the normal output filename though can be overridden by specifying a
filename from the command line or using the Output to: item in the Assembler Options -
Control dialog. If filename starts with a period then it is used as an extension and the output
name is built up as described previously.

 RADIX radix

This directive sets the default base for numeric literals, radix may be one of 2,4,8,10 or 16
and must be specified in decimal; expressions are not allowed.

The default is decimal (base 10). Two reasons for using this command are to enter tables in a
non-decimal base and to assemble code that has been generated by a disassembler or other
tool that emits non-decimal numbers without the appropriate prefix.

When using hexadecimal base (16) numbers must still start with a decimal digit. For example,

 radix 16
 dc.b Off
 dc.b ff

Here Off would have the value 255 whereas ff would refer to the label ff.

 __G2 (reserved symbol)

This is a reserved symbol that can be used to detect whether a Devpac family assembler
(other than Devpac 1) is used. To test that a Devpac family assembler is being used to use the
IFD conditional. The value of this symbol depends on the version of the assembler and is
always absolute.

To ensure that the assembler facilities over and above those of Devpac 2 are available (for
example RADIX) you should check that the lower 8 bits of G2 are at least 43 (don't ask why!).
This does not guarantee that the 68030 and co-processor instructions are supported.

To check for which processor you are assembling look at bits 8-15: these give the last two
digits of processor number. For example $1E if you are producing code for a 68030.

To ensure that you are running on an Atari machine (rather than, say, an Amiga) check that
bits 16 to 23 are 0.

 __LK (reserved symbol)

This is a reserved symbol that can be used to detect which output mode is specified. The
value of this symbol is always absolute and one of the following:

0 Atari executable
1 GST linkable
2 DRI linkable
6 Motorola S-records
7 Lattice C linkable code

Other values are reserved for other members of the Devpac family.

The Assembler Hisoft Devpac 3 Page 77

Repeat Loops

It is often useful to be able to repeat one or more instructions a particular number of times
and the repeat loop construct allows this.

[label] REPT expression
 …
 ENDR

Lines to be repeated should be enclosed within REPT and ENDR directives and will be
repeated the number of times specified in the expression. If the expression is zero or negative
then no code will be generated. It is not possible to nest repeat loops; for example

 REPT 512/4 copy a sector quickly
 move.l (a0)+,(a1)+
 ENDR

Program labels should not be defined within repeat loops to prevent label
defined twice errors.

Listing Control

 LIST

This will turn the assembly listing on during pass 2, to whatever device was selected at the
start of the assembly (or to the screen if None was initially chosen). All subsequent lines will
be listed until an END directive is reached, the end of the text is reached, or a NOLIST
directive is encountered.

Greater control over listing sections of program can be achieved using LIST+ or LIST-
directives. A counter is maintained, the state of which dictates whether listing is on or off. A
LIST+ directive adds 1 to the counter and a LIST- subtracts 1. If the counter is zero or
positive then listing is on, if it is negative then listing is off. The default starting value is -1 (i.e.
listing off) unless a listing is specified when the assembler was invoked, when it is set to 0.
This system allows a considerable degree of control over listing particularly for include files.
The normal LIST directive sets the counter to 0, NOLIST sets it to -1.

If you would like a listing on pass 1, you can use:

 OPT LIST1

For further details of pass one listing see the Options section.

 NOLIST

This will turn off any listing during pass 2.

When a listing is requested onto a printer or to disk, the output is formatted into pages, with
a header at the top of every page. The header itself consists a line containing the program
title, date, time and page number, then a line showing the program title, then a line showing
the sub-title, then a blank line. The date format will be printed in the form DD/MM/YY,
unless the assembler is running on a US machine, in which case the order is automatically

The Assembler Hisoft Devpac 3 Page 78

changed to MM/DD/YY. Between pages a form-feed character (ASCII FF, value 12) is issued.

 PLEN expression

This will set the page length of the assembly listing and defaults to 60. The expression must
be between 12 and 255.

 LLEN expression

This will set the line width of the assembly listing and defaults to 132. The value of the
expression must be between 38 and 255.

 TTL string

This will set the title printed at the top of each page to the given string, which may be
enclosed in single quotes. The first TTL directive will set the title of the first printed page. If
no title is specified the current include file name will be used.

 SUBTTL string

Sets the sub-title printed at the top of each page to the given string, which may be enclosed in
single quotes. The first such directive will set the sub-title of the first printed page.

 SPC expression

This will output the number of blank lines given in the expression in the assembly listing, if
active.

 PAGE

Causes a new page in the listing to be started.

 LISTCHAR expression[,expression ...]

This will send the characters specified to the listing device (except the screen) and is intended
for doing things such as setting condensed mode on printers. For example, on Epson printers
and compatibles the line

 listchar 15

will set the printer to 132-column mode.

 FORMAT parameter[,parameter ...]

This allows exact control over the listed format of a line of source code. Each parameter
controls a field in the listing and must consist of a digit from 0 to 2 inclusive followed by a +
(to enable the field) or a - (to disable it):

0 line number, in decimal

1 section name/number and program counter

2 hex data in words, up to 10 words unless printer is less than 80 characters wide, when
up to three words are listed.

The Assembler Hisoft Devpac 3 Page 79

Label Directives

label EQU expression
label = expression

These directives set the value and type of the given label to the result of the expression. It
may not include forward references, or external labels. If there is any error in the expression,
the assignment will not be made. The label is compulsory and must not be a local label.

label EQUENV var

This directive finds the value of the environment variable var and assigns it to the label
exactly as per EQU. Note that you may not use this to perform a string equate.

label EQUR register

This directive allows a data or address register to be referred to by a user-name, supplied as
the label to this directive. This is known as a register equate. A register equate must be defined
before it is used.

label SET expression

This is similar to EQU, but the assignment is only temporary and can be changed with a
subsequent SET directive. Forward references cannot be used in the expression. It is
especially useful for counters within macros, for example, using a line like:

zcount set zcount+1

(assuming zcount is set to 0 at the start of the source). At the start of pass 2 all SET labels are
made undefined, so their values will always be the same on both passes.

label REG register-list

This allows a symbol to be used to denote a register list within MOVEM instructions, reducing
the likelihood of having the list at the start of a routine different from the list at the end of the
routine. A label defined with REG may be used in expressions, with a warning; they have a
value which is the same as that used in the MOVEM postincrement opcode.

Defining offsets

There are three different ways to define lists of constant labels without using explicit numbers
that would need to be changed if you decided to add or delete an item near the front of the
lists. The first is using the RS directives, the second using an OFFSET section and the last is
using the CARGS directive. The first two methods provide the same functionality although
OFFSET directives usually require more lines of code than RS directives. CARGS requires less
typing than the other two methods but can not be used for items of sizes other than 2 or 4
bytes.

[label] RS.B expression

[label] RS.W expression

[label] RS.L expression

These directives let you set up lists of constant labels, which is very useful for data structures

The Assembler Hisoft Devpac 3 Page 80

and global variables and is best illustrated by a couple of examples.

Let's assume you have a data structure which consists of a long word, a byte and another long
word, in that order. To make you code more readable and easier to update should the
structure change, you could use lines such as

 rsreset
d_next rs.1 1
d_flag rs. b 1
d_where rs.l 1

then you could access them with lines like

 move.l d_next(aO),a1
 move.l d_where(aO),a2
 tst.b d_flag(aO)

As another example let's assume you are referencing all your variables off register A6 (as
done in Gen and Mon) you could define them with lines such as

onstate rs.b 1
start rs.l 1
end rs.l 1

You then could reference them with lines such as

move.b onstate(a6),d1
move.l start(a6),d0
cmp.l end(a6),d0

Each such directive uses its own internal counter, which is reset to 0 at the beginning of each
pass. Every time the assembler comes across the directive it sets the label according to the
current value (with word alignment if it is .W or .L) then increments it according to the size
and magnitude of the directive. If the above definitions were the first RS directives, onstate
would be 0, start would be 2 and end would be 6.

 RSRESET

This directive will reset the internal counter as used by RS.

 RSSET expression

This allows the RS counter to be set to a particular value.

 RS (reserved symbol)

This is a reserved symbol having the current value of the RS counter.

 OFFSET expression

This switches code generation to a special section to generate absolute labels. The optional
expression sets the program counter for the start of this section (otherwise the value left over
from the last OFFSET section will be used). No bytes are written to the disk and the only
code-generating directive allowed is DS. Labels defined within this section will be absolute.

To return to ordinary code generation, use a suitable SECTION directive. See under the
different output formats below.

The Assembler Hisoft Devpac 3 Page 81

Thus if the current section is TEXT then

 OFFSET $400
labl ds.w 1
lab2 ds.l 2
SECTION TEXT

works in a similar way to

labl rs.w 1
lab2 rs.l 2

and would assign the same values to lab1 and lab2.

Here is an example that defines some of the operating system's variables:

 OFFSET $400
etv_timer ds.l 1 will be $400
etv_crit ds.l 1 $404
etv_term ds.l 1 $408
ext_extra ds.l 5 $40C
memvalid ds.l 1 $420
memcntlr ds.w 1 $424

 CARGS [#offset,]lab1.size[,lab2.size ...J

This directive is designed for accessing subroutine parameters that have been passed on the
stack and as such it is very useful when interfacing with high-level languages.

This defines lab1 to have the value given by offset. The value of lab2 would then depend
on the size used for lab1. If this was .L then it will be 4 more than of f set; if it is .W or .B
then it will be 2 more than offset. Subsequent labels are defined in a similar way. The default
value for offset is 4 and the default size for labels is 2 bytes.

This directive is compatible with the Atari MadMAC assembler command of the same name.

Here is an implementation of the C function strcat which appends one null terminated
string to the end of another. Its first parameter in C is the original string and the second is the
string to be added. As is usual in C the second parameter is pushed on the stack, and then the
first parameter. The assembly language code is:

strcat cargs original.l,added.l
 move.l original(sp),a0
findend tst.b (aO)+
 bne.s findend
 subq.w #1,aO ready to replace null
 move.l added(sp),a1
copylp move.b (a1)+,(a0)+
 bne.s copylp
 rts

Thus original will have a value of 4 and added will have a value of 8 corresponding to
their offsets on the stack after a jsr or bsr instruction has been used.

If you are using a language in which parameters are passed in 'Pascal order' where the first
parameter is pushed on the stack first, then you will need to reverse the order of the
arguments in the CARGS directive.

The Assembler Hisoft Devpac 3 Page 82

Also note that although in many ways the CARGS directive is equivalent to use the RSSET
directive to the value of the offset expression followed by the equivalent RS directives for the
labels, it differs in one very important respect - using .B is exactly equivalent to .W. This is
because the instruction

 move.b d0,-(sp)

will decrease the stack pointer by 2 and place the low byte of the register on the even address
of the new stack pointer. Thus to access such a parameter on the stack, previously pushed
parameters will be two bytes further up the stack; therefore CARGS cannot be used for
defining data structures that contain byte aligned data.

Floating Point Directives

Note that DC.S, DC.D and DC.X are really floating point directives but they are documented
above with their integer cousins.

label FEQU.x constant

This directive will set the value and type of the given label to be a floating point constant of
the given value. The constant may be specified in hexadecimal or decimal as described
previously under expressions; alternatively you may use a previously defined floating point
constant.

The label is compulsory and must not be a local label.

Note that the size (.x) is compulsory and should be one of

.S single precision

.D double precision

.X extended precision

.P packed decimal

.W word

.L long

For example:

ten fequ.x 10.0
two fequ.s :40000000
million fequ.x 1E6
nemillion fequ.x -million

 FOPT option[,option...]

This directive allows you to set the floating point co-processor identifier and the rounding
and precision of the assembler's internal floating point calculations. The valid options are:

ID=<id> This sets the co-processor identifier. By default, this is 1 as used on the Atari
TT and as recommended by Motorola. However for systems with more than one FPU you
will need to set this.

ROUND=<type> This is used to set the rounding method used by internal floating

The Assembler Hisoft Devpac 3 Page 83

point operations. <type> should be one of:

N round to the nearest
Z round towards zero
P round towards + infinity
M round towards - infinity

 These correspond to the RND portion of the FPCR mode control byte. The default
value is N.

PREC=<type> This is used to set the precision used by internal floating point operations.
<type> should be one of:

X extended precision

S single precision
D double precision

 These correspond to the PREC portion of the FPCR mode control byte. The default
value is X.

For example:

fopt ID=2 set the co-processor ID
fopt ROUND=z round towards 0
fopt PREC=S single precision

Conditional Assembly

Conditional assembly allows the programmer to write a comprehensive source program that
can cover many conditions. Assembly conditionals may be specified through the use of
arguments, in the case of macros, and through the definition of symbols in EQU or SET
directives. Variations in these can then cause assembly of only those parts necessary for the
specified conditions.

There are a wide range of directives concerned with conditional assembly. At the start of the
conditional block there must be one of the many IF directives and at the end of each block
there must be an ENDC directive. Conditional blocks may be nested up to 65535 levels.

Labels should not be placed on IF or ENDC directives as the directives will be ignored by the
assembler.

 IFEQ expression
 IFNE expression
 IFGT expression
 IFGE expression
 IFLT expression
 IFLE expression

These directives will evaluate the expression, compare it with zero and then turn conditional

The Assembler Hisoft Devpac 3 Page 84

assembly on or off depending on the result. The conditions correspond exactly to the 68000
condition codes. For example, if the label DEBUG had the value 1, then with the following
code,

 IFEQ DEBUG
logon dc.b 'Enter a command:',0
 ENDC
 IFNE DEBUG
 opt XDEBUG labels please
logon dc.b 'Yeah, gimme man:',0
 ENDC

the first conditional would turn assembly off as 1 is not EQ to 0, while the second conditional
would turn it on as 1 is NE to 0.

IFNE corresponds to IF in assemblers with only one conditional directive.

The expressions used in these conditional statements must evaluate correctly on the
assembler's first pass.

 IIF exp-statement

This directive can be used for pieces of conditionally assembled code that only consist of one
line. IIF stands for Immediate IF. If the value of exp is non-zero then the given
statement is assembled, otherwise it is ignored. No ENDC should be used in conjunction
with this directive. For example,

 IIF BASIC clr.b basic_flag(a6)

will cause the line

 clr.b basic_flag(a6)

to be assembled if the variable BASIC has a non-zero value.

The statement part cannot contain a label field, but you may include a label before the IIF.
For example

mary IIF John equ 42

will set the value of the label mary to be 42 if the value of the label John is non-zero. If the
expression evaluates to 0 then mary will have the value of the current program count as if the
line

mary

had been included in the code. As a result it is generally not a good idea to use IIF to assign
to variables, although it is suitable for ordinary program labels that are the targets of branch
instructions.

 IFD label
 IFND label

These directives allow conditional control depending on whether a label is defined or not.

The Assembler Hisoft Devpac 3 Page 85

With IFD, assembly is switched on if the label is defined, whereas with IFND assembly is
switched on if the label is not defined. These directives should be used with care otherwise
different object code could be generated on pass 1 and pass 2 which will produce incorrect
code and generate phasing errors. Both directives also work on reserved symbols.

 IFC “string1”, “string2”

This directive will compare two strings, each of which must be surrounded by single quotes.
If they are identical then assembly is switched on, else it is switched off. The comparison is
case-sensitive.

 IFNC “string1”, “string2”

This directive is similar to the above, but only switches assembly on if the strings are not
identical. This may at first appear somewhat useless, but when one or both of the parameters
are macro parameters it can be very useful, as shown in the next section.

 ELSEIF
 ELSE

This directive toggles conditional assembly from on to off, or vice versa. ELSE can be used
instead of ELSEIF although ELSEIF is the traditional Devpac name for this directive.

 ENDC

This directive will terminate the current level of conditional assembly. If there are more IFs
than ENDCs an error will be reported at the end of the assembly.

Macro Operations

Gen fully supports extended Motorola-style macros, which together with conditional
assembly allows you greatly to simplify assembly-language programming and the readability
of your code.

A macro is a way for a programmer to specify a whole sequence of instructions or directives
that are used together very frequently. A macro is first defined, then its name can be used in a
macro call like a directive with up to 36 parameters.

label MACRO

This starts a macro definition and causes Gen to copy all following lines to a macro buffer
until an ENDM directive is encountered. Macro definitions may not be nested.

If the word MACRO is followed by .W or .L then when expanding the macro the program
counter will be rounded up to an even boundary.

 ENDM

This terminates the storing of a macro definition, after a MACRO directive.

 MEXIT

This stops prematurely the current macro expansion and is best illustrated by the INC
example given later.

The Assembler Hisoft Devpac 3 Page 86

 NARG (reserved symbol)

This is not a directive but a reserved symbol. Its value is the number of parameters passed to
the current macro, or 0 if used when not within any macro. If Gen is in case-sensitive mode
then the name should be all upper-case. \# may be used as a synonym for NARG.

Macro Parameters

Once a macro has been defined with the MACRO directive it can be invoked by using its name
as a directive, followed by up to 36 parameters. In the macro itself the parameters may be
referred to by using the backslash character (\) followed by an alpha-numeric (1-9,A-Z or a-
z) which will be replaced with the relevant parameter when expanded or with nothing if no
parameter was given. There is also the special macro parameter \0 which is the size
appended to the macro call and defaults to W if none is given. If a macro parameter is to
include spaces or commas then the parameter should be enclosed in between < and >
symbols; in this case a > symbol may be included within the parameter by specifying >>.

A special form of macro expansion allows the conversion of a symbol to a decimal or
hexadecimal sequence of digits, using the syntax \<symbol> or \<$symbol>, the latter
denoting hex expansion. The symbol must be defined and absolute at the time of the
expansion.

\? may be used to find the length of the text of a macro parameter; \?1 gives the length of
the first parameter, etc. This mechanism is ideal for generating Pascal style length-prefixed
strings.

The parameter \@ can be useful for generating unique labels with each macro call and is
replaced when the macro is expanded by the sequence _nnn where nnn is a number which
increases by one with every macro call. It may be expanded up to five digits for very large
assemblies.

A true \ may be included in a macro definition by specifying \\.

The abbreviation \# is equivalent to NARG giving the number of parameters that have been
passed to the macro.

A macro call may be spread over more than one line, particularly useful for macros with large
numbers of parameters. This can be done by ending a macro call with a comma then starting
the next line with an & followed by tabs or spaces then the continuation of the parameters.

In the assembly listing the default is to show just the macro call and not the code produced by
it. However, macro expansion listings can be switched on and off using the OPT MEX and
NOMEX options described previously.

Macro names are stored in a separate symbol table to normal symbols so will not clash with
similarly-named routines, and may start with a period.

Macro Examples

Example I - Calling the BDOS

As the first example, the general GEMDOS calling-sequence for the BDOS is:

put a word parameter on the stack

The Assembler Hisoft Devpac 3 Page 87

invoke a TRAP #1

correct the stack afterwards

A macro to follow these specifications could be

gemdos MACRO
 move.w #\1,-(a7) function
 trap #1
 lea \2(a7),a7 correct stack
 ENDM

The directives are in capitals only to make them stand out: they don't have to be. If you
wanted to call this macro to use GEMDOS function c_conout (print a character) the code
would be

 move.w #'X',-(a7)
 gemdos c_conout,4

When this macro call is expanded, \1 is replaced with c_conout and \2 is replaced with 4. \0,
if it occurred in the macro, would be W as no size is given on the call. So the above call would
be assembled as:

 move.w #c_conout,-(a7)
 trap #1
 lea 4(a7),a7

Example 2 - an INC instruction

The 68000 does not have the INC instruction of other processors, but the same effect can be
achieved using an ADDQ #1 instruction. A macro may be used to do this, like so:

inc MACRO
 ifc ",'\r
 fail missing parameter!
 MEXIT
 ENDC
 addq.\0 #1,\1
 ENDM

An example call would be

 inc.l aO

which would expand to

 addq.l #1,a0

The macro starts by comparing the first parameter with an empty string and causing an error
message to be issued using FAIL if it is equal. The MEXIT directive is used to leave the macro
without expanding the rest of it. Assuming there is a non-null parameter, the next line does
the ADDQ instruction, using the \0 parameter to get the correct size.

Example 3 - A Factorial Macro

Although unlikely actually to be used as it stands, this macro defines a label to be the factorial
of a number. It shows how recursion can work in macros. Before showing the macro, it is

The Assembler Hisoft Devpac 3 Page 88

useful to examine how the same thing would be done in a high-level language such as Pascal.

function factor(n:integer):integer;
begin
 if n>0 then
 factor:=n*factor(n-1)
 else
 factor:=1
 end;

The macro definition for this uses the SET directive to do the multiplication n*(n-1)*(n-2)
etc. in this way:

* parameter 1=label, parameter 2='n'
factor MACRO
 IFND \1
\1 set 1 set if not yet defined
 ENDC
 IFGT \2
 factor \1,\2-1 work out next level down
\1 set \1*(\2) n=n*factor(n-1)
 ENDC
 ENDM
* a sample call
factor test,3

The net result of the previous code is to set test to 3! (3 factorial). The reason the second SET
has (\2) instead of just \2 is that the parameter will not normally be just a simple expression,
but a list of numbers separated by minus signs.

So it could assemble to

test set test*5-1-1-1

(i.e. test*5-3) instead of the correct

test set test*(5-1-1-1)

(i.e. test*2).

Example 4 - Conditional Return Instruction

The 68000 lacks the conditional return instructions found on other processors, but macros can
be defined to implement them using the \@ parameter. For example, a return if EQ macro
could look like:

rtseq MACRO
 bne.s \@
 rts
\@
 ENDM

The \@ parameter has been used to generate a unique label every time the macro is called, so
will generate in this case labels such as _002 and _017.

The Assembler Hisoft Devpac 3 Page 89

Example 5 - Numeric Substitution

Suppose you have a constant containing the version number of your program and wish this
to appear as ASCII in a message:

showname MACRO
 dc.b \1,'\<version>',0
 ENDM
 .
 .
version equ 42
showname <'real Ale Search Program v'>

will expand to the line

dc.b 'real Ale Search Program v','42',0

Note the way the string parameter is enclosed in <>s as it contains spaces.

Example 6 - Processor selection

Suppose you are writing a program that you intend to provide both ST and TT specific
versions. Say you use the label PR0C30 with value 1 to indicate that you are producing the
68030 version and with a value of 0 for the ST version then you could define macros like
these:

* An extb.l instruction if available
extbl MACRO
 IFNE PR0C30
 opt p=68030
 extb.l \1
 ELSE
 opt p=68000
 ext.W \1
 ext.l \1
 ENDC
 ENDM
* Move 4 characters to memory using post decrement
 movel MACRO
 IFNE PR0C30
 move.l #'\1\2\3\4',\5
 ELSE
 move.b #'\1',\5
 move.b #'\2',\5
 move.b #'\3',\5
 move.b #'\4',\5
 ENDC
 ENDM

Then an appropriate call would be:

 extbl dO

which would expand to

 extb.l dO

The Assembler Hisoft Devpac 3 Page 90

or

 ext.w dO
 ext.l dO

and

 movel F,R,E,D,(a0)+

would expand to

 move.l #'FRED,,(aO)+

or

 move.b #'F',(aO)+
 move.b #'R',(aO)+
 move.b #'E',(aO)+
 move.b #'D',(aO)+

Example 7 - Complex Macro Call

Suppose you program needs a complicated table structure which can have a varying number
of fields. A macro can be written to only use those parameters that are specified, for example:

tbl_entry MACRO
 dc.b .end\@-* length byte
 dc.b \1 always
 IFNC '\2',’’
 dc.w \2,\3 2nd and 3rd together
 ENDC
 dc.l \4,\5,\6,\7
 IFNC ' \8',"
 dc.b '\8' text
 ENDC
 dc.b \9
.end\@ dc.b 0

ENDM
* sample call
 tbl_entry $42,,,t1,t2,t3,t4,
& <Enter name:>,%0110

This is a non-trivial example of how macros can make a programmer's life much easier when
dealing with complex data structures. In this case the table consists of a length byte,
calculated in the macro using \@, two optional words, four longs, an optional string, a byte,
then a zero byte. Note the use of the macro continuation character &.

The code produced in this example would be

 dc.b .end_00l
 dc.b $42
 dc.l t1,t2,t3,t4
 dc.b 'Enter name:'
 dc.b %0110
.end_001 dc.b 0

The Assembler Hisoft Devpac 3 Page 91

Output File Directives

This section details those directives whose actions depend on the output file format chosen.
The file format itself can be selected by one of the following methods: command line options
using GEN.TTP; using the appropriate pop-up menu of the Assembler options - Control dialog
box from the editor; or with the OPT directive at the beginning of the source file.

As the use of these directives differs from format to format, they are discussed separately for
each format.

Atari Executable (ATARI, L0)

This is the native TOS executable format, and supports three sections; TEXT, DATA and BSS.
The operating system forces no special requirements on the division between the TEXT and
DATA sections, except that execution starts at the beginning of the TEXT section. The BSS
section is guaranteed to be initialised to zero and occupies no disk space.

Programs do not know where in memory they will be loaded, so the file supports load-time
relocation; all relocatable references are fixed up when the program is loaded. One section
may refer to a part of another with PC-relative addressing, as well as absolute (really
relocatable) addressing, although on the 68000 processor you are subject to the 32K limit of
the chip for PC-relative addressing.

To allow debugging there is a standard symbol table format that can be included within the
executable file, which is ignored by the normal program loader. Unfortunately this format
restricts symbols to 8 characters, so the HiSoft extended debug format was created which
extended the basic idea to allow up to 22 characters of symbols to be defined.

In addition Devpac 3 supports the idea of a debug section attached to your program; in
addition to Devpac 3 the following products (at the time of writing) as support this extension:
Lattice C, HiSoft BASIC 2, Highspeed Pascal 1.6. These enable the debugger to find the
program counter corresponding to a source line and vice versa.

Filename extensions can be .PRG (default), .TOS, .TTP, .ACC, .APP and .GTP; the extension
determines the different uses of the program file.

 SECTION name

Switches to the given section, name must be TEXT, DATA or BSS and is not case sensitive. All
the code in the TEXT segment will be output together, followed by all the code (or data) in the
DATA section. The BSS section may only be used for DS directives. You can use this so that
your variables can be defined near the code that uses them rather than altogether at the end of
the file. For example:

 SECTION BSS
var1 ds.l 1
 SECTION TEXT
text moveq #0,d0
 move.l d0,var1(a6)

This code fragment relies on the fact that the register a6 has been set up to point to the start of
the BSS area. This is achieved using the information in the program's base-page; see the
examples on disk.

The Assembler Hisoft Devpac 3 Page 92

 OPT DEBUG

The first 8 characters only of all relative labels are written to the file and will be upper-cased if
Gen is in case-insensitive mode. The 8-character limit is due to the DRI standard file format
and may be improved on by using the XDEBUG option, described below.

 OPT XDEBUG

This is a special version of the DEBUG option which uses the HiSoft extended debug format
to generate debugging information with symbols of up to 22 character significance.

 OPT LINE

Causes a LINE debug section to be attached to the executable; note that this option
considerably increases the size of executable files, requiring 8 bytes are required for each line
that generates code.

 OPT HCLN

Causes a HCLN (HiSoft Compressed Line Numbers) debug section to be attached to the
executable. This provide the same information as a LINE section but requires, on average,
only 2 bytes of extra information per line that generates code.

 COMMENT HEAD=expression

This allows the program load longword in the file header to be set to any particular value; the
default is zero. HEAD must be in upper-case.

The currently defined bits are:

0 Fast load; the whole TPA area past the end of the BSS is not zeroed. This
results in reduced loading times on large memory machines, for those
programs that are compatible with it.

1 Alternative RAM load; the program will be loaded into alternative RAM if
there is enough alternative RAM available.

2 Alternative RAM m_alloc; m_alloc calls will be satisfied with alternative
RAM if possible.

28-31 The program's TPA size field as a multiple of 128K bytes. When bit 1 is set
and this field is zero the program will be loaded into alternative RAM if
there is enough room for its CODE, DATA and BSS and 128K of RAM. If
you would like your program to have at least 256K of TPA in addition to the
CODE, DATA and BSS, then make this field one and then if there is
insufficient alternative RAM but enough system RAM then your program
will load there. In this case you might well use

 COMMENT HEAD=$1000007

Programs that keep their stack in the BSS section and use m_alloc or m_xalloc calls for
dynamic memory can usually use:

 COMMENT HEAD=7

The Assembler Hisoft Devpac 3 Page 93

The Assembler Hisoft Devpac 3 Page 94

to give the fastest possible load and execution times. This is the case for most of the tools in
Devpac with the notable except for the auto-resident version of Mon which stores its screen in
its TPA and so must be loaded into system RAM.

 TEXT
 CODE
 DATA
 BSS

These are synonyms for SECTION TEXT, SECTION TEXT, SECTION DATA and SECTION
BSS respectively.

 ORG expression

This will make the assembler generate position-dependent code and set the program counter
to the given value. Normal GEMDOS programs do not need an ORG statement even if
position-dependent. It is included to allow code to be generated for the ROM port or for other
68000 machines. More than one ORG statement is allowed in a source file but no padding of
the file is done.

ORG should be used with great care as the binary file generated will probably not execute
correctly when double-clicked, as no relocation information is written out. The binary file

s the standard GEMDOS header at the front, but no relocation information. produced ha

This directive is very unlikely to make sense when assembling to memory.

 RORG expression

This directive changes the program counter to the specified number of bytes from the start of
the current section. Note that the value specified must be greater than the current PC and the
file will be padded with zeroes to the approrpiate location.

GST Linkable (GST, L1)

This format was originally created for the Sinclair QL, but became popular on the ST and is

The file format supports up to 32767 sections with up to 32767 symbols per section. Symbols

Libraries in GST format are simply a concatenation of multiple .BIN files, though there are

Symbol imports are particularly flexible; any number of imports may be used within an

The normal extension for GST files is .BIN.

supported by a wide range of European programming tools. The format is an extremely
flexible linkable format, although its lack of word-alignment within the file structure can be a
source of reduced performance in linkers, for example.

and section names may be up to 32 characters long.

some unofficial extensions to this standard. Gen is capable of generating library files from a
single source file using the MODULE directive.

expression, which can be byte, word or long, PC relative or absolute. Only + and - operators
are permitted between imports.

 MODULE name

Gen supports multiple modules per source file; this means complete libraries may be built
from a single source file, without resorting to multiple assemblies or librarian usage. The use
of the MODULE directive effectively switches to a different environment for the assembler,
with a new symbol table, except that absolute symbols are global (i.e. can be seen by all
modules). The default module name is the main input filename with any path specification
removed.

 SECTION name

There are no restrictions on name, except that it is significant to the first 32 characters. Code
with the same section name will be merged together by the linker.

 XDEF symbol

Symbols defined within the current module may be exported using XDEF; the symbols type
(relative or absolute) will also be exported.

 XREF symbol
 XREF.L symbol

Symbols may be imported from other files using XREF; normally imported symbols are
treated as relocatable quantities like ordinary subroutine labels. If the .L form is used, then
the symbol is treated as an absolute quantity. The assembler needs this information in order
to generate the correct fixup information.

 COMMENT string

This inserts the comment into the output file which may be displayed by some linkers; some
librarians may have particular uses for this, such as storing date information.

 OPT DEBUG

This has the effect of declaring all relative (non-local) symbols within the current module as
exports. Care should be taken as misuse of this option can create multiple symbols with the
same name (e.g. loop).

 TEXT
 CODE
 DATA
 BSS

These are synonyms for SECTION TEXT, SECTION TEXT, SECTION DATA and SECTION
BSS respectively.

 ORG expression

This will make the assembler generate position-dependent code and set the program counter
to the given value. Normal GEMDOS programs do not need an ORG statement even if
position-dependent. It is included to allow code to be generated for the ROM port or for other
68000 machines. More than one ORG statement is allowed in a source file as this sends the ORG
directive to the linker which will pad the file with zeroes to the given address.

 RORG expression

This directive changes the program counter to the specified number of bytes from the start of

The Assembler Hisoft Devpac 3 Page 95

the current section. Note that the value specified must be greater than or less than the current
PC. Unlike the other formats this does not pad the output file, although the linker may
perform this operation to adhere to the requirements implied by the directive.

Expressions containing imports

Imports may be used in expressions, with up to ten per expression. They may only be added
or subtracted from each other though can be combined with arbitrarily complex expressions,
so long as the complex expression lexically precedes it, for example:

 move.l 3+(1«count+5)+import1-import2

There are a number of different sorts of possible imports as shown below:

Name Example
PC-byte move.w import(pc,d3.w)

bsr.s import
PC-word move.w import(pc),a0

bsr import
byte move.b #import,dO
word move.w import(a3),d0
long move.l import,dO

Note that a reference to a symbol in a different section is regarded as an import and subject to
the above rules.

Writing GST Libraries

When using multiple MODULEs to generate a GST format library file care must be taken with
backward references to imports. Within a library file, higher level routines should be first,
lower level routines last. For example the source file skeleton shown below will not link when
used as a selective library.

 MODULE low_level
 XDEF low_output
low_output
 …
 MODULE high_level
 XDEF high_output
 XREF low_output
high_output
 …

This is because the second module references a label defined in an earlier module, which is
not allowed. The corrected version is:

 MODULE high_level
 XDEF high_output
 XREF low_output
high_output
 …
 MODULE low_level
 XDEF lowoutput

The Assembler Hisoft Devpac 3 Page 96

low_output
 …

DRI Linkable (DRI, L2)

This format is based on the CP/M 68k original and was used by the original Atari
development kit, as well as some programming tools of American and German origin; it is
also the format used by Highspeed Pascal. It is a very inflexible format but easy to read and
write.

The format supports the standard Atari sections of TEXT, DATA and BSS. Symbols are only
significant to 8 characters.

Inter-section references within the same file may only be absolute and no byte-sized PC
references are allowed to imports or other sections.

Symbol imports may only be of the form symbol ± constant.

The normal extension for DRI files is .O.

 SECTION name

The only permitted names are TEXT, DATA and BSS.

 XDEF symbol

All symbols will be truncated (without warning) to 8 characters before being exported. OPT
C8 is therefore recommended.

 XREF symbol
 XREF.L symbol

This defines labels to be imported from other programs or modules. If any of the labels
specified are defined an error will occur. The normal XREF statement should be used to
import a relative label (i.e. program reference), while XREF.L should be used to import
absolute labels (i.e. constants). Importing a label more than once will not produce an error.

The DRI format does not actually need to know the type of imports but it is recommended that
both forms of XREF are used to allow the assembler to type check.

 COMMENT string

This directive is ignored unless it is the single word PASCAL, which is used to tell Gen to
output the special file format Personal Pascal uses; it is not required with Highspeed Pascal.
You should declare your functions and/or procedures using the XDEF directive and their
names must be in upper case. Your code should be in the TEXT section and we recommended
placing any global variables in the BSS section. Do not try to use the DATA section - this seems
to confuse the Personal Pascal linker.

 OPT DEBUG

Normally only those labels declared as XDEF will be exported within the file. However this
option forces all relative symbols to be exported as what are known as local symbols (not to
be confused with Gen local symbols) which will not be visible to the linker, but will be
included in the final debug area.

The Assembler Hisoft Devpac 3 Page 97

 TEXT
 CODE
 DATA
 BSS

These are synonyms for SECTION TEXT, SECTION TEXT, SECTION DATA and SECTION
BSS respectively.

 RORG expression

This directive changes the program counter to the specified number of bytes from the start of
the current section. Note that the value specified must be greater than the current PC and the
file will be padded with zeroes to the approrpiate location.

Using Imports in Expressions

Imports may be used in expressions but only one import per expression is allowed. The result
of an expression with an import in must be of the form import + number or import - number.
Imports can be combined with arbitrarily complex expressions, so long as the complex
expression lexically precedes it. For example

 move.l 3+(1<<count+5)+import

There are a number of different sorts of possible imports as shown below:

Name Example
PC-word move.w import(pc),aO
 bsr import
word move.w import(a3),d0
long move.l import,do

Note that byte-sized relocation is not supported. PC-word access is also not allowed for
references between sections in the same program.

Motorola S-records (SREC, 16)

S-records are a standard way of transferring binary images between machines, using 7-bit
ASCII codes only. It is particularly useful for uploading data to EPROM programmers.

The S-record file produced by the assembler is of the following format:

S0 module name
<for each section>
S1/2/3 data
S9/8/7 execute address

The file may be split into low and high bytes (or 4 if generating code for machines with 32-bit
buses) if required by the use of the SRSplit utility, described in Chapter 6.

S1/S2/S3 records are produced for the data according to whether
the address is a 16, 24 or 32 bit value respectively. Up to 28 data
bytes per line are generated. The execute address is taken as the first

The Assembler Hisoft Devpac 3 Page 98

ORG in the program, with an S9/S8/S7 as appropriate to the value.

The individual S-records contain 5 fields, mostly in the form of ASCII hex bytes as follows:

type (2 bytes) Sx where x is the type of the record (as
above)

count (2 bytes) The number of address, data and
checksum bytes remaining on this line

address (4,6 or 8 bytes) the address of this data
data (varies) the actual data, upper-case hex (2 for each

byte)
checksum (2 bytes) checksum of everything (taken as bytes)

except the type

The default extension is .MX.

 SECTION name[,offset]

If offset is specified then the section will be assembled to run at the address specified in the
following ORG (as normal) but the addresses contained within the S-records themselves will
start at the offset address. This is useful for writeable data areas that will initially be in
EPROM and are copied into RAM at startup, or for the situation where a PROM programmer
requires the data to be uploaded to a particular address.

 TEXT
 CODE
 DATA
 BSS

These are synonyms for SECTION TEXT; SECTION CODE; SECTION DATA and SECTION
BSS respectively.

 ORG address

Should always follow a SECTION directive. The first ORG in a non-BSS section is taken as the
execute address. Using more than one ORG per section is at your own risk; it is your
responsibility to put the code in the correct place if you intend executing it.

Lattice C linkable (LATTICE, 17)

This is the format that was introduced by Lattice C 5 for the ST; it is also used by HiSoft
BASIC 2.

The format supports an unlimited number of sections, of general types CODE, DATA and BSS.
BSS sections are placed together in the final executable file as one zeroed BSS section by the
supplied linker, CLink. There are no limits on the length of sections or symbols. To produce
libraries you require the librarian supplied with Lattice C, OML.

Although it is not quite as flexible as the GST format in that multiple externals are not
allowed in a single expression, it does have the unique feature of support for base relative
symbols as described below.

The normal extension for Lattice C files is .O

The Assembler Hisoft Devpac 3 Page 99

 MODULE name
 IDNT string

This sets the name of the module. Such names may be up to 32 characters long.

 SECTION name[rtype]

There are no restrictions on name and the optional type may be one of the following (in upper
or lower case):

CODE code section
DATA data section
BSS BSS section

The default type is CODE. Data and BSS sections that are called __MERGED are treated
specially by the linker; the __MERGED data section is placed as the last section in the data
section and the __MERGED BSS section as the first BSS section. This, coupled with the CLink
reserved symbol __LinkerDB, enables both initialised and uninitialised data references to be
made via a single global address register. See the CLink section for more details. Do not use
__MERGED as the name of a CODE section.

Note that sections with the same name are not merged together; only the type of the section is
important (with the exception of __MERGED, of course).

 CSECT name[,type]

This is a subset of the Lattice C assembler CSECT directive. It is equivalent to the appropriate
SECTION directive except that type is a number as follows:

0 CODE
1 DATA
2 BSS

Note that whilst Gen does not support the extra parameters of the Lattice assembler, it does
allow CSECT to be used more than once for the same section name, although you should
remember that the linker will not merge such sections together.

 XDEF symbol

Symbols defined may be exported using XDEF; the symbols type (relative or absolute) will
also be exported.

 XREF symbol
 XREF.L symbol

This defines labels to be imported from other programs or modules. If any of the labels
specified are defined an error will occur. The normal XREF statement should be used to
import a relative label (i.e. program reference), while XREF.L should be used to import
absolute labels (i.e. constants). Importing a label more than once will not produce an error.

The Lattice format does not actually need to know the type of imports but it is recommended

The Assembler Hisoft Devpac 3 Page 100

that both forms of XREF are used to allow the assembler to type check.

 OPT DEBUG

This places all relative (non-local) symbols into special symbol sections which will be
included in the symbol section created by the linker.

 OPT XDEBUG

This will only place those symbols declared with XDEF into symbol sections.

 OPT LINE

Causes a LINE debug hunk to be written to the linkable file. This is the format that is
supported by Lattice C and by CLink. If an error occurs when linking CLink will report the
appropriate line number. This considerably increases the size of executable files however. 8
bytes are required for each line that generates code.

 OPT HCLN

Causes a HCLN (HiSoft Compressed Line Numbers) debug hunk to be written to the linkable
file. This provide the same information as a LINE section but requires, on average, only 2
bytes of extra information per line that generates code.

 TEXT
 CODE
 DATA
 BSS

These are synonyms for SECTION TEXT, CODE; SECTION CODE,CODE;SECTION
DATA,DATA and SECTION BSS,BSS respectively.

 RORG expression

This directive changes the program counter to the specified number of bytes from the start of
the current section. Note that the value specified must be greater than the current PC and the
file will be padded with zeroes to the approrpiate location.

Using Imports in Expressions

Only one import may be used in each expression; however, they may be added to an
arbitrarily complex expression, so long as this lexically precedes it, for example:

 move.l 3+(1«count+5)+import

There are a number of different sorts of possible imports as shown below:

Name Example
PC-byte move.w import(pc,d3.w)

bsr.s import
PC-word move.w import(pc),aO

bsr import
byte move.b #import,dO
word move.w import(a3),d0

The Assembler Hisoft Devpac 3 Page 101

long move.l import,dO
word base relative move.l import(a4)
long base relative move.l import(a4,d0),d0

Note that a reference to a symbol in a different section is regarded as an import and subject to
the above rules, except that PC-relative inter-section references are not supported.

The base-relative facilities allow references to imports and other sections to be word offsets, to
allow such things as:

 move.l _symbol(a4),dO

where _symbOl is a relative import, which, strictly speaking, is nonsense. However this is
converted to:

 move.l _symbol- LinkerDB(a4),d0

__LinkerDB is a symbol created by the linker. See the CLink section for further details of the
memory map.

Directive Summary

Assembly Control
CNOP align PC arbitrarily
DC define constant
DCB define constant block
DS define space
END terminate source code
EVEN ensure PC even
FAIL force assembly error
INCBIN read binary file from disk
INCLUDE read source file from disk
OPT option control
RADIX set number base

Repeat Loops
ENDR end repeat block
REPT start repeat block

Listing Control
FORMAT define listing format
LIST enable listing
LISTCHAR send control character
LLEN set line length
NOLI ST disable listing
PAGE start new page
PLEN set page length
SUBTTL set sub-title
TTL set title

The Assembler Hisoft Devpac 3 Page 102

Label Directives
CARGS define parameter labels
EQU define label value
EQUENV define label from environment variables
EQUR define register equate
OFFSET define offset table
REG define register list
RS reserve space
RSRESET reset RS counter
RSSET set RS counter
SET define label value temporarily

Floating Point Directives
FEQU define floating point constant
FOPT floating point options

Conditional Assembly
ELSE IF switch assembly state
ENDC end conditional
IFC assemble if strings same
IFD assemble if label defined
IFEQ assemble if zero
IFGE assemble if greater than or equal to
IFGT assemble if greater than
IFLE assemble if less than or equal to
IFLT assemble if less than
IFNC assemble if strings different
IFND assemble if label not defined
IFNE assemble if non-zero
IIF immediate IF

Macros
EN DM end macro definition
MACRO define macro

Output File Directives
BSS
CODE
COMMENT send linker comment
CSECT Lattice C switch section directive
DATA
IDNT Lattice C synonym for MODULE
MODULE set module name
ORG set absolute code generation
SECTION switch section
TEXT abbreviated section commands
XDEF define label for export
XREF define label for import

Reserved Symbols
NARG number of macro parameters
__G2 internal version number

The Assembler Hisoft Devpac 3 Page 103

__LK output file type
__RS RS counter

The Assembler Hisoft Devpac 3 Page 104

Chapter 4 - The Debugger

Introduction

Programs written in assembly language are particularly error-prone; even a slight coding
mistake can result in the entire machine crashing since you are programming at such a low
level.

These programming mistakes (known as bugs, after a spider that was found crawling around
the core memory of one of the early computers) can range from the trivial, such as a missing
CR in a printout, through the usual (an incorrect result) to the very serious where the
computer crashes because you have used the wrong register or corrupted the system memory
(like that spider).

To help you find and correct all forms of bugs, Devpac includes a debugger, Mon. Mon is a
powerful symbolic debugger and disassembler which lets you examine programs and
memory, execute programs an instruction at a time and trap processor exceptions caused by
programmer error.

Although Mon is a low-level debugger, displaying such things as 680x0 instructions and
registers, it can also be used for debugging programs written with any compiler that
generates machine-code output. If the compiler has the option to output the symbols into the
executable file then you will see your procedure and function names within the code; you can
even view your original source code and step through it, if the package that produced the
code has line number debug support.

As Mon uses its own screen memory, the display of your program is not destroyed when you
single-step or breakpoint, making it particularly useful for graphical-output programs such as
GEM applications or games. It also uses its own screen drivers so it is possible to single-step
into the operating system screen routines such as the AES or BIOS without affecting the
debugger.

Mon Concepts

Here is a swift look at the concepts behind Mon; it is a good idea to read this section before
moving on to the next sections, even if you are an experienced programmer.

Exceptions

Mon employs the 680x0 processor exceptions to stop runaway programs and to single-step, so
at this point it would be useful to explain them and detail what normally happens when they
occur under TOS.

While using the 680x0 processors, there are various types of exception that can occur, some
deliberately, others accidentally. An exception is a special condition that takes priority over
normal processing - it might be an interrupt from an external device, an illegal instruction, an
address error, a co-processor violation or a number of other pre-defined events.

When an exception occurs the processor's context is saved on the supervisor stack and

The Debugger Hisoft Devpac 3 Page 105

execution is then transferred to any one of 256 different addresses, held in the exception table
(on the 68010 upwards, the address of the start of this table is held in the vector base register, or
VBR). When Mon is active it re-directs some of these exceptions so it can take control when
they occur. The various forms of exceptions, their usual results, and what happens when they
occur with Mon active is shown in the following table:

The various forms of exceptions, their usual results, and what happens when they occur with
Mon active is shown in the following table, which is a summary of the exception table. Note
that the first 64 vectors are defined by Motorola:

Number Exception Mon active
0 reset stack pointer not trapped
1 reset program counter not trapped
2 bus error trapped
3 address error trapped
4 illegal instruction breakpoint
5 zero divide trapped

6 CHK instruction trapped
7 TRAPV instruction trapped
8 privilege violation trapped
9 trace single-step
10 line 1010 emulator VDI support
11 line 1111 emulator trapped
12 reserved trapped
13 co-processor protocol violation trapped
14 format error trapped
16-23 reserved trapped
24 spurious interrupt trapped
25-31 level x interrupt autovector, where

x=26-exception no.
not trapped

32 trap #0 trapped
33 trap #1 GEMDOS call
34 trap #2 AES/VDI call
35-44 trap #3-#12 trapped
45 trap #13 XBIOS call
46 trap #14 BIOS call
47 trap #15 trapped
48 FPCP branch or set on unordered

condition
trapped

49 FPCP inexact result trapped
50 FPCP divide by zero trapped
51 FPCP underflow trapped
52 FPCP operand error trapped
53 FPCP overflow trapped
54 FPCP signalling NAN trapped
55 reserved trapped
56 MMU configuration error trapped
57 68851 illegal operation trapped
58 68851 access level violation trapped

The Debugger Hisoft Devpac 3 Page 106

59-63 reserved trapped
64-255 user defined vectors not trapped

The causes of the above exceptions (and how best to recover from them) are given at the end
of this section.

Front Panel Display

When Mon is invoked it displays a Front Panel showing registers, memory, source code and
instructions. The name Front Panel stems from the type of panels that were mounted on
mainframe and mini computers to provide information on the state of the machine at a
particular moment, usually through the use of flashing lights. These lights represent whether
or not particular flip-flops (electronic switches) within the computer are open or closed; the
flip-flops that are chosen to be shown on this panel are normally those that make up the
internal registers and flags of the computer thus enabling programmers and engineers to
observe what the computer is doing when running a program.

These were hardware front panel displays; what Mon provides you with is a software front
panel - the code within Mon works out the state of the computer and then displays this
information on the screen.

The Mon display consists of a number of windows through which you can view the 680x0
registers, a disassembly of your program, your program's source code or a portion of memory
- you choose what you want in each window (within certain limitations). The layout of Mon's
front panel is shown below:

Mon's front panel

Mon's Windows

As we have said, there are four different types of view through a window:

a register window in which you can see the various 680x0 data and address registers, the
program counter (PC), the status register (SR) and the current instruction. The values of the
data and address registers are shown in hexadecimal together with some information about
the locations to which the registers point.

a disassembly window which shows a 680x0 disassembly of the memory that it is addressing,
including any symbols that are found.

The Debugger Hisoft Devpac 3 Page 107

a memory window which displays the contents of memory locations in hexadecimal and
ASCII.

a source code window. In this type of window you can view a text file which may be the source
code of the program that you are debugging, assuming that this exists. You can display line
numbers if you wish and, if the program that owns the source code has line number
information attached to it, you will be able to use this information to step through the
program's source code and set breakpoints on source lines.

Up to five windows can be shown simultaneously or, by changing the width and height of the
windows you, can show just two.

Each window is numbered from 1 to 5 and can display different types of information -
window 1 can be of any type, register, memory, source code or disassembly; windows 2 and 4
can be memory, disassembly or source code windows whilst windows 3 and 5 are restricted
to being memory windows.

Stacking Windows

Each window also has depth - you can stack views beneath a window so that you have almost
limitless flexibility in what you choose to display.

In addition you can split and widen most windows; split means to grow or to shrink the
window vertically whilst widen means to do the same horizontally. These operations may
hide other windows temporarily or they may uncover hidden windows.

Locking Windows

Each window may also be locked to an arbitrary expression. Thus, you can lock a memory
window to a register so that it displays the contents of the memory addressed by that register.
Or you might want to lock a disassembly window to the PC, which is the default condition
for window 2 unless you have saved.

Each view on the window stack can be locked to a different expression although it does not
make sense to lock the register window.

All the above window features will be discussed in more detail later.

The Current Window

Mon has the concept of a current window - this is denoted by displaying its title highlighted
and is the window on which any operation will take place.

The current window may be changed by pressing the Tab key to cycle between them, or by
pressing the Alt- key together with the window number, for example Alt-2 selects window
number 2, even if it is hidden currently.

Symbolic Debugging

A major feature of Mon is its ability to use symbols taken from the original program whilst
debugging. Mon uses the standard executable symbol section as produced by most Atari
programs that produce executable files, such as linkers, compilers and Gen.

The Debugger Hisoft Devpac 3 Page 108

Mon can also accept line number information from various different types of line debug
information attached to the program, which enables the debugger to handle source code files
that are connected with the program being debugged on a line basis. If the program to be
debugged contains this line number information, you will be able to set breakpoints in its
source code and even single-step it, source line by source line. Products that support this,
currently, are: Devpac 3, HiSoft BASIC 2 and Lattice C 5.5.

Mon Dialogs

Mon makes extensive use of dialogs which are similar in concept to those in GEM programs
but have several differences.

a Mon dialog

A Mon dialog displays the prompt ESC to abort above the top left corner of the box
together with a prompt, normally followed by a blank line or some text to edit, with a cursor.
At any time a dialog may be exited by pressing Esc, or data may be entered at the cursor by
normal typing. Various keys may be used to edit the text:

, move the cursor left or right through the text

Shift- , Shift- move the cursor to the start of the line or to
the end of the line

Backspace delete the character behind the cursor
Del delete the character under the cursor
Alt-X delete the entire line
Esc abandon the dialog

commands available within Mon dialogs

When you have finished entering a line, press the Return key; if the line contains errors the
screen will flash and the Return key will be ignored allowing correction of the data before
pressing Return again.

Some Mon dialogs simply display a message together with the prompt Return; these are
normally used to inform you of some form of error. The box will disappear on pressing the
Return or Esc keys, whichever you find more convenient.

Command Input

Mon is controlled by single-key commands which gives a fast user-interface, although this
can take getting used to if you are familiar with a line-oriented command interface of another
debugger. Users of HiSoft Devpac on other machines such as the Commodore Amiga will
find many commands are identical.

In general the Alt- key is the window key - when used in conjunction with other keys it acts
on the current window. The Control key is usually used to invoke commands connected with

The Debugger Hisoft Devpac 3 Page 109

execution of the program that is being debugged.

Commands may be entered in either upper or lower case. Those commands whose effects are
potentially disastrous require the Control key to be pressed in addition to a command key.
The keys used were chosen to be easy to remember, wherever possible. Commands take effect
immediately - there is no need to press Return and invalid commands are simply ignored. The
relevant sections of the front panel display are updated after each command so any effects
can be seen immediately.

Mon is a powerful and sometimes complex program and we realise that it is unlikely that
many users will use every single command. For this reason the remainder of the Mon manual
is divided into two sections - the former is an introduction to the basic commands of the
program, while the latter is a full reference section. It is possible for new users and beginners
to use the debugger effectively while having only read the Overview; but don't be intimidated
by the Reference section.

Mon Overview

Starting Mon

Mon is invoked by double clicking on MON.PRG from the desktop, or by calling it from the
Devpac editor.

If you start Mon from a CLI you can include, optionally, a program name and a command
line to be passed to the program. For example,

mon mytest examples\demo.s [Return]

will cause Mon to be invoked which will load a program called mytest and pass a filename to
this program.

When Mon has loaded, the screen will look like this:

The Mon initial screen

If you started Mon without asking for a program to be loaded, the prompt Executable
file to load will appear. This gives you another chance to load a program to debug;
either type the filename of the program that you want to investigate and hit Return or press
Return by itself (or Esc) to quit the dialog.

The Debugger Hisoft Devpac 3 Page 110

Should Mon have been called from the Devpac editor, the program that you are developing
will be loaded automatically or used from memory, if it was assembled there.

Debugging a Program

If you have asked Mon to load a program to debug you may now be prompted for a
command line, if you haven't already given one; enter the line you want or just press Return.
Mon will then try to load the program. If it fails, it will display an appropriate error message.

You can use the Load Program command to try to load the program again.

Assuming the filename is valid, Mon will load the symbol table from the file and any line
number information for the first source file, together with the first source file before loading
the executable. After the file and its symbols have been loaded successfully, the message

Breakpoint

will appear; this is because Mon places a breakpoint at the first instruction of the program
and then executes it.

The most common command in Mon is probably single-step, obtained by pressing Control-Z
(or Control-Y if you find it more convenient, perhaps because you have a German keyboard).
This will execute the instruction at the PC, shown in the Register window and, normally, also
in the Disassembly window. After executing it the debugger re-displays the values of the
windows, so you can watch the processor execute your program, step by step. Single-
stepping is the best way of going through sections of code that are suspect and require deeper
investigation, but it is also the slowest - you may only be interested in a section of code near
the end of your program which could take a long tome to reach if you have to single-step all
the way. There is, of course, an answer.

A breakpoint is a special instruction placed into your program to stop it running and enter
Mon. There are many types of breakpoint but we will restrict ourselves to the simplest for
now. A breakpoint may be set by pressing Alt-B, then entering the address you wish to place
the breakpoint. You can enter addresses in Mon in hex (the default base), as a symbol, or as a
complex expression. Examples of valid addresses are 1A2B0, prog_start, 10+mydata.
If you type in an invalid address the screen will flash and allow you to correct the expression.

Having set a breakpoint you need some way of letting your program actually run, and
Control-R will do this. If will execute your program using the values of the registers displayed
and starting from the PC. Mon will be re-entered if a breakpoint has been hit, or if an
exception occurs.

Mon uses its own screen display which is independent from your program's. If you press the V
key you will see your current program's display, pressing another key switches you back to
Mon. This allows you to debug programs without disturbing their output at all.

Mon uses its own windows too, and any window may be zoomed to the full screen size by
pressing Alt-Z. To return to the main display press Alt-Z again, or the Esc key. The Esc key is
also the best way of getting out of anything you may have invoked by accident. The Zoom
command, like all Alt- commands, works on the current window which you can change by
pressing Tab. You can dump the current window to your printer by pressing Alt-P.

To change the address from which a window displays its data, press Alt-A, then enter the new
address. The locking of a window to an expression is detailed in the Reference section.

To quit Mon press Control-C. Strange as it may sound this will not always work - what

The Debugger Hisoft Devpac 3 Page 111

Control-C does is terminate the current program, which may be Mon or, more likely, the
program you are debugging. You know when you have terminated the program under
investigation because it will say so in the lower window. Once your program has been
terminated, pressing Control-C will terminate Mon. If you used the Debug option from the
editor then Control-C will always terminate Mon as well as your program.

We hope this overview has given you a good idea of the most common features of Mon to let
you get on with the complex process of writing and debugging assembly language programs.
When you feel more confident you should try and read the Reference section, probably best
taken, like all medicine, in small doses.

Mon Reference

This is the reference section to Mon; it is a complete description of the features and
commands of this powerful debugger.

Numeric Expressions

There are many occasions within Mon when you will want to enter a numeric expression;
perhaps to lock a window to an expression, to assign a value to a register or to set the start
address of a window.

For these cases, Mon has a full expression evaluator, based on that in Gen, including operator
precedence. The main differences are that the default base is hexadecimal (decimal may be
denoted with a \ sign not # as in Mon version 1), there is no concept of a type of an expression
(relative or absolute), * is used only for multiplication, there are two source operators (# and
?).

The precedence table for Mon's operators is given below:

Precedence Operator
1 unary minus (-) and plus (+), source operators

(# and ?)
2 bitwise not (-)
3 shift left («) and shift right (»)
4 bitwise And (&), Or (!) and Xor (A)
5 multiply (*) and divide (/)
6 addition (+) and subtraction (-)
7 equality (=), less than (<), greater than (>),

inequality (<> and ! =), less than or equals
(<=), greater than or equals (>=)

Symbols may be referred to and are normally case-insensitive and significant to 22 characters
although this can be changed with the Mon Preferences command.

Registers may be referred to simply by name, such as A3 or d7 (case insensitive), but this
causes a clash with certain hex numbers. To obtain such hex numbers precede them with
either a leading zero or a $ sign. A7 refers to the user stack pointer. In addition you can access
the SR, SSP, SFC, DFC, CACR, CAAR, VBR, MSP, ISP, MMUSR, TTO, TT1, TC, FPCR, FPSR, and
FPIAR (on those processors on which they are present!). Note that the CRP, SRP cannot be
used in expressions since they are 64 bits long.

The Debugger Hisoft Devpac 3 Page 112

There are several reserved symbols which are case insensitive, namely TEXT, DATA, BSS, END,
SP. END refers to one byte past the end of the BSS section and SP refers to either the user- or
supervisor-stack, depending on the current value of the status register.

Source Operators

There are two operators which allow debugging at a source code level; these are the # and ?
operators.

To use these operators, you must have a source window open which is associated with the
loaded executable program. In turn, this loaded program must have been produced by a
package that attaches line number information to the program. Otherwise the # and ?
operators are invalid.

The # operator takes a source line number as its argument and returns the associated memory
address, within the loaded program. So, say you have the source of hello.s loaded into
window 2 and the executable of hello loaded as the current program then:

m3=#20

will set the start address of window 3 to the address of line number 20 of the hello program
(assuming that window 3 is not locked to another expression).

If the line number is out of range of the source (e.g. if you ask for line number 100 when there
are only 90 lines of source), the result will be the address of the first or last line of the source,
accordingly. If you use the # operator when there is no line number information available, the
result will be 0.

The ? operator is the reverse of #; it returns the source line number, given a memory address.
If the address is out of range of the code connected with the source window, ? returns a value
of 0.

If you have only one source file loaded, the use of these operators is unambiguous. However,
if you have loaded two or more source files into Mon's windows, # and ? may return
unpredictable results; in this case it is best to use them when one source file is open in the
current window - they will then relate to this file.

These operators allow you to perform a variety of commands on a source level such as: Set
Breakpoint, Run Until and Lock Window. This can make the process of debugging a complex
program a far simpler and less tiresome task.

Indirection

The Mon expression evaluator also supports indirection using the { and } symbols. Indirection
may be performed on a byte, word or long basis, by following the } with a period then the
required size, which defaults to long. If the pointer is invalid, either because the memory is
unreadable or even (if word or longword indirection is used) then the expression will not be
valid.

For example, the expression

{data_start+10}.w

will return the word contents of location data_start+10, assuming data_start is even.
Indirection may be nested as you would nest ordinary parentheses.

The Debugger Hisoft Devpac 3 Page 113

Memory Registers

In addition there are 10 memories numbered MO through M9, which are treated in a similar
way to registers and can be assigned to using the Register Set command. These are available
for your own use although some have special functions as described below - you can view the
memory registers by zooming the register window.

The values of memories 1 through 5 inclusive are the current start address of the relevant
window (including source code displays) and assigning to them will change the start address
of the display within that window. Here's a full table of the memory registers:

Memory
Register

Contents

m0 the destination effective address of the current
instruction

ml the start address of window 1
m2 the start address of window 2
m3 the start address of window 3
m4 the start address of window 4
m5 the start address of window 5
m6 spare
m7 spare
m8 the start address of any binary file that has been

loaded
m9 the end address of any binary file that has been

loaded

m8 and m9 are useful if you have loaded a binary file and then want to save it out to disk
again - you do not have to remember the start and end addresses of the file, just use m8 and
m9 when saving.

If window 1 has a register display in it, m1 will be meaningless but will retain any previous
value.

Window Types

There are five possible windows within the Mon display and the exact contents of these
windows and how they are displayed is detailed below. The allowed types of each window
are:

Window Allowed Types
1 register, memory, disassembly, source
2 memory, disassembly, source
3 memory only
4 memory, disassembly, source
5 memory only

A window can have a number of different views attached to it; you can think of the window

The Debugger Hisoft Devpac 3 Page 114

as a stack, having depth.

So, in window 2, you can view a disassembly of code, a section of memory and a portion of
an ASCII file, although only one of these at a time is visible. To cycle through the different
views use the Next/Previous View commands and to create or delete a display use the Open
View and Close View commands.

Most windows can also be split, either vertically or horizontally so that more, or less, can be
displayed within the window - this action may hide or reveal other windows and it is best to
experiment with the split commands (described below) to understand how they work.

A window can be locked to an expression so that its start address is dependent on the value
of that expression - see the Lock to Expression command below.

You can also zoom a window; it will then occupy the whole of Mon's screen.

Each type of window will now be described.

Register Window

the register window

The data registers are shown in hex, together with the ASCII display of their four bytes. The
address registers are also shown in hex, together with a hex display of the memory that each
register is addressing. This is word-aligned or byte-aligned as necessary, with non-readable
memory displayed as * *. To the right of this hex display is its ASCII interpretation.

The status register is shown in hex and in flag form, additionally with U or S denoting user-
or supervisor-modes.

The PC value is shown together with a disassembly of the current instruction. Where this
involves one or more effective addresses these are shown in hex, together with a suitably-
sized display of the memory they point to.

For example, the display

 st.l $12A(a3) ;00001FAE 0F01

signifies that the value of $12A plus register A3 is $1FAE, and that the word memory pointed
to by this is $0F01. A more complex example is the display

 move.w $12A(a3),-(sp) ;00001FAE 0F01 >0002AC08 FFFF

The source addressing mode is as before but the destination address is $2AC08, presently
containing $FFFF. Note that this display is always of a suitable size (MOVEM data being
displayed as a quad-word) and when pre-decrement addressing is used this is included in the
address calculations.

The floating point registers (if present) are then displayed followed by the supervisor and

The Debugger Hisoft Devpac 3 Page 115

Mon's memory registers.

The number of lines displayed in the register window may be altered using Control- and
Control— ; in addition Alt-F (to change the font) will allow you to view the floating point
registers.

Disassembly Window

the disassembly window

Disassembly displays show memory as disassembled instructions to the standard described
below. On the left the hex address is shown, followed by any symbol, then the disassembly
itself. The current value of the PC is denoted with a , if it is visible. In screen modes with
less than 80 characters across a label will replace the address if relevant.

You can scroll through the disassembly window as described under Cursor Keys below.

If the instruction has a breakpoint placed on it this is shown using square brackets ([])
afterwards, the contents of which depend on the type of breakpoint.

For stop breakpoints this will be the number of times left for this instruction to execute, for
conditional breakpoints it will be a ? followed by the beginning of the conditional expression,
for count breakpoints it is an = sign followed by the current count and for permanent
breakpoints a * is displayed.

The exact format of the disassembled opcodes is to the Motorola standard, as Gen accepts. All
output is lower-case (except upper-case labels) and all numeric output is in upper-case
hexadecimal, except TRAP numbers. Leading zeroes are suppressed and the $ hex delimiter is
not shown on numbers less than 10. Where relevant numbers are shown signed.

The only deviation from Motorola standard is the register lists shown in MOVEM instructions -
in order to save display space the type of the second register in a range is abbreviated, for
example

 movem.l d0-d3/a0-a2,-(sp)

will be disassembled as

 movem.l d0-3/a0-2,-(sp)

Floating point constants are shown as the corresponding hexadecimal values; with the
FMOVECR instruction the value of the constant being obtained from the ROM is given as a
scientific format number or appropriate mathematical expression.

The Debugger Hisoft Devpac 3 Page 116

Memory Window

the memory window

Memory displays show memory in the form of a hex address, word-formatted hex display
and ASCII. Unreadable memory locations are denoted by * *. The number of bytes shown is
calculated from the window width, up to a maximum of 16 bytes per line. You can scroll
through the memory window as described under Cursor Keys below. Note that you may read
values from the hardware area using the Query Port instruction described later.

Source Window

the source window

The source window shows ASCII files in a similar way to a screen editor with the name of the
file displayed in the title bar. The default tab setting is 8 though this can be toggled to 4 with
the Edit Window command.

You can choose whether or not to display line numbers for the file and whether they are
shown in decimal or hexadecimal. When line number information is attached to your
program, you can use the medium level debugging features of Mon to step through the
source and set breakpoints within it, rather like you can with a source code debugger.

You can scroll through the source window as described under Cursor Keys below.

Cursor Keys

The cursor keys can be used on the current window, the action of which depends on the
display type.

On a memory display all four cursor keys change the current address, by byte or line, while
Shift and Shift move a page in either direction.

On a disassembly display and change the start address on an instruction basis, and
change the address on a word basis and Shift and Shift on a page basis.

On a source-code display and change the display on a line basis, and Shift and Shift
on a page basis.

The Debugger Hisoft Devpac 3 Page 117

Window Commands

Commands that are reached through the use of the Alt- key are normally available at any time.
Many of these commands are connected with and apply to the current window. The current
window is denoted by having an inverse title and it can be changed by pressing Tab or Alt-
plus the window number.

Most window commands work in any window, zoomed or not, though when it does not
make sense to do something the command is ignored.

The exceptions to the above are the Stack, Unstack and View Stack commands which, for ease
of use, are not reached through the Alt-key and do not work on a zoomed window.

Alt-A or M Set Address

Allows you to set the starting address of a memory, disassembly or source window (the latter
only if line number information is attached to your program). You can use any valid
expression to generate this start address e.g.

_main
$C227B8
StartProgram+8
PC

Alt-E Edit View

On a memory window this lets you edit memory in hexadecimal or ASCII. Hex editing can be
accomplished using keys 1-9, A-F, together with the cursor keys. Pressing Tab switches
between hex & ASCII, ASCII editing takes each keypress and writes it to memory. The cursor
keys can be used to move about memory. To leave edit mode press the Esc key.

On a register display using this command is the same as using Alt-R, Register Set, described
shortly.

Within a source window this command toggles the tab setting between 4 and 8.

You cannot edit a disassembly window.

Alt-F Font size

This changes the font size in a window. In most resolutions 16 and 8 pixel high fonts are used,
except when the screen is less than 400 pixels high (e.g. the ST colour resolutions) where 8
and 6 pixel high fonts are used. This allows a greater number of lines to be displayed,
although with some loss of readability.

Changing the font size on the register window causes more or less information to be
displayed.

Alt-G Goto Source Line

This command works on source windows and allows you to choose the line that will appear
at the top of the window. If you select a line that is beyond the end of the file, the last line will
be shown at the top of the window.

The Debugger Hisoft Devpac 3 Page 118

Alt-L Lock to Expression

This allows source (with line number information), disassembly and memory windows to be
locked to a particular expression. After any exception the start address of the display is re-
calculated, depending on the locked expression. Each stacked view within a window can
have its own lock.

Mon will ignore you if you try to lock a source window that refers to a program that does not
have line number information attached to it.

If you try to lock a source window to an expression that lies outside the address range of the
source file you will be ignored. This, in fact, is very useful; it means that if you have a stack of
source windows (see below for details of stacking windows) which make up the executable
that you are debugging and you lock each display to the PC, you will be able to trace the path
of the program through each source file.

If an instruction in the top view calls a subroutine in the stack, the top view will not change
but, if you then view the relevant stacked view, it will change to show you the called
subroutine.

To unlock, simply enter a blank string.

You can lock one window to another window by using the memory registers such as M2. You
can even lock a window to the indirection of its own memory register (e.g. {m2}) which
might be useful to step through a linked list (in conjunction with the Esc key to update the
window each time).

Alt-P Print Window

Dumps the current window contents onto the printer or to a file. This command can be
aborted by pressing Esc.

Alt-S Split Window

Splits a window vertically i.e. makes it taller or shorter depending on its current state; this
may hide or uncover another window. You would normally use this to set up the display as
you like it and then save the set-up with the Save Preferences command. It can be useful at
any time, though, if you would like to see more information in a window or you need another
window.

This command has no effect on window 1.

Alt-T Type

This command works on windows 1,2 and 4; it changes the type of the display between
register (for window 1), disassembly, memory and source (if a source file has been loaded
into the window).

Alt-W Widen Window

Splits a window horizontally i.e. makes it wider or narrower depending on its current state;
this may hide or uncover another window. You would normally use this to set up the display
as you like it and then save the set-up with the Save Preferences command. It can be useful
at any time, though, if you would like to see more information in a window or you need

The Debugger Hisoft Devpac 3 Page 119

another window.

This command has no effect on window 1.

Alt-Z Zoom Window

This zooms the current window to be full size. Other Alt- commands are still available and
normal size can be achieved by pressing Esc or Alt-Z again.

Zooming a register window shows some extra information (which depends on the processor
type) and the memory registers (mO - m9):

the zoomed register display (on a 68000 machine)

A zoomed window behaves differently from a normal window in that, as you
scroll through it, it does not update the associated memory register (ml to m5).

Also, if you change the value of the memory register while in a zoomed window , the start
address of the display will not change. Think of a zoomed window as only temporary.

Shift-. Open View

Creates a new view on the current window and numbers it accordingly. The type of the new
view will be the same as the previous one if this is possible.

The display will be numbered xa, xb, xc, xd etc. where x is the number of the window e.g. if
you stack a new display on window 2, it will be numbered 2b with the original display being
numbered 2a. Remember, though, that there is only one memory register per window, but
you can lock each display to a different expression. This gives a tremendous amount of
flexibility.

This command does not work on a zoomed window.

The associated memory register is bound to the top view only, although all locks on all views
are re-calculated where necessary.

Shift-, Close View

Removes the visible display from the current window's display list, unless there is only one
display attached to this window, in which case the command does nothing. If you close a
view on a source window, the source file will be removed from memory and a disassembly

The Debugger Hisoft Devpac 3 Page 120

window will replace the closed source view.

All other displays attached to this window will be re-numbered if necessary i.e. if you remove
display 2c from (2a, 2b, 2c, 2d), 2d will be re-numbered to be 2c.

This command does not work on a zoomed window.

. and , Next/Previous View

These two commands allow you to cycle through views that have been stacked onto a
window. Pressing . (full stop or period) cycles forward through the available displays whilst ,
(comma) cycles backwards. Both will roll round in a loop.

For example, say you have 3 displays stacked on window 4 (4a Source, 4b Memory and 4c
Disassembly) and you are currently displaying 4b Memory. Press . and 4c Disassembly will
appear, press . again and you will see 4a Source.

These commands do not work on a zoomed window.

Esc

Pressing Esc will update all the window displays, if necessary and re-calculate the addresses
to which any windows and views are locked.

This can be very useful in many cases; for example say you have window 3 locked to {m5}
(the address pointed to by window 5) and you then scroll through window 5. Normally this
will not update window 3. However, all you have to do is to press Esc when you want to
update window 3 (and all the other windows).

Other Alt- Commands

All Alt- commands (like the window commands described above) are available for use at any
time whilst you are using Mon. There are a few other such commands that are not related to
the current window:

Alt-B Set Breakpoint

Allows the setting of any type of breakpoint, described later under Breakpoints.

Alt-0 or 0 Show Other Bases

This prompts for an expression and displays its value in hexadecimal, decimal and as a
symbol if relevant.

example of Show Other

The Debugger Hisoft Devpac 3 Page 121

The Debugger Hisoft Devpac 3 Page 122

Alt-R Register Set

Allows any register to be set to a value, by specifying the register, an equals sign and its new
value. It can also be used to set the value of the memory registers. For example the line

a3=a2+4

sets register A3 to be A2 plus 4 whereas:

m3=m2

will set the value of the window 3 register to be the same as the window 2 register. All
windows will then be re-drawn, which may cause a display that you did not expect if, say,
the display in window 3 is locked to an expression.

This command may be used to set all the 68030 and 68881 control registers, so use it with
care! The standard floating point registers (FP0-FP7) must be followed by a floating point
constant either in decimal or hexadecimal using the same rules as for Gen. Hexadecimal
floating point numbers should be prefixed with either $ or : and must use the full 12 byte
extended format complete with unused second word of $0000.

This command may be used to set the 64-bit CRP and SRP registers; these must be assigned a
single 16 digit hexadecimal number without any lead-in character.

You can also use this to set the start address of windows when in zoom mode so that on exit
from zoom mode the relevant window starts at the required address.

Screen Switching

Mon uses its own screen display and drivers to prevent interference with a program's own
screen output. To prevent flicker caused by excessive screen switching when single-stepping
the screen display is only switched to the program's after 20 milliseconds, producing a flicker-
free display while in the debugger. In addition the debugger display can have a different
screen resolution to your program's if using a colour monitor.

V View other Screen

This will put the Mon screen to the back, showing your program's screen; pressing any key
will return the Mon screen.

Control-0 Other Screen Mode

This cycles the screen mode of Mon between the available screen modes (when using a colour
monitor). It has no effect when using a high resolution mono monitor.

After changing screen resolutions it re-initialises window font sizes and positions to the initial
display. This will not affect the screen mode of the program being debugged.

As Mon has its own idea of where the screen is, what mode it is in and what palettes to use
you can use Mon to actually look at the screen memory in use by your program, ideal for low-

ics programs. level graph

If your program changes screen position or resolution, via the XBIOS or the
hardware registers, it is important that you temporarily disable screen switching

using Preferences while executing such code otherwise Mon will not notice the new attributes
of your program's screen.

When a disk is accessed, when loading or saving, the screen display will probably switch to
the program's during the operation. This happens in case a disk error occurs, such as write-
protected or read errors, as it allows any GEM alert boxes to be seen and acted upon.

Breaking into Programs

Shift-Alt-Help Interrupt Program

While a program is running it can be interrupted by pressing this key combination, which
will cause a trace exception at the current value of the PC. With computationally-intensive
program sections this will be within the program itself but with a program making extensive
use of the ROM, such as the BDOS or AES, the interruption will normally be in the ROM
itself. If this is the case it is recommended that a breakpoint be placed in your actual program
area then a Return to Program command (Control-R) issued.

Pressing Alt-Help without the Shift key will normally produce a screen dump to the printer - if
you press this accidentally it should be pressed again to cancel the dump.

It is possible for this key combination to be ignored when pressed - if this occurs press it
again when it should work. Pressing it when in Mon itself will produce no effect.

A program should never be terminated (using Control-C) if it has just been
interrupted in the middle of a ROM routine. This is likely to cause a system crash.

Breakpoints

Breakpoints allow you to stop the execution of your program at specified points within it.
Mon allows up to eight simultaneous breakpoints, each of which may be one of five types.
When a breakpoint is hit Mon is entered and it then decides whether to halt execution of your
program (when it will enter the front panel display) or continue; this decision is based on the
type of the breakpoint and the state of your program's variables.

Simple Breakpoint [1]

These are one-off breakpoints which, when executed, are cleared and cause Mon to be
entered.

Stop Breakpoint [n]

These are breakpoints that cause program execution to stop after the break-pointed
instruction has been executed a specified number of times. In fact a simple breakpoint is
really a stop breakpoint with a count of one.

Count Breakpoint [=]

Merely counters; each time such a breakpoint is reached a counter associated with it is

The Debugger Hisoft Devpac 3 Page 123

incremented, and the program will resume. These breakpoints are more like monitors - they
never cause a program to stop and are useful for profiling.

Permanent Breakpoint [*]

These are similar to simple breakpoints except that they are never cleared - every time
execution reaches a permanent breakpoint Mon will be entered.

Conditional Breakpoint [?]

The most powerful type of breakpoint; these allow program execution to stop at a particular
address only if an arbitrarily complex set of conditions apply.

Each conditional breakpoint has associated with it an expression (conforming to the rules
already described). Every time the breakpoint is reached this expression is evaluated, and if it
is nonzero (i.e. true) then the program will be stopped, otherwise the program will continue.

Alt-B Set Breakpoint

This is a window command allowing the setting or clearing of breakpoints at any time. The
line entered should be one of the following forms, depending on the type of breakpoint
required:

<address>

will set a simple breakpoint.

<address>,<expression>

will set a stop breakpoint at the given address, which will execute <expression> times. The
expression is evaluated before the program is executed.

<address>,=

will set a count breakpoint. The initial value of the count will be zero.

<address>,*

will set a permanent breakpoint.

<address>,?<expression>

will set a conditional breakpoint, using the given expression.

<address>,-

will clear any breakpoint at the given address.

Breakpoints cannot be set on addresses which are odd, unreadable, or within ROM.

Every time a breakpoint is reached, regardless of whether the program is interrupted or
resumed, the program state is remembered in the History buffer, described below

The Debugger Hisoft Devpac 3 Page 124

The Debugger Hisoft Devpac 3 Page 125

Help Show Help and Breakpoints

This displays the text, data and BSS segment addresses and lengths, together with every
current breakpoint. Alt- commands are available within this display.

Control-B Simple Breakpoint

Included mainly for compatibility with Mon 1, this sets a simple breakpoint at the start
address of the current window, so long as it contains a disassembly display. If a breakpoint is
already there then it will be cleared.

U Run Until

This prompts for an address and a breakpoint specifier (1, n, =, *, or ?). The chosen type of
breakpoint is then placed at the given address and program execution resumed.

Control-K Kill Breakpoints

Clears all set breakpoints.

Control-A Breakpoint After

A command that places a simple breakpoint at the instruction after the instruction at the PC
and resumes execution from the PC. This is particularly useful for DBF-type loops if you don't
want to go through the loop, but just want to see the result after the loop is finished.

Control-D BDOS Breakpoint

This allows a breakpoint to be set on specific BDOS (GEMDOS) calls. The required BDOS
number should be entered, or a blank line if any existing BDOS breakpoint needs to be
cleared.

History

Mon has a history buffer in which the machine status is remembered for later investigation.

The most common way of entering data into the history buffer is when you single-step, but in
addition every breakpoint reached and every exception caused enters the machine state into
the buffer. The various forms of the Run command also cause entries to be made into this
buffer.

are shown

If a disassembly in the History display includes an instruction which has a

The history buffer has room for five entries - when it fills the oldest entry is
removed to make room for the newest entry.

H Show History Buffer

This opens a large window displaying the contents of the history buffer. All register values
including the PC as well as a disassembly of the next instruction to be executed.

breakpoint placed on it, the [] s will show the current values for that breakpoint,

The Debugger Hisoft Devpac 3 Page 126

not the values at the time of the entry into the history buffer.

Only the 68000 registers are retained in the history buffer due to lack of space in the history
buffer and in order to keep the 'trace' instructions fast.

Quitting Mon

Control-C Exit Mon

This will issue a terminate trap to the current GEMDOS task. It a program has been loaded
from within Mon it will be terminated and the message Program Terminated appear in the
lower window. Another program can then be loaded, if required.

If no program has been loaded into Mon it will itself terminate when this command is used.

If the Debug option has been used from the Devpac editor then Mon will terminate
lly when the program it is debugging has terminated. automatica

Terminating some GEM programs prematurely, before they have closed
workstations or restored window control properly can seriously confuse the AES
and VDI.

This may not be noticeable immediately but often causes crashes when a subsequent program
is executed.

Loading & Saving

Control-L Load Program

This will prompt for a filename and a command line and will attempt to load the file ready
for execution. If Mon has already loaded a program it is not possible to load another until the
former has terminated.

The file to be loaded must be an executable file - attempting to load a non-executable file will
normally result in the error "Invalid program load format" and further attempts to load
executable files will normally fail as GEMDOS does not de-allocate the memory it allocated
before trying to load the errant file. If this occurs terminate Mon then re-execute it and use the
Load Binary File command.

This command is not available in the auto-resident version of Mon or if Mon is
invoked using Debug from the editor.

B Load Binary File

This will prompt for a filename and an optional load address (separated by a comma) and
will then load the file where specified. If no load address is given then memory will be
allocated from the system. M8 will be set to the start address of the loaded file and M9 to the

s. end addres

This is a change from previous versions of Mon, where MO and M1 were set to the
start and end addresses of the loaded file.

S Save Binary File

This will prompt for a filename, a start address and an (inclusive) end address. To re-save a
file recently loaded with the Load Binary File command

<filename>,M8,M9

may be specified, assuming of course that M8 and M9 have not been reassigned.

A Load ASCII File

This powerful command allows an ASCII file, normally of source code, to be loaded and
viewed within Mon. This can be loaded into window 2 or window 4. If the loaded program
has line number information relevant to this source file, you will be able to use line number
operators on this display to step through the source code, set breakpoints within it etc.

A new view on this window will be opened if the window already contains an ASCII file,
otherwise the text will replace the current window. You can unload a source window using
the Close View command.

The source window will be locked automatically to the PC.

Memory for source code displays is taken from the system so sufficient free memory must be
available.

E Executable file to use

This command is used to just load the symbol table & line number information from an
executable file, without loading the executable itself. This command is ideal for debugging
desk accessories and for programs loaded by others as overlays. The filename specified may
be optionally followed the address of the text segment which is to be assumed.

Executing Programs

Control-R Return to program / Run

This runs the current program with the given register values at full speed and is the normal
way to resume execution after entry via a breakpoint or an exception.

Control-Z Single-Step

Single-steps the instruction at the PC with the current register values. Single-stepping a Trap,
Line-A or Line-F opcode will, by default, be treated as a single instruction.

Control-Y Single-Step

Identical to Control-Z above but included for the convenience of users of German keyboards.

Control-W Single-Step

Identical to Control-Z above but included for the convenience of French users.

The Debugger Hisoft Devpac 3 Page 127

The Debugger Hisoft Devpac 3 Page 128

Control-T Trace Instruction

This interprets the instruction at the PC using the displayed register values. It is similar to
Control-Z but obeys BSRs, JSRs, Traps, Line-A and Line-F calls as if one instruction, re-
entering the debugger on return from them to save stepping all the way through the routine
or trap. It works on instructions in ROM or RAM.

Control-S Skip Instruction

Control-S increments the PC register by the size of the current instruction thus causing it to be
skipped. Use this instead of Control-Z when you know that this instruction is going to do
something it shouldn't.

R Run (various)

This is a general Run command and prompts for the type of execution, selected by pressing a
key.

Run (G) Go

This is identical to Control-R, Run, and resumes the program at full speed.

Run (S) Slowly

This will run the program at reduced speed, remembering every step in the history buffer.

Run (I) Instruction

This is similar to Run Slowly but allows a count to be entered, so that a particular number of
instructions may be executed before Mon is entered.

Run (U) Until

You will be prompted for an expression which will be evaluated after every instruction. The
program will then run, albeit at reduced speed, until the given expression evaluates to non-
zero (true) when Mon will be entered. For example if single-stepping a DBF loop which used
d6 in the ROM code you could say Run Until d6&ffff=ffff (waiting for the low word of d6

to be $FFFF) or, alternatively, PC=E08B1A, or whatever.

This should not be confused with the Until command, which takes an address,
places a breakpoint there then resumes execution.

With all of these commands (except Run Go) you will then be asked Watch Y/N? If Y is
selected then the Mon display will be shown after every instruction and you can watch
registers and memory as they change, or interrupt execution by pressing both Shift keys
simultaneously. If N is selected then execution will occur while showing your program's

 execution may be interrupted by pressing Shift-Alt-Help. display and

Selecting Watch mode with screen switching turned off is likely to result in a great
deal of eye strain as the display will be flipped after each and every instruction,
particularly alarming in colour modes.

With any of these Run modes (except Go) all information after every instruction will be
remembered in the history buffer. In addition Traps will be treated as single-instructions,

unless changed with Preferences, though see the warnings under that command about
tracing all the way through ROM routines.

When a program is running with one of the above modes a couple of pixels near the top left
of the display will flicker, to denote that something is happening, as it is possible to think the
machine has hung when, in fact, it is simply taking a while to Run through the code an
instruction at a time.

Searching Memory

G Search Memory (Get a sequence)

You will see the prompt Search for B/W/L/T/I?, standing for Bytes, Words, Longs, Text
and Instructions.

If you select B, W or L you will then be prompted to enter the sequence of numbers you wish
to search for, each separated by commas. Mon is not normally fussy about word-alignment
when searching, so it can find longs on odd boundaries, for example. However, if you wish to
force a specific alignment, this can be done by terminating the list of items to search for with
,W for words, or , L for longs. For example:

1234,w

would only find $1234 on a word boundary it would not match if the $12 was on an odd
addressed byte.

If you select T you may search for any given text string, for which you will be prompted.

If you select I you can search for part or all of the mnemonic of an instruction, for example if
you searched for $14(A you would find an instruction like MOVE.L D2,$14(AO). The case
of the string you enter is unimportant unless you have chosen it to be so, but you should bear
in mind the format that the disassembler produces, e.g. always use hex numbers, refer to A7
rather than SP and so on.

If you select either text or instruction searching you also be asked whether you wish to ignore
the case of the string that you are searching for. If you type Y then HiSoft will match HISOFT,
hisoft etc.; if you press N then only HiSoft will be found.

Having selected the search type and parameters, the search begins, control passing to the Next
command, described below.

Searching Source-Code Windows

If the G command is used on a source-code window the T sub-command is automatically
chosen and if the text is found the window will redisplay the line containing it.

N Find Next

N can be used after the G command to find subsequent occurrences of the search data. With
the B, W, L and T options you will always find at least one occurrence, which will be in the
buffer within Mon that is used for storing the sequence. With the T option you may also find
a copy in the system keyboard buffer. With these options, the Esc key is tested every 64k
bytes and can be used to stop the search. With the I option, which is very much slower, the

The Debugger Hisoft Devpac 3 Page 129

Esc key is tested every 2 bytes.

The search will start just past the start address of the current window (except register
windows) and if an occurrence is found redisplay the window at the given address.

The search area of memory goes from 0 to the end of system RAM, then via the system ROM
and cartridge areas to any alternative (TT RAM) and then back to 0. Mon will not search the
cartridge area if you have set the appropriate option or the environment variable
NOCARTRIDGE exists. This will avoid accessing any hardware attached via the cartridge port.

Miscellaneous

Control-P Preferences

This permits control over various options within Mon. The first three require Y/N answers,
pressing Esc aborts or Return leaves them alone.

the Preferences display

Screen timer

Defaulting to On, this causes the display to switch to your program's only after 20
milliseconds. It should be switched off when a program is about to change a screen's address
or resolution, then turned back on afterwards.

Follow traps

By default single-stepping and the various forms of the Run command treat Traps, and Line-
A calls as single instructions. However by turning this option On the relevant routines will be
entered allowing ROM code to be investigated.

This option should be used with care. Certain time critical routines, such as the
floppy- or hard-disk drivers have portions of code designed to be atomic, i.e. not
interruptible, and being traced will cause malfunctions within such code and

possible loss of data.

On the other hand it can be fun to watch the AES as it draws pulldown menus or opens
windows.

If you have let ROM execute for a while you can interrupt it by pressing Shift-Alt-Help, then
resume at normal speed by pressing Control-R. However the AES and VDI both use Line-A
calls and it is very likely that there are pending stack frames left with the Trace bit set, so

The Debugger Hisoft Devpac 3 Page 130

having resumed a traced program it is likely that seemingly spurious trace exceptions will be
generated. Pressing Control-R will resume at normal speed, though a few more such
exceptions are likely until program flow reaches the lowest level, i.e. your program.

NOTRACE Program

There is a side effect of this that can cause machine to crash though: if you have traced
through any AES event-type calls then stack frames can be created in desk accessories with the
Trace bit set. If your program terminates before the accessory has a chance to respond to its
own event call, a trace exception will occur after Mon terminates and returns to the Desktop
or the Devpac editor, causing a system crash, unless an auto-resident Mon is installed or the
NOTRACE.PRG program is used.

This is a very small program intended to be added to the AUTO folder of your boot disk
which causes trace exceptions to be ignored, instead of producing a large number of bombs as
it will do by default. The source code is also supplied.

Auto load source file

When switched to Yes, upon loading a program, Mon will attempt to load the first source file
associated with the program. This will only occur if the executable file contains line number
debugging information. The new source file window will then be locked to the Program
Counter in order to track program flow. This is of most use when debugging a program
generated from a single source file.

Source line numbers

Affects whether line numbers are shown for all debugger source windows. You may select
No line numbers, Decimal numbers or Hex numbers. Hexadecimal is often the preferred
setting because by default, Mon treats all numbers as hex. Decimal line numbers, used with
the # operator for example, require a prefix of backslash.

Automatic '_' or '@' prefix

This is provided mainly for the convenience of C compiler users. With it enabled, Mon will
automatically add a leading underscore or @ character to the appropriate symbols. However,
symbols without the leading character will still take precedence.

Ignore case

Mon version 3 defaults to using case insensitive symbols, i.e. upper and lower case characters
are not distinguished between. Selecting No will mean that you must match the case of each
symbol character exactly as with previous versions of Mon.

Start at label

When an executable file is loaded normally Mon stops at the first location in the program. If a
different label is specified using this option (e.g. main for C, REF0001 for HiSoft BASIC),
then the program will instead be stopped at that point; this means you can start debugging at
the start of your code, rather than the going through the compiler's startup code.

Note that this feature may also be useful if you find you are always debugging starting at a
particular point in your code.

The Debugger Hisoft Devpac 3 Page 131

The Debugger Hisoft Devpac 3 Page 132

Symbol length

This prompts for the significant length of symbols, which is normally 22 but may be reduced
to as low as 8. Although reducing this can save some typing, using too low a value can make
some symbols impossible to select.

Relative offsets

This option defaults to Yes and affects the disassembly of address register indirect with offset
addressing modes, i.e. xxx(An). With the option on, the current value of the given address
register is added to the offset then searched for in the symbol table. If found it is disassembled
as symbol(An). This option is very useful for certain styles of assembly language
programming as well as high level languages which use a base register as a major offset, such
as Lattice C which uses A4 as a pointer to the merged data section.

Display ZAn in disassembly

Is normally switched off but advanced programmers may wish to enable the display of the
normally hidden Z registers used by some 680x0 instructions.

Ignore Cartridge Area

When this option is selected the Find command will not search the ROM cartridge area of the
memory map. You should select this is you have hardware other than a ROM in this slot.

Top of RAM/Top of ST RAM

This indicates to Mon which memory location should be considered the top of system RAM
by the Search Memory (G) command. Normally you will not need to change this as it
defaults to the system variable phys_top; but you may need to modify it if you are debugging
software that lowers phys_top.

Top of TT RAM

This indicates to 68030 versions of Mon which memory location should be considered the top
of TT RAM by the Search Memory (G) command. Normally you will not need to change this
as it defaults to the appropriate system variable but you may need to modify it in special
circumstances.

Save preferences

Reply Y to this command to save your current preferences to the file MON.INF in the current
directory. When Mon loads it will read your current preferences from this file. MON.INF must
be in the current directory when Mon is loaded.

I Intelligent Copy

This copies a block of memory to another area. The addresses should be entered in the form

 <start>,<inclusive_end>,<destiriation>

The copy is intelligent in that the block of memory may be copied to a location which
s previous location. overlaps it

No checks at all are made on the validity of the move; copying to non-existent
areas of memory is likely to crash Mon and corrupting system areas may well

crash the machine.

L List Labels

This opens up a large window and displays all loaded symbols. Any key displays the next
page, pressing Esc aborts. The symbols will be displayed in the order they were found on the
disk (or in memory if using the Debug option from the editor).

W Fill Memory With

This fills a section of memory with a particular byte. The range should be entered in the form

 <start>,<inclusive_end>,<fillbyte>

The warning described previously about no checks applies equally to this command.

P Disassemble to Printer/Disk

This command allows the disassembly of an area of memory to printer or disk, complete with
original labels and, optionally, an automatic list of labels created by Mon, based on cross-
references. The first line should be entered as

 <start_address>,<end_address>

The next line prompts for the area of memory used to build the cross-reference list, which
should be left blank if no automatic labels are required else should be of the form

 <buffer_start>,<buffer_end>

Next is the prompt for data areas which will be disassembled as DC instructions, of the form

 <data_start>,<data_end>[,<size>]

The optional size field should be B, W or L, defaulting to L, determining the size of the data.
When all data areas have been defined, a blank line should be entered.

Finally a filename prompt will appear; if this is blank all output will be to the printer, else it
will be assumed to be a disk file.

If automatic labels were specified there may be a delay at this point while the table is
generated. Automatic labels are of the form Lxxxxx where xxxxx is the actual hex address.

Printer Output

This is of the form of an 8 digit hex number, then up to 10 words of hex data, 12 characters of
any symbol, then the disassembly itself. Printer output may be aborted by pressing Esc.

Disk Output

This is in a form directly loadable by Gen, consisting of any symbol, a tab, then the
disassembly itself, with a tab separating any operand from the op-code. If you are
disassembling an area of memory without loaded symbols then the XREF option should be
used else no symbols will appear at all in the output file. Pressing Esc or a disk error will
abort the disassembly.

The Debugger Hisoft Devpac 3 Page 133

M Modify Address

Included for compatibility with Mon 1, equivalent to Alt-A.

0 Show Other Bases

Included for compatibility with Mon 1, equivalent to Alt-0.

D Change Drive & Directory

This allows the current drive and sub-directory to be changed.

Control-E Re-Install Exceptions

This command causes Mon to re-install the exception vectors; useful if you are debugging a
high-level language program whose runtime routines use the exceptions. This must be used
after the user's program has modified the exceptions.

Q Query (read) port

Normally Mon will not let you read the hardware ports directly (to prevent 'upsetting' the
system by reading from a number of areas at once, however you can achieve this by using
this command. You will be prompted to enter the address you wish to read. The byte value
read from this address will then be displayed. To access the memory a word or long word at a

time you should follow the address by a ,w or ,l respectively.

Note you should use this instruction with great care as careless use can result in a
bus error or even a crashed system.

T Transfer to (write) port

Normally Mon will not let you write to the hardware ports directly, however you can
achieve this by using this command. You will be prompted for the data to transfer, of the
form

 <address>,<data>[,<size>]

Normally the single byte value data will be written to port address although this may be
over-written by using the optional size field which must be either W or L.

Note you should use this instruction with great care as careless use can result in a bus error or
even a crashed system.

C Compare Memory

This command compares two areas of memory; you will be prompted for start and end
addresses of the first block, together with the start address of the second block. If the two
blocks differ, windows 2 and 3 will be placed at the first difference in the first block, whilst
windows 4 and 5 will be placed at the equivalent place in the second block. The N command
(Find Next) may then be used to step forward through differences, based on windows 3 and 5.

The Debugger Hisoft Devpac 3 Page 134

Auto-Resident Mon

The additional version of Mon called AMON.PRG will now be described. When placed in the
AUTO folder on your boot disk, it will be loaded and initialised automatically on boot-up.

Once booted, this version of Mon lies dormant, ready to be invoked when any exception
occurs in the machine, such as an address error. It is intended primarily for programmers
writing and debugging desk accessories or other AUTO-type applications, as if there is a
problem in the code which gets called as the machine boots, it hangs before you get a chance
to use the normal Mon. If required you can deliberately put an illegal opcode, such as
ILLEGAL, at the start of your auto program so that Mon will be invoked and then use it to
investigate any problems your code has.

The auto-resident version may be double-clicked from the Desktop and will initialise itself in
the same way as from the AUTO folder, unless a version of Mon is already resident.

Once invoked the auto-resident version is very similar in use to the other versions except that
programs or labels cannot be loaded and the base page variables are unknown and so set to 0.
The other difference is that when the program being debugged exits or Control-C is pressed
within Mon, Mon itself stays active in memory.

In addition any program may be interrupted by pressing the Shift-Alt-Help key combination
when a resident version of Mon is installed.

The resident version of Mon cannot be reclaimed from memory except by resetting the
machine and booting with a disk which does not contain Mon in the AUTO folder.

When an auto-resident version of Mon is loaded, the usual versions can still be used as
normal, memory permitting, and the resident version will be ignored until the non-resident
version exits, when it will become active once again.

Do not invoke an auto-resident Mon from within a program other than the
Desktop, such as using Run Other from within Gen, as large areas of system
memory will become locked away and unusable until a machine reset.

If both Shift keys are held down during the installation of the auto-resident Mon, the
debugger is itself entered, allowing the editing of memory or setting of BDOS breakpoints.
When entered via this method the debugger should be left using Control-C when the
debugger will remain resident or if you do not wish to have the auto-resident Mon exit with
Control-R and this will abort its installation.

Command Summary

Window Commands
Alt-A Set Address
Alt-B Set Breakpoint
Alt-E Edit View
Alt-F Font Size
Alt-G Goto Source Line
Alt-L Lock to Expression
Alt-P Print Window
Alt-R Register Set
Alt-S Split Window

The Debugger Hisoft Devpac 3 Page 135

Alt-T Change Type
Alt-W Widen Window
Alt-Z Zoom Window
Control Reduce Register Window Height
Control Increase Register Window Height
Shift-. Open View
Shift-, Close View
. and , Next/Previous View
Esc Update all Windows

Screen Switching
V View Other Screen
Control-0 Other Screen Mode

Breakpoints
Control-A Breakpoint After
Control-B Simple Breakpoint
Control-D BDOS Breakpoint
Control-K Kill Breakpoints
Control-X Stop Executing
Alt-B Set Breakpoint
U Run Until
Help Show Help and Breakpoints

Loading and Saving
Control-L Load Program
A Load ASCII File
B Load Binary File
E Use New Executable
S Save Binary File

Executing Programs
Control-R Return to program / Run
Control-S Skip Instruction
Control-T Trace Instruction
Control-Y Single-Step
Control-Z Single-Step
R Run (various)

Searching Memory
G Search Memory (Get a sequence)
N Find Next

Miscellaneous
Alt-0 or 0 Show Other Bases
Control-C Terminate Process
Control-E Re-install breakpoints
Control-P Preferences
C Compare Memory
D Change Drive & Directory
H Show History Buffer
H Show History Buffer
I Intelligent Copy
L List Labels
M Modify Address

The Debugger Hisoft Devpac 3 Page 136

P Disassemble to Printer/Disk
Q Query (read) port
T Transfer to (write) port
W Fill Memory With
Shift-Alt-Help Interrupt Program

Debugging Stratagem

Hints & Tips

If you have interrupted a program using Shift-Alt-Help or by a Run Until command and have
found yourself in the middle of the ROM, there is a way of returning to the exact point in
your program which called the ROM. Firstly ensure the Follow Traps option is on, then do Run
Until with an expression of sp=a7. This will re-enter Mon the moment user mode is restored
which will be in your program.

If you are in a subroutine which doesn't interest you and want to let it run but return to Mon
the easiest way is to use Until (not Run Until) then specify the expression {sp} - this sets a
breakpoint at the return address.

If the subroutine has placed something on the stack then try Run Until {pc}.W=4e75 which
will run slowly until the instruction RTS is reached. This won't work if the subroutine in
question calls another, so it may require a further condition, such as ({pc}.W=4e75) &
(sp>xxx) where xxx is one less than the current value.

If the subroutine uses a local stack frame (normally the case for compiled programs) then try
Run Until {4+a6} (assuming that the language uses a 6 as its frame pointer) - this attempts to
set a breakpoint at the return address.

When using Run Until and you know it will take a quite a while for the condition to be
satisfied, give Mon a hand by pre-computing as much of the expression as you can.

For example

(a3>(3A400-\100+M1))

could be reduced to

a3>xxx

where xxx has been calculated by you using the Alt-0 command.

Bug Hunting

There are probably as many strategies for finding bugs as there are programmers; there is
really no substitute for learning the hard way, by experience. However, here are some hints
which we have learnt, the hard way!

Firstly, a very good way of finding bugs is to look at the source code and think. The
disadvantage of reaching first for the debugger, then second for the source code, is that it gets
you into bad habits. You may switch to a machine or programming environment that does
not offer low-level debugging, or at least not one as powerful you are used to.

The Debugger Hisoft Devpac 3 Page 137

If a program fails in a very detectable way, such as causing an exception, debugging is
normally easier than if, say, a program sometimes doesn't quite work exactly as it should.

Many bugs are caused by a particular memory location being stepped on. Where the
offending memory location is detectable, by producing a bus error, for example, a conditional
breakpoint placed at one or more main subroutines can help greatly. For example, suppose
the global variable main_ptr is somehow becoming odd during execution, the conditional
expression could be set up as

{main_ptr}&1

If this method fails, and the global variable is being corrupted somewhere undetectable, the
remaining solution is to Run Until that expression, which could take a considerable time. Even
then it may not find it, for example if the bug is caused by an interrupt happening at a certain
time when the stack is in a particular place.

Count breakpoints are a good way of tracking down bugs before they occur. For example,
suppose a particular subroutine is known to eventually fail but you cannot see why, then you
should set a count breakpoint on it, then let the program run. At the point where the program
stops, because of an exception say, look at the value of the count breakpoint (using Help).
Terminate the program, re-load it, then set a stop breakpoint on the subroutine for that
particular value or one before it. Let it run, then you can follow through the subroutine on the
very call that is fails on, to try and work out why.

Good luck!

AUTO-folder programs

If these crash during initialisation then use AMON (which must be before your program in the
directory) to catch the exception. Including a deliberate ILLEGAL instruction at its beginning
will let you single-step the initialisation.

Desk Accessories

If an accessory is misbehaving during normal execution then use AMON. To find a desk
accessory in memory, enter the debugger by pressing Shift-Alt-Help then start looking from
location 0 for the upper-cased name of your .ACC file, padded to eight characters with spaces.
Ignore occurrences within directory buffers (these will be followed by .ACC) and in Mon's
own buffer (these will be preceded by an ASCII T character). The correct occurrence will have
a longword 12 bytes after the start of the name. This will point to the basepage of your
accessory and $100 bytes after that will be the start of your program. From looking at this you
should be able to find your main loop and set a suitable breakpoint. Normal execution should
be resumed with Control-R then Mon will be re-entered when your breakpoint is reached.
Then load the symbol table for the accessory using the E command.

If an accessory is misbehaving during its initialisation then you have to stop it at the very
beginning before it has a chance to do anything. The recommended way is to re-assemble the
accessory with an ILLEGAL instruction at the beginning and let AMON catch it, but this is
sometimes not possible. There follows a method that works on current ROMs to stop the AES
just before it executes your program, but please note the method is complicated and not
recommended for beginners

Firstly hold down both shift keys to enter AMON during the boot sequence then set a BDOS

The Debugger Hisoft Devpac 3 Page 138

Breakpoint on the Open call, $3D, then press Control-C to let the boot sequence resume.

Mon will be re-entered every time something tries to open a file, so make window 3 the
current window and after every BDOS breakpoint is hit set its address to {sp+2} - if the
name is not your accessory then Control-Z, to execute the Open call, set another BDOS
breakpoint on $3D then Control-R, and try again. If the name is your accessory then set a
BDOS breakpoint on $4B, then Control-R. Mon will then be entered just before it loads the
accessory, so Control-Z to do the GEMDOS call, then Alt-B and enter d0+100 which sets a
breakpoint on the very first instruction. Now Control-R and the next time Mon appears it will
be on the first instruction of the accessory. This method takes a while but it's often the only
way of finding bugs in accessories.

Exception Analysis

When an unexpected exception occurs, it's very useful to be able to work out where and why
it occurred and, possibly, to resume execution. Some of the most common exception types are
listed below with their possible causes.

Bus Error

If the PC is in some non-existent area of memory then look at the relevant stack to try and find
a return address to give a clue as to the cause, probably an unbalanced stack (i.e. some data
was placed on the stack and never retrieved, causing the program to RTS to an incorrect
location).

If the PC is in a correct area of your program then the bus error must have been caused by a
memory access to non-existent or protected memory. Recovering from bus errors and
resuming execution is generally difficult.

Address Error

If the PC is somewhere strange then the method above should be used, otherwise the error
must have been caused by a program access to an odd address. Correcting a register value
may be enough to resume execution, at least temporarily.

Note well that 68020 processors and upwards do not consider this an error and can quite
happily read words from odd addresses, albeit at reduced efficiency. This is often the cause of
programs working on a 680x0 which crash on machines with a 68000. However, such
processors will cause an address error if the PC becomes odd.

Illegal Instruction

If the PC is in very low memory, below around $30, it is probable that it was caused by a
jump to location 0. If you use Mon to look here you will normally various ORI instructions
(really longword pointers) and eventually an illegal instruction.

Privilege Violation

This is caused by executing a privileged instruction in user mode, normally meaning your
program has gone horribly wrong. Bumping the PC past the offending instruction is unlikely
to be much help in resuming the program.

The Debugger Hisoft Devpac 3 Page 139

Divide by Zero

Signifies that your program has attempted to divide another value by zero. This is normally
due to an error in some previous calculation.

Floating Point Exceptions

Such exceptions are caused by a 68881 or 68882 maths co-processor after some error in
calculation or protocol is detected. They differ from most exceptions in that they will often be
caused some time after the error was actually detected, typically at the time of the next
floating point instruction. This is due to the fact that an FPU instruction merely initiates the
sequence of actions, the processor itself will continue to execute the instruction concurrently
with further CPU instructions.

The Debugger Hisoft Devpac 3 Page 140

Chapter 5 – Clink The Linker
CLink was originally developed for Lattice C but may be used for assembly-only or mixed
language projects. It may be run in the integrated mode as described in the editor section,
from a command line interpreter or from the Desktop.

The linker command line specifies which files are to be linked together and in what order.
Note that the order of linking is significant as this allows a symbol defined in a module linked
earlier to override one in a later module; this is often useful when replacing standard library
routines with your own custom versions.

A simple CLink command line

To link together two simple object files the command line used could be:

CLINK a.o b.o

this will produce an executable program (assuming no errors occur) named b.prg; note that
the name of the executable is taken from the second named file in the link sequence (this is
because of the C heritage of CLink) if available. If only one file is linked then the name will be
the name of that module with .PRG added.

Concepts

CLink provides several unusual features whilst linking, this allows more flexibility when
initially writing your program leaving many of the decisions up to the linker.

ALVs

When CLink is collecting all of the CODE type sections together, if any are more than 32K
apart and a 16-bit PC relative access is attempted, rather than simply fail with and out-of-
range error message, CLink redirects the access to a JMP to the same location. This jump is
known as an automatic link vector or ALV. Note that this may cause problems if you attempt to
access data using PC-relative mode, although this is not recommended anyway since on the
68030 there are separate code and data caches which can cause consistency problems.

Near DATA/BSS

CLink supports a 64K near data section which can be accessed via a global base register
(traditionally A4). This section is formed from all sections which are named __MERGED (as
described in the assembler section) and then several variables are created by the linker to
allow the initial base of this to be set up. This is discussed later under the Reserved symbols
section.

The LInker Hisoft Devpac 3 Page 141

Directives

The CLink directives allow the input files and the format of the output file to be specified.

Input directives

The input directives allow the names of the object files to be linked to be passed to the linker.
The linker works by collecting all sections which have identical types into a single output
section; note that apart from the special name __MERGED section names are ignored when
generating executable files.

When a file is required by CLink it initially looks in the current directory for the file, if it is
found there then that file is used, otherwise a search is made for it in the paths mentioned in
the LIB environment variable. The LIB variable consists of a list of semicolon (;) or comma (,)
separated items which indicate paths where the file should be searched for, e.g.

LIB=c:\lc\lib;c:\mylibs

FROM files Specifies the object files that are the input files for the linker. If the first item
on the command line is a filename then the FROM keyword is optional and may be omitted.
FROM may be used more than once with the files for each FROM adding to the list of files to be
linked.

 To specify more than one file in a single FROM statement they may either be listed
after it separated by spaces or +, e.g.

 FROM a.o+b.o

LIB files Specifies the files to be scanned as libraries. Only modules within the library
which contain symbols which are referenced will be included in the final object module. Note
that LIBRARY is a synonym for LIB. The same syntax used for specifying multiple FROM
files may be used for multiple libraries.

Output directives

The output directives control the format and type of the final file created by the linker when a
link has been completed successfully. The output file generated by the linker is normally
directly executable by GEMDOS (unless the PRELINK option has been used) and is, by
default, named the same as the second object module supplied by a FROM option with its .o
suffix replaced by .prg; if only one file is linked then the output name will be based on that
file. The format of the file is identical to the normal GEMDOS executable file, but with the
DATA and BSS sections split so that they contain both the Near (__MERGED) data and Near
(__MERGED) BSS sections.

This leads to a load map of the following form:

The LInker Hisoft Devpac 3 Page 142

Note that the symbols marked are all discussed under the Reserved symbols section below.

ADDSYM Replace symbol table with table built from exported symbols.

BSS base These keywords are used when generating an CODE base absolute
format executable (either the Atari DATA base absolute format or S-records).

 The base parameter gives the absolute base address of the BSS, code and data sections
respectively.

 Note that GEMDOS will not execute absolute format programs.

NODEBUG Suppresses any symbol table information or symbolic debug information in
the final object file. This is equivalent to the object file that would be produced if strip were
run on the final object file. Note that ND is a synonym for NODEBUG.

NOFASTLOAD This disables the setting of the 'fast load' bit in the program header of an
executable program. This means that the whole of the TPA will be zeroed rather than just the
BSS section. Note that this option is only effective when generating an executable file.

PREFIX file This specifies a file which is to be prepended to the output file; this is
particularly useful for building control panel extensions. Note that this option is only effective
when generating an executable file.

PRELINK Causes CLink to output an object module with references and definitions still
intact so that it can be linked later on to produce a final executable file. This is designed for
development of large projects where the programmer is only changing a single source

The LInker Hisoft Devpac 3 Page 143

module. Note that a prelinked object file cannot have ALVs inserted into it and so CLink may
be unable to satisfy all 16 bit PC-relative references when linking with the prelinked file.

SRECORD Cause CLink to output an absolute load module in Motorola S-record format;
S-records are a standard way of transferring binary images between machines, using 7-bit
ASCII codes only. It is particularly useful for uploading data to EPROM programmers.

 When generating S-records you must specify a base for each and every section which
is used (CODE/DATA/BSS); in addition S-record absolute programs may not have any
__MERGED data.

TO file Specifies the name of the output file which is to be created, overriding the
default name generation discussed above. If the file name specified begins with a period (.)
then the normal default name generation is performed using the extension specified after the
period rather than .PRG.

TPASIZE n Sets the size of TPA required for loading into alternative RAM. This value
sets the minimum amount of alternative RAM, in Kbytes, which must be free for a program
which has the TTLOAD bit set. The minimum value is 128, the maximum 2048 (2Mb). Note
that this option automatically enables the TTLOAD option. Note that this option is only
effective when generating an executable file.

TTLOAD This sets the load into alternate RAM bit in the program header of an
executable program. Note that this option is only effective when generating an executable file.

TTMALLOC This sets the m_alloc-from alternate RAM bit in the program header of an
executable program. Note that this option is only effective when generating an executable file.

Pre-linking

Pre-linking is similar to a normal link, however instead of producing the five load sections
from identically typed sections, it coalesces only identically typed and named sections into
output sections. If a section is unnamed then it is merged with the first named section of the
same type.

Note that the special name __MERGED is considered a type-modifier and hence only sections
named __MERGED will be coalesced with __MERGED sections.

When pre-linking ALVs are applied according to the normal rules, i.e. ALVs will be
generated for out of range branches within a section, and all cross-output-section references.

During pre-linking variables will often have undefined values (since the modules in which
these are defined are to be linked later) and so all of these variables are reported. Note that
this means that an error has technically occurred and the return code from CLink will be non-
zero. This is likely to be important to users of make type utilities.

Map files

A map file is a file describing the order and location of files and variables processed by the
linker written to a normal file for perusal by the user. These files provide a large number of
options for the programmer to customise the output format; they are enabled using the MAP
directive which has the format:

MAP [[filename],option,option,...]

The LInker Hisoft Devpac 3 Page 144

The filename gives the name of the file to which the map file is to be written, this may be of
the form .MAP to indicate that the filename should be based on the output file name. The
options specify which parts of the map file are to be written and all consist of single letters:

Option Meaning
F Produce a mapping of input files in the output file
H Show where the input hunks (sections) were placed
L Map the library placements
S Show all external symbols
X Show a cross reference of external symbols

When generating cross-reference information it is often useful to be able to separate this from
the map file information. This can be done using the XREF directive which allows a separate
cross-reference file to be specified. It has the form:

XREF filename

To control the layout of the map file several directives are available which are used in the
same way as the more normal output directives or options:

FWIDTH n Width of file names (default 16).

HEIGHT n Lines on a page in map file, 0 indicates no pagination (default 55).

HWIDTH n Width of hunk names (default 8).

INDENT n Columns to indent on a line. This is included in width (default 0).

PWIDTH n Width of program unit names (default 8).

SWIDTH n Width of symbol names (default 8).

WIDTH n Sets the maximum line length for the map and cross reference listings. This is
useful when sending the output to a device whichohas different line length requirements. If
not specified one width defaults to 80.

Options

Clink provides a large number of keywords to give the programmer a wide number of
options. Although some of these may seem superfluous, the intention is to provide the
programmer with as many options as possible, even if some of these options appear rather
obscure.

BATCH This causes CLink to supply the default value of 0 for all undefined symbols.
Normally, CLink will pause after each undefined symbol to give you an opportunity to
correct the error. If you specify the BATCH option, it will not pause.

BUFSIZE sz If sz > 0 set input and output buffer sz to sz bytes, if sz < 0 set output buffer
sz to -sz bytes. By default the linker buffers the whole of input source files for as long as
possible, this often means that no re-reading is necessary for the second pass, although it may

The LInker Hisoft Devpac 3 Page 145

run out of memory as a result. If this happens, try setting an buffer size of 1024 to try and
release more memory. If you have plenty of memory you may like to increase the output
buffer from the default of 4K, by specifying an output buffer size of say -32K.

DEFINE symbol=val
DEFINE symbol=symbol

 This defines a symbol to be used in the linking process. This is particularly useful in
conjunction with the PRELINK option to force certain routines to be pulled from the library
even though no references to them exist. Note that you can assign either a value or another
symbol.

DRISYM Force symbols placed in the executable to be of standard format. Note that
this option is only effective when generating an executable file.

IGNORE Force CLink to continue after serious errors. Note that the use of this option
may result in a nonexecutable file if an error has occurred.

NOALVS Forces CLink to warn you when it creates ALVs to resolve 16 bit PC relative
code. This can be used to watch for CLink creating a non-relocatable object from what was
intended to be relocatable code. Note that the related option XNOALVS completely suppresses
ALV generation but introduces the possibility of incorrect output files.

NOCASE Ignore casing of symbols whilst resolving externals

QUIET Causes CLink to print out no messages unless an error occurs.

WITH file Specifies a file containing CLink command options to be processed for this
link. More than one WITH file may be specified and WITH files may contain WITH statements.
The contents of all WITH files will be treated as if they were specified on the CLink command
line.

VER file Specifies a file to contain all the messages output by the linker. If this is not
specified all messages are written to the standard output stream. Note that VERIFY is a
synonym for VER.

VERBOSE Causes CLink to print out the names of each file as it processes it and a
summary of memory usage and elapsed time on completion.

XNOALVS Prevents CLink from creating ALVs to resolve 16 bit PC-relative code. Note
that the use of this option may force CLink to fail in pass 2 with a fatal error.

'WITH' files

A WITH file provides a method for encapsulating long and complex (or short and simple)
CLink command lines in a control file, known as a WITH file, traditionally with the extension
.LNK. The format of a WITH file is identical to the normal command line driven structure,
except than line breaks may be used in place of spaces. For example the first simple command
line example could have the WITH file:

FROM a.o b.o

Consider a slightly more complex example of program which is to consist of two modules
(object files) and a library:

The LInker Hisoft Devpac 3 Page 146

FROM a.o+b.o ; the object files
LIB mylib.lib ; and a simple library
TO progl.prg ; output file name
XADDSYM ; add HiSoft extended symbols
VERBOSE ; output verbose messages
MAP .map,F,H,X ; produce map file

Note the use of the ; to delimit comments in a WITH file. This file can then be passed for
execution to the linker using the command line (assuming the WITH file is saved as
mywith.lnk)

CLINK WITH mywith.lnk

A more complex example would be to consider a mixed language example with both C and
assembler modules. Assuming that the main project was written in C, the normal C runtimes
would have to be included, additionally it may be necessary to force some external data items
defined in the assembly language to use the _ prefix required by C, this can be done using the
DEFINE directive:

FROM c.o ; C startup code
a.o+b.o ; assembler object files
d.o+e.o ; C object files
LIB lcg.lib+lc.lib ; GEM & C runtime libraries
TO prog2.prg ; output file
DEFINE _menu=menu ; alias menu defined in assembly
 ; to menu referenced in C
MAP .map,f,h,l,s ; map file
XREF .xrf ; separate cross-reference file
HEIGHT 66 ; longer page length
FWIDTH 10 ; narrower filename width

Note that the contents of WITH files are always processed after any files explicitly named on
the command line, hence if the last WITH file were named mywith2.lnk, then the command
line:

CLINK WITH mywith2.1nk LIB mylib.lib

would search the mylib.lib file before searching the leg.lib or Ic.lib files.

CLINKWITH; the Clink environment variable

The environment variable CLINKWITH, if available, is taken by CLink to be the name of a
WITH file whose contents is to be searched before any of the other files mentioned on the
command line. This allows a template WITH file to be generated with the standard startup
and library files mentioned in the CLINKWITH file, whilst the additional files are specified on
the command line. The format of the CLINKWITH variable should be:

CLINKWITH=c:\devpac\default.lnk

Note that if you are running on a TT you usually want the load bits set to run in alternate
RAM etc., but CLink defaults to TTLOAD etc. off, for compatibility. If a CLINKWITH file is
specified and includes the lines:

TTLOAD
TTMALLOC

The LInker Hisoft Devpac 3 Page 147

programs will automatically be linked to go into alternate RAM.

Reserved symbols

To provide access to the base of the sections created by the linker various symbols are
invented by the linker. These are as follows:

_RESBASE, _RESLEN Reserved symbols

These are reserved symbols used in the Lattice C resident startup code. If you use them in
your own code your programs are almost certain not to work correctly.

_LinkerDB Pointer to static merged data section

The address of this external variable points to the base of the merged data section. This allows
a global data register (e.g. A4) to be set up. This is normally done by a piece of code of the
form:

 XREF LinkerDB

 lea LinkerDB,a4

BSSBAS, DATABAS Base of merged data sections

These names refer to the base locations in the __MERGED data section. The location of
_BSSBAS is the first byte of the merged BSS, whilst _DATABAS is the first byte of the merged
data. These variables may be accessed using the code sequence:

XREF BSSBAS, DATABAS

lea BSSBAS,aO
lea DATABAS,a1

_BSSLEN, _DATALEN Merged section lengths

The addresses of these names give the length of the respective __MERGED data section in
longwords. Note that these variables must be accessed as longs otherwise the assembler may
attempt to relocate them, giving random values as a result.

 XREF _BSSLEN, _DATALEN

 move.l #_BSSLEN,dO
 move.l #_DATALEN,d1

_end, _edata, _etext Last locations in program

These names refer to the last locations in the program. The address of _etext is the first
location above the executable program text, that of _edata the first location above the
initialised data area and _end the location immediately after the uninitialised data area.

The LInker Hisoft Devpac 3 Page 148

CLink Messages

Whilst running CLink may discover things which it needs to bring to your attention. These
may either be error messages or observations on the program which is being built.

CLink Warnings/messages

The messages in this section although warnings, will often indicate that the final program will
be unusable in the form intended and you should not run it unless you are certain that you
understand what you are doing.

Warning MERGED data > 64K

The merged data section has exceeded the limit of 64K. The problem
may be rectified by moving some of your __MERGED out of this section.

Warning! Absolute reference to name module: mod file: file

An absolute reference was detected to a merged data item, whilst building a resident load
module. This warning will only be given if a reference has been made to the symbol
__RESBASE, i.e. the linker is building a resident load module.

Warning: ALVs were generated

This message is generated when the NOALVS option is used, indicating that ALVs were
generated-. Note that this message will not be issued if the XNOALVS option is used.

Enter a DEFINE value for name (default __stub):
Undefined symbols... First Referenced

These messages indicate that the linker has encountered a reference to a symbol for which it
cannot locate a definition. The second message is issued if the BATCH keyword is specified,
whereas the first allows you to specify an alternate name for the reference.

Clink Errors

These are the errors which may be issued by the linker. In general errors may be ignored by
use of the IGNORE keyword to CLink, however programs so produced may not function
correctly. The error numbers are broadly divided so that 200-400 may be issued by either
pass. 401-500 are issued by pass 1, whilst 501-599 are issued during pass 2.

Note that if a module has been compiled with line debugging turned on then the line number
on (or near) to where the problem occurred will also be reported.

200 Out of memory!

The linker does not have enough memory left to successfully complete the link.

The LInker Hisoft Devpac 3 Page 149

300 System error val on read

A system error occurred whilst attempting to read from the disk. This should only occur if the
disk has been damaged in some way. The value of the error is given by <val>.

301 System error val on write

A system error occurred whilst attempting to write to the disk. This will normally indicate
that the disk is full. The value of the error is given by <val>.

400 *** Break: CLink terminating

This message is printed when the operation of the linker is interrupted by the user pressing
Control-C. Note that the keyboard is only checked whilst screen input or output is occurring.

425 Cannot find library file

The file named in a LIB statement could not be located by the linker. This is probably due to
a full pathname not being given for the file.

426 Cannot find object file

The file named in a FROM statement could not be located by the linker. This is probably due to
a full pathname not being given for the file.

443 'file' is an invalid file name

The filename specified in a FROM or LIB statement is invalid. Typically this will be because
the name is null.

444 hunk_symbol has bad val symbol file

A hunk_symbol hunk type was encountered by the linker which did not have the external
type set to zero, but instead to val. If this error occurs it indicates that the named input file
was damaged in some manner.

445 Invalid hunk_symbol name

A hunk_symbol hunk type was encountered by the linker during parsing of the external
definitions. The named symbol was attached to this hunk.

446 Invalid symbol type val for file

Whilst parsing external declarations an unknown symbol type <val> was encountered in the
named file.

448 file is not a valid object file

The named file did not match the specifications for an object module.

449 No hunk end seen for file

On reaching the end of a hunk within the named file an end marker did not appear.

The LInker Hisoft Devpac 3 Page 150

450 Object file file is an extended library

An attempt has been made to use a library as the operand of a FROM statement. Libraries
may only be searched, not included.

501 Invalid Reloc 8 or 16 reference

An attempt has been made to generate a branch between two differently named sections.
Branches may only occur within a common section. This error will normally indicate an
attempt to execute the data section!

502 name symbol - Distance for Reloc 16 > 32768

The target of a 16 bit branch is more than 32K away from the reference. In general you should
not see this message due to ALV generation.

503 name symbol - Distance for Reloc8 > 128

The target of an 8 bit branch is more than 128 bytes away from the reference.

504 name symbol - Distance for Data Reloc 16 > 32768

A 16 bit base-relative data section access is attempting to reach more than 32K. This error will
normally indicate you are very close to the 64K limit on near data, and a module has had its
data section fall off the end of the merged data section (biased by 32K). The solution is to
reorder your modules putting the ones with large data sections alternatively you may have to
move some of your near data to far.

505 name symbol - Distance for Data Reloc8 > 128

An 8 bit base-relative data section access is attempting to reach more than 128 bytes. This
error will normally indicate incorrect code generation from the compiler.

506 Can't locate resolved symbol name

During the second pass the linker could not locate the named symbol in its table. This will
either indicate an internal linker failure or a damaged library file.

507 Unknown Symbol type val, for symbol name

During the second pass the linker could not match the type of the named symbol in its table.
This will indicate an internal linker failure.

508 Symbol type val unimplemented

Whilst parsing external declarations an unknown symbol type <val> was encountered in the
named file. Note that the equivalent error (446) is reported during pass 1.

509 Unknown hunk type val in Pass2

The named file did not match the specifications for an object module. Note that this message
is identical to the pass 1 error 448.

The LInker Hisoft Devpac 3 Page 151

510 name symbol - Reference to unmerged data item

A module has attempted to access an unmerged (far) data item using a near access.

515 An ALV was generated pointing to data name symbol

An ALV was generated in the data section of the program. This will only occur if code
generation has been performed in a data section, and as such this error will normally indicate
an internal compiler failure.

517 Cannot find prefix file file

The named PREFIX file could not be found.

518 __MERGED data not supported in absolute mode

The linker is operating in absolute mode, but a reference to a data item in the __MERGED has
been found; such references art not supported in absolute mode.

519 Segment base not specified for section in absolute mode

Whilst operating in absolute mode no section base was found for the named section; when
generating Motorola S-records the base of every section which is used must be specified.

600 Invalid command 'and1

The named command was not recognised by the linker. The commands which are recognised
are discussed in the section CLink, The Linker.

601 cmd option specified more than once

An attempt has been made to specify a command, which may only appear once, more than
once, e.g. attempting to specify two TO files.

602 Unable to open output file 'file'

The named output file could not be opened. This may be because the disk or directory is full.

603 val is not a valid number

The value <val> which appeared as a numeric argument could not be parsed as such.

604 with file is not readable

An error occurred whilst reading the WITH file.

605 Cannot open with file 'file'

The named WITH file could not be opened.

607 No FROM files specified

No FROM files were specified so the linker cannot start linking.

The LInker Hisoft Devpac 3 Page 152

608 Premature EOF encountered

End-of-file occurred unexpectedly. This will normally indicate serious file system structure
problems.

609 Error seeking in file file

An error occurred whilst attempting to seek about the named file. This will normally indicate
serious file system structure problems.

611 Reloc found with odd address for symbol name, file file

A 16 or 32 bit relocation was attempted on a non word-aligned boundary. This is always
illegal on the 68000.

ERROR: Invalid decimal constant 'vat.

The value <val> which was entered in response to an undefined symbol was an invalid
decimal constant.

ERROR: Invalid hex constant 'vat.

The value <val> which was entered in response to an undefined symbol was an invalid
hexadecimal constant.

ERROR: Multiply defined symbol 'name'.

A symbol has been redefined. The file in which it first appears is named, as is the file in which
the attempted re-definition occurs.

ERROR: Symbol 'name' is not defined.

The named symbol which was entered in response to an undefined symbol was also
undefined.

Hunk #n not written

The numbered hunk n was not written to disk. This will indicate an internal linker failure.

Unknown internal error

An internal error occurred whose error number was not recognised. This indicates a serious
internal linker failure.

The LInker Hisoft Devpac 3 Page 153

Chapter 6 - Other Tools

S-record Splitter

If you are developing code for an embedded system, you will need to 'burn' you final code
into EPROM. Most EPROMs are byte-wide devices, so if you are producing a system with a
16 bit data bus, you need two EPROMs, one for the odd numbered bytes and the other for the
even numbered bytes. If you are developing for a system with a 32-bit data bus, four different
EPROMs are required.

Many EPROM programmer's accept Motorola S-records as input and Gen will happily
generate absolute S-record code, but Gen generates the entire output file in one go. This is
fine for downloading into RAM or where the ROM size matches the data bus width, but
doesn't help in the situation above. This is where SRSplit, the S-record splitter comes in. It
splits an S-record file into two or more S-record files. The address fields of the new files are
calculated so that they are appropriate for 'burning' into EPROM as described above.

SRSplit is a CLI program whose command line should be of the form:

<-options> <filename> [filename]

The filename gives the file to split; more than one file may be split at once. The options
available are

-b this specifies a base offset that will be added before the address calculation is
performed. The offset should be specified in decimal or preceded by 0x for hexadecimal. You
can also use octal by specifying 0 at the start of the number. See below for an example.

-px this must be followed by the number of pieces, x, into which the file will be split. The
default is 2 and the most common alternative is 4, although other values (up to 9) may be
used if you wish.

Note that the options must come before the filename. The output filenames are the input
filename with 1, 2 etc. added.

Command line examples

bootrom.mx

This splits bootrom.mx into bootrom.mxl and bootrom.mx2.

-p4 test.mx

This splits the file test.mx into 4 files: test.mxl, test.mx2, test.mx3 and test.mx4.

-b0x14000 -p4 test.mx

This splits test.mx into 4 files, adding an offset of $14000 to the addresses in the S-records.
You might use this if your file is designed to be run at 0 but needs to be sent directly to an
EPROM programmer whose memory buffer starts at $14000.

Other Tools Hisoft Devpac 3 Page 154

Ramdisk

The ramdisk lets you use some of your system RAM as a very fast disk drive that makes even
the fast Atari hard disks seem slow. The problem with many ramdisks is that they disappear
when you press reset. If you are developing a new GEM-based program and are having
problems with your mouse or menu you can need to reset quite often.

RAMINST.PRG and RAMINST.RSC let you set up a ramdisk that will survive resets. Whilst this
will work in 99% of cases, occasionally, if a program crashes in a particularly nasty way you
will lose the contents of the ramdisk. To avoid this save the source code on to your real disk
before running your program. Hramdsk will additionally copy the files and folders that you
would like on the ramdisk automatically when you switch on.

The version of HRAMDSK.PRG that we supply isn't set up to copy any files initially. Before
running RAMINST to tailor the ramdisk to your preferences, HRAMDSK.PRG should normally be
in the AUTO folder on the current disk as this will be used as a basis for the ramdisk driver.

To run RAMINST copy it just double-click on RAMINST.PRG. If the driver cannot be found in the
AUTO folder you will be presented with a file selector to enter the drive, path and file to load.
Once the driver has been loaded, RAMINST will present you with a GEM dialog box like this:

You can change the files and folders that are copied by clicking on one of the relevant fields
and editing it. To clear out the existing names click on the Clear Files button.

You can use simple filenames, filenames with wildcards or directory names. If you specify a
directory name the entire directory (and any sub-directories within it) will be moved to the
ramdisk. Note that you can specify the drive from which the files are copied.

Change the size of the ramdisk by simply modifying the Disk Size field. This is the amount of
memory used by the disk and is slightly larger than the data size because some of the space is
used for the directory and the file allocation table. You can use any size you like, subject to
the available amount of RAM.

Normally you can have up to 112 directory entries in your main directory (just like a standard
floppy disk) and this is usually sufficient. However you may change the maximum number of
directory entries using the Dir entries field of the dialog box. For example, if you have a two
and a half Megabyte ramdisk and using it to store (amongst other things) all the relocatable
files for your 100 module wonder program and don't want to put them in a subdirectory, you
can use this option to increase the number of directory entries.

If you don't like the ramdisk being called drive M you can change this too. You can also

Other Tools Hisoft Devpac 3 Page 155

change the disk, directory and file to which the driver will be saved.

If you wish to modify a differently installed version of the ramdisk you can click on the Load
button and load another file. The Load Driver button can be used if we upgrade the ramdisk: it
loads just the ramdisk driver itself leaving the installed files, disk size etc. intact.

Note that the ramdisk is only designed to be run from the AUTO folder; it can't be run once the
system has booted.

Symbol Strip Utility

We supply, as strip.ttp, a utility for removing the symbol table and any information after the
relocation information from an executable file.

Any number of files, which should include any extension, may be specified on its command
line. If a file is not executable it is simply ignored.

Example

This example assembles MYPROG.S to produce MYPROG.PRG, which is then linked and then
has its symbols and debug information removed:

gen -x myprog
strip myprog.prg

Other Tools Hisoft Devpac 3 Page 156

Appendix A - GEMDOS error
codes

This appendix details the numeric GEMDOS errors and their meanings. The error numbers
shown are those displayed by Devpac; when calling GEMDOS from your own programs
these values will be negative.

0 OK (no error) 32 Invalid function number
1 Fundamental error 33 File not found
2 Drive not ready 34 Path not found
3 Unknown command 35 Too many files open
4 CRC error 36 Access denied
5 Bad request 37 Invalid handle
6 Seek error 39 Insufficient memory
7 Unknown media 40 Invalid memory block

address
8 Sector not found 46 Invalid drive
9 No paper 49 No more files
10 Write fault 50 Disk full (not a GEMDOS

error - only produced by
the editor)

11 Read fault 64 Range error
12 General error 65 Internal error
13 Write protect 66 Invalid program load

format
14 Media change 67 Setblock failure due to

growth restrictions
15 Unknown device
16 Bad sectors on format
17 Insert other disk

GEMDOS Errors Hisoft Devpac 3 Page 157

Appendix B - Devpac error
messages

Devpac can produce a large number of error messages, most of which are pretty well self
explanatory. This appendix lists them all in alphabetic order, with clarification for those
which require them.

Please note that Devpac is continually being improved and this list may not agree exactly
with the version you have, there may be additional messages not documented here.

Errors

If you get a message beginning with INTERNAL please tell us how to generate it - you should
never see these.

probably missing

You have used an absolute reference where an immediate one was more likely. This will also
occur if you miss out the address register when you are accessing variables via a base register.
If you really mean the absolute reference, use an explicit .L or .W or disable OPT CHKIMM.

.W or .L expected as index size

absolute expression MUST evaluate

absolute not allowed

additional symbol on pass 2

somehow a symbol has appeared during pass 2 that did not appear during pass 1.

address register expected

addressing mode not allowed

addressing mode not recognised

assembly interrupted

bad floating point expression

Bit number should be 0-7 for byte

BSS or OFFSET section cannot contain data

OFFSET sections and BSS sections can only contain DS directives.

cannot create binary file

could be a bad filename, or a write-protected disk, etc.

Devpac Errors Hisoft Devpac 3 Page 158

cannot export symbol

cannot import symbol

cannot nest MACRO definitions or define in REPTs

macro definitions may not be nested or defined within repeat loops.

cannot nest repeat loops

colon (:) expected

in multi-register 68020 argument.

comma expected

data register expected

data too large

DCB or DS count must not be negative

division by zero

duplicate MODULE name

module names must be unique

error during listing output

listing will be stopped at this point

error during writing binary file

normally disk full.

error in command line symbol executable code only

only executable code may be assembled to memory.

expression mismatch

normally a syntax error within an expression.

fatally bad conditional

there were more ENDCs in a macro than IFs.

Devpac Errors Hisoft Devpac 3 Page 159

file not found

floating point constant not allowed

floating point constant too large

floating-point register expected

after floating point instruction.

forward reference

garbage following instruction

hex floating point number too large

illegal BSR.S

a BSR.S to the following instruction is not allowed - change it to BSR.

illegal type combination

immediate data expected

imported label not allowed

include file read error

instruction not recognised

invalid 68020 addressing mode

invalid bitfield specification

invalid floating point expression

invalid FORMAT parameter

invalid IF expression, ignored

invalid index scale

invalid k-factor

invalid MMU function code

invalid MOVEP addressing mode

invalid number

invalid numeric expansion

the symbol is not defined or relative or a syntax error.

Devpac Errors Hisoft Devpac 3 Page 160

invalid opcode size for data/address register

invalid option

invalid printer parameter

invalid radix

invalid register list

invalid section name, TEXT assumed

invalid section specified

invalid section type

MMU register expected

privileged instruction

you have used an instruction that can only be used in supervisor mode after an OPT USER
directive.

invalid pre-assembled file

either the pre-assembled file itself is corrupt or it was produced with an earlier or later
version of the assembler. Re-make the file from the include file using the Output Symbols
command.

invalid size

line malformed

linker format restriction

local not allowed

maths co-processor required

missing close bracket

missing ENDC

there were more IFccs then ENDCs.

Devpac Errors Hisoft Devpac 3 Page 161

missing quote

misuse of label

MMU register expected

not yet implemented

number too large

odd address

only (An) allowed for this instruction

only occurs with 68040 MMU instructions.

only FPIAR allowed

option must be at start

ORG/RORG not allowed

out of memory

phasing error

should never happen, unless you have symbols that evaluate to different values on different
passes. Investigate immediately before the first such error.

privileged instruction

when OPT USER is in operation.

program buffer full

change the program buffer size when assembling to memory.

register expected

relative not allowed

relocation not allowed

repeated include file

each include file may only be included once on each pass.

short branch cannot be 0 bytes

source expired prematurely

within an IF, MACRO or REPT and the source ran out.

Devpac Errors Hisoft Devpac 3 Page 162

spurious ENDC

spurious ENDM or MEXIT

spurious ENDR symbol defined twice

symbol expected undefined

symbol user error

caused by a FAIL directive.

wrong processor

XREFs not allowed within brackets

Warnings

.L converted to .W

when optimising.

68010 instruction, converted to MOVE SR

MOVE CCR, is not a 68000 instruction (only when in 68000/8 mode).

ADD/SUB converted to LEA

when optimising.

base displacement shortened

when optimising.

Bit number should be 0-7 for byte

when OPT WARNBIT used.

branch could be short

forward branch could be optimised.

branch made short

by optimising.

directive ignored

invalid LINK displacement

if negative or odd.

Devpac Errors Hisoft Devpac 3 Page 163

LEA converted to ADDQ/SUBQ

misuse of register list

A register list created using EQUR has been used in an expression.

MOVEQ substituted

move.l #nn,d0 optimised to moveq #nn,dO.

no ORG specified

When generating absolute code via S-records.

offset removed

XX(An) form reduced to (An) by optimising.

outer displacement shortened

when optimising.

quick form used

when optimising.

relative cannot be relocated

short branch converted to NOP

when optimising.

short word addressing used

when optimising.

sign extended operand

data in MOVEQ needed sign extension to fit.

size should be .W

Devpac Errors Hisoft Devpac 3 Page 164

Appendix C - TOS Memory Map
This Appendix details information about the TOS memory map.

The Different Sorts of RAM

Newer versions of TOS can have two different sorts of memory: system RAM and alternative
RAM. System RAM is also known as ST or chip RAM; this is because it corresponds to the
memory on Atari ST and STE computers which can be accessed by the video, ACSI DMA and
DMA sound hardware directly, but because of this it is not particularly fast.

Alternative RAM is also called TT or fast RAM because it uses the 68030's burst mode feature
which is very much faster than ordinary memory accesses and there is no contention between
them and DMA accesses. The disadvantage is that alternative RAM cannot be used to store
the actual screen image that is being displayed by the hardware.

Programs may be loaded into alternative RAM and have their GEMDOS m_alloc calls given
alternative RAM by altering their program header. This can be achieved from Devpac using
the COMMENT HEAD= directive; see the assembler section for details. If you are using CLink,
you can achieve this with the TTLOAD option. Programs may specifically request a particular
sort of RAM by using a new GEMDOS m_xalloc. This is described in Appendix D. For most
programs, the best strategy is to load into alternative RAM and then use m_xalloc calls
requesting alternative RAM (or system RAM if none is available). The exception to this is
memory that is allocated for physical screens, which should come for system RAM only.

Processor Dump Area

When a program crashes with an exception (i.e. bombs) TOS stores a copy of the processor's
state in an area of memory which is not destroyed by a reset. Thus after such a crash you can
load Mon and investigate the relevant area of memory to try to ascertain what exactly went
wrong. If this happens a lot you should use the auto-resident version of Mon so you will have
a much better idea of the cause of the problem.

$380 long contains $12345678 if valid
$384 8 longs saved values of D0-D7
$3A4 8 longs saved values of A0-A7 (SSP)
$3C4 byte exception number
$3C8 long saved USP
$3CC 16. words copied from the SSP

Base Page Layout

Every program that runs under GEMDOS has a base page area which contains certain
information. It is $100 bytes long.

Memory Map Hisoft Devpac 3 Page 165

Offset Name Contents
$00 p_lowtpa base address of the TPA (i.e. here)
$04 p_hitpa pointer to end of TPA +1
$08 p_tbase pointer to start of TEXT area
$0C ptlen length of TEXT area
$10 pdbase pointer to start of DATA area
$14 p_dlen length of DATA area
$18 p_bbase pointer to start of BSS area
$1C p_blen length of BSS area
$20 p_dta pointer to DTA address
$24 pparent pointer to parent's base page (0 if desk

accessory)
$2C p_env pointer to environment string
$80 p_cmdlin command line; length byte then string,

which is guaranteed to be null-
terminated

Memory Map Hisoft Devpac 3 Page 166

Hardware Memory Map

Memory Map Hisoft Devpac 3 Page 167

GST Support Hisoft Devpac 3 Page 168

Appendix D - GST Support

LinkST, The GST format linker

Introduction

LinkST is a linker that links GST-format files. In general we recommend that you use the Lattice
C format linker, CLink rather than LinkST since CLink is faster and has more facilities. LinkST
does have one advantage over CLink though: it will let you link with other languages that

T format files. produce GS

LinkST will only link GST-format files.

Invoking LinkST

As with most of the tools supplied with HiSoft Devpac 3 you can either run LinkST from the
Desktop or from a shell and can either supply a complete command line or specify a link file
which contains the required information.

The command line should be of the form:

<filename> <-options> [filename] [-options]

Options are denoted by a - sign then an alphabetic character, supported options being:

-B generate a true BSS section for any such named sections

-D debug - include all symbols in the binary file using DR standard 8 character format
(for Mon or other debuggers)

-F force pass 2 of the linker, useful if you want to see all errors (as any pass 1 errors will,
by default, stop the link before the second pass)

-L specify that all following filenames are library filenames

-M dump a map file showing the order of the sections and labels. The map filename will
be the main filename with an extension of .MAP

-O specify object code filename, may be followed by white space before filename

-Q 'quiet' mode, which disables the pause after the link

-S dump a symbol table listing, The symbol table filename will be the main filename
with an extension of .SYM

-T truncate to eight characters

-U force upper case

-W specify control file filename, defaults to .LNK extension

-X extended debug, using the HiSoft extended debug format for use with Mon.

Normally any file specified given are assumed to be input files, defaulting to the extension of
.BIN, though if a .LNK extension is specified it will be taken to be a control file. After a -L
option, filenames are all assumed to be library files.

The output file can be specified with the -o option on the command line, or using the OUTPUT
directive in the control file. If there is more than one of these directives or options, the last one
is used. If there is none given, then the first input filename specified in the command line or
control file is used, with an extension of .PRG.

Example Command Lines

PART1 PART2 -d

Reads PART1.BIN and PART2.BIN as input files, and generates PARTI.PRG as an output file
complete with debugging information.

PART1 PART2 -o TEST.PRG

Reads PART1.BIN and PART2.BIN as input files, and generates TEST.PRG as an output file.

-o TEST.TOS START -1 MYLIB -S

Reads START.BIN as an input file, selectively reads MYLIB.BIN as a library, and generates the
output file TEST.TOS and the symbol listing file TEST.SYM.

LinkST Running

LinkST has two passes - during pass 1 it builds up a symbol table of all sections and modules,
and during pass 2 it actually creates the output file. When it starts it prints a logon message,
then reports on which files it is reading or scanning during both passes. This gives you some
idea of what takes time to do, as well as exactly where errors have occurred.

If there is enough free memory at the end of pass 1, LinkST will use a cache to store the output
file, which speeds up the process greatly. If it uses the cache it will write to the disk at the end
of pass 2, and report the number of errors.

When the link finishes you will be prompted to press a key before quitting. This is to give you
an opportunity to read any warning or error messages before returning to the Desktop. You
can disable this pause by using the - q option, useful if you are using a CLI.

Error and warning messages are directed to the screen - if you want to pause output you can
press Control-S, while Control-Q will resume. Pressing Control-C will abort the linker
immediately.

You can re-direct screen output to a disk file by starting the command line with

>FILENAME.TXT

or you can re-direct it to a printer by starting the command line with

GST Support Hisoft Devpac 3 Page 169

>PRN:

to the parallel port, or

>AUX:

to the serial port.

If you do re-direct output in this way you should use the -q option as you won't be able to see
the prompt at the end of the linking.

Control Files

The alternative way to run the linker is to have a control file for the programs which you are
linking together.

If you require a lot of options which won't fit on the command line or you get bored of typing
them, you can use a control file, which is a text file containing commands and filenames for
the linker. The default extension is .LNK and the control filename is specified on the command
line using the -w (for With) option. Each line can be one of the following:

INPUT filename

This specifies a filename to be read as an input file. The default extension is .BIN if none is
given.

OUTPUT filename

This specifies the filename to be used for the output file. There is no default extension - you
must specify it explicitly.

LIBRARY filename

This specifies a filename to be scanned as a library. The default extension is .BIN if none is
given.

SECTION sectionname

This allows specific section ordering to be forced.

DEBUG

All symbol names included in the link are put in the output file so that debugging programs
such as Mon can use them when the program is running.

XDEBUG

Similar to the debug option but uses HiSoft extended debug format for up to 22 character
significance.

DATA size[K]

The BSS segment size is set accordingly. The size can be given either as a number of bytes or
as a number of K-bytes (units of 1024). This option is particularly useful for the Prospero
compilers which effectively use the BSS segment for their stack.

GST Support Hisoft Devpac 3 Page 170

BSS sectionname

Specifies that the named section should lie in the GEMDOS BSS section area. This can save
valuable disk space, but will generate errors if the section contains any non-zero data. This
should not be used at the same time as the DATA statement.

TRUNCATE

Causes all symbols to be truncated to 8 characters. This is sometimes required to link
assembly language with long labels to high-level language code with short labels.

UPPER

Forces all symbols to be automatically upper-cased. This is sometimes required when a
compiler or assembler generates case-insensitive code.

Blank lines in the control file are ignored, and comments can be included by making the first
character in the line a *, a ; or a !.

With the INPUT or OUTPUT directive, if the filename is specified as * it is substituted the first
filename on the command line. This can be useful for having a generic control file for linking
C programs for a particular memory model.

An example control file is:

*control file for linking large model gem programs

INPUT CNB
INPUT *
XDEBUG
LIBRARY LCGNB
LIBRARY LCNB
SECTION TEXT
SECTION DATA
BSS UDATA

Assuming this control file is called CPROG.LNK, the LinkST command line

TEST -w CPROG

will read as input files CNB.BIN and TEST.BIN, and scan the libraries LCGNB.BIN and LCNB.BIN.
The object code, including extended debug information, will be written to TEST.PRG, as no
output file was explicitly specified.

The two SECTION directives, above, ensure that the TEXT and DATA sections appear in the
correct order in the output file. The BSS directive ensures that the UDATA section is treated as
a true BSS section.

If you do not specify a drive name in the control file or on the command line, the default
drive will be assumed. If you run LinkST from the Desktop, the default drive will always be the
same as that containing the file on which you double-clicked; though if you run it from a CLI
or from the editor this will not necessarily be so.

LinkST Warnings

Warnings are messages indicating that something might be wrong, but probably nothing too

GST Support Hisoft Devpac 3 Page 171

serious.

duplicate definition of value for symbol x

The symbol was defined twice. This can happen if you replace a subroutine in a module with
one of your own, for example. The linker will use the first definition it comes across, and give
this warning on the second.

module name is too long

Module names can only be 80 characters long.

comment is too long

Comment directives are only allowed to be 80 characters long (don't ask us why, we don't
know!).

absolute sections overlap

Two absolute sections clash with each other.

SECTION x is neither COMMON nor SECTION

A section name was specified without defining its type.

LinkST General Errors

unresolved symbol x in file x

The symbol was referred to but not defined in the file. There may also be other files which
refer to the symbol, but this error gives you a start in your search!

XREF value truncated

A value was too large to fit into the space allocated for it, for example a BSR to an external
may be out of range.

bad control line x

An illegal line was found in a control file.

non-zero data in BSS section

A section wanted as a true BSS section contained non-zero data.

GST Support Hisoft Devpac 3 Page 172

LinkST Input/Output (I/O) Errors

file x not found

Can't open output file x

Can't open map file x

Can't open symbol file x

Can't open input file x

i/o error on input file disk

write failed

filename x was too long

LinkST Binary File Errors

These are errors in the internal syntax of the input file, and should not occur. If they do it
probably means the compiler or assembler produced incorrect code.

missing SOURCE directive

Can occur if a file is not in GST format, for example a DRI file.

GST Support Hisoft Devpac 3 Page 173

runtime relocation is only available for LONGs

attempt to redefine id of symbol x.

attempt to DEFINE x with id of zero

bad operator code 0x99 in XREF directive

bad truncation rule in XREF

wrongly placed SOURCE directive

bad directive 99

id 99 not DEFINEd as a SECTION but used as one

attempted re-use of id 99 as SECTION id

attempted re-use of x as SECTION name

section is COMMON but being used as though it's not

SECTION is being misused as COMMON

unexpected end of input file

'Linker Bug' Messages

These can be produced as a result of internal checks by the linker. If you get one please send
us copies of the files you are trying to link!

GSTlib, The GST format librarian

GSTlib is a librarian that is designed for maintaining GST format libraries. When specifying
filenames to GSTlib you must explicitly include the file extension, normally .bin.

GSTlib has a number of different possible command lines as shown below:

Replace modules

gstlib r[vsq][a|b obmod] library [files...]

This will replace any current occurrences of the modules contained in the given files. If a
module is not already present in the library then it will be added. If the library does not exist
then a new library will be created that just contains these files. The following additional
options may be used

v (verbose). Echo when adding or replacing a module or creating a library.

a mod (after). If adding a new module insert it after mod.

b mod (before).If adding a new module insert it before mod.

GST Support Hisoft Devpac 3 Page 174

S (sort). Sort the library so that it can be scanned by a linker in a single pass, if possible.
If this fails due to circular references then the new library will be saved in libname.tmp and
the original library left as it was.

q (quit). Wait for Return to be pressed before exiting GSTlib, for use with the Desktop.

Update modules

gstlib u[vsq][a|b obmod] library [files...]

This works in precisely the same way as the replace modules option except that the modules
are only updated if the versions in the files are more up to date than the version in the library.
Exactly the same options may be used as with the r option.

Load modules

gstlib l[vq] prog.lib [files...]

This option can be used to produce a library that contains just the modules that would be
included when linking a program. The V and q modifiers have their usual meaning. For
example:

gstlib 1 prog.bin c.bin yourprog.bin lc.bin

could be used to create a library containing the modules required by yourprog. You could
then run LinkST without the need to scan the library. Once you have created a library using
this option it is unwise to sort it subsequently.

Delete modules

gstlib d[vsq] library [modules....]

Deletes the modules with the given names. As usual V will cause the librarian to inform you
of its progress, q will pause before exiting and S will attempt to sort the library after
performing the deletions.

Move modules

gstlib m[vsq][a|b obmod] library [modules...]

Moves the given modules to the end of the library unless either a or b are specified, in which
case:

a mod moves the modules immediately after mod and

b mod moves the modules immediately before mod.

The other modifiers have their usual meanings.

Tabulate modules

gstlib tfvvvvvq] library [modules...]

This form of command line displays information about the given modules in the library. If no

GST Support Hisoft Devpac 3 Page 175

module list is included, the information is given about all modules. The different levels of
information are as follows:

v module names only

vv as per v and the size and date

vvv as per vv and the list of exported (xdef) symbols

vvvv as per vvv and the list of imported (xref) symbols

vvvvv as per vvvv and a cross reference of the symbols

As ever, q may be included to pause before GSTlib terminates.

Extract modules

gstlib x[vkq] library [modules....]

This extracts the given modules from the library. If no modules are specified then all the
modules are extracted. Note that module names may have .o, .c or .bin appended to them
depending on the tool that produced them. The additional modifiers are:

k keep date stamp from library on the extracted files

v inform the user of progress

q pause before exiting

If a module that is being extracted does not have a name it will be placed in a file called
dummy###.BIN where ### is a unique decimal number.

Librarian command files

If the command line to GSTlib contains an @ sign, the name following this is taken as a
command file name and the command read from this. Additionally such files may contain
lines starting with #; these are treated as comments. Long lines may be split by using \ as the
last character of the line.

Example command lines

gstlib tv lc.bin

List all the modules in the library lc.bin; there are quite a few!

gstlib xk lc.bin printf.0

Extract the module printf.o into a file called printf.o retaining the date stamp that it had in the
library.

gstlib d lc.bin printf.bin

Remove the module printf.bin from lc.bin.

GST Support Hisoft Devpac 3 Page 176

Appendix D - Calling the
Operating System

The operating system of the Atari is large and complex and consists of various levels. To help
in your own program development, this appendix describes the calling mechanisms and
routines available, but it is not intended to be definitive. It also details the various example
programs and include files supplied with HiSoft Devpac 3. The various levels of the
operating system are:

GEM AES window and event manager
GEM VDI device-independent graphics routines
GEMDOS disk and screen I/O, similar to MS-DOS
BIOS low level I/O
XBIOS extended low level I/O

Each of these will now be described in varying degrees of detail.

GEMDOS - Disk and Screen I/O

GEMDOS was converted from CP/M 68k and is similar in many ways to generic CP/M but
with extra facilities (e.g. sub-directories) taken from MS-DOS. It is responsible for disk I/O
and character I/O via the screen, keyboard, serial and parallel ports. It is also responsible for
memory management.

GEMDOS was designed to be called directly from C, so all parameters are put onto the stack
and have to be removed afterwards. The calling sequence from assembler is of this general
form:

 move ??,-(a7) put parameters on stack
 move.w #??,-(a7) the function number
 trap #1 call GEMDOS
 add.w #??,a7 restore the stack

Your code will be smaller and faster if you use addq.w instead of add.w if the stack
adjustment is 8 bytes or less. If the adjustment is more than this, the best bet is

 lea ??(a7),a7

You can use the optimisation option of HiSoft Devpac 3 to automatically choose the best
instruction for you - just use an unoptimised add.w.

If you are using a number of GEMDOS calls in a row you will save bytes by performing one
large correction at the end rather than after each GEMDOS call.

Incidentally, a major source of bugs when starting programming with GEMDOS is forgetting
to correct the stack, or correcting it by the wrong value.

We have supplied an include file with the names of the routines as constants in the file
GEMDOS.I. To include these in your program you should use:

The Operating System Hisoft Devpac 3 Page 177

 include gemdos.i

near the start of your program. Using the constants rather than using the absolute numbers
explicitly and including a comment, gives you no chance of having a disagreement between
the comment and the number!

Program Startup and Termination

Under GEMDOS a program starts up it owns all of the largest block of free memory -
normally the memory from the end of the program through to the end of usable RAM
(normally just before the screen) is owned by the program, which is just as well as the stack is
at the very end of this area. This also applies to alternative RAM programs that are loaded
into system RAM. In a similar way, an alternative RAM program that is loaded into
alternative RAM will normally own all the available alternative RAM when it starts.

If any memory management calls (such as m_alloc) are required, you wish to execute other
programs within yours, or if you are writing a GEM program, it is important to give back
some of this memory. If you don't there will be no free memory for these uses. This is
normally done during at the beginning of programs using the m_shrink call, utilising the fact
that a pointer to the programs basepage is 4 bytes down on the stack, like this:

 include gemdos.i
 move.l 4(a7),a3 basepage
 move.l $C(a3),dO text length
 add.l $14(a3),d0 data length
 add.l $1c(a3),d0 BSS length
 add.l #extra,dO any additional memory
 add.l #$100,d0 basepage length
 move.l #mystack,sp before shrinking
 move.l dO,-(sp)
 move.l a3,-(sp)
 clr.w -(sp)
 move.w #m_shrink,-(sp)
 trap #1 do the shrink
 lea 12(sp),sp

The extra bytes may be required for your programs storage. Note that you should move the
stack to a safe area before the shrink, otherwise the stack will be in memory that is not owned
by your program and liable to corruption.

A GEMDOS program can terminate in one of three ways: p_termO, which is not
recommended, p_term, the normal way to finish a program, and p_termres, for system
patches and the like. For normal termination use this code:

 clr.w -(a7) return code of 0
 move.w #p_term,-(a7)
 trap #1

When a program terminates all memory it owns is freed (unless you use p_termres) and
any open files are closed.

The Operating System Hisoft Devpac 3 Page 178

GEMDOS Summary

The calls will now be described in numeric order by giving the size of the parameters, in the
order they should be placed on the stack, and the stack correction number. For example,
using function call 2, C_conout, to print the character X, the code would be

 move.w #'X',-(a7) the character
 move.w #c_conout,-(a7) the function number
 trap #1 call it
 addq.w #4,a7 then correct

GEMDOS calls may corrupt the D0-D2/A0-A2 registers. Note that many of the current calls
only corrupt DO and AO; thus if you omit to save D1/D2/A1/A2, you may have a difficult bug
to spot in the future!

0 - Terminate Process (old form), p_term0
Parameters: None
Result: None
Stack: 2

This terminates the current program, with a return code of 0. It is recommended that p_term
(function $4c) should be used in preference to this call. As control never returns after the call,
no stack correction is actually required.

7 - Read character from keyboard, c_conin
Parameters: None
Result: D0.L=key code
Stack: 2

This waits for a key to be struck, echoes it to the screen, and returns its value. The long result
has the ASCII value in the lowest 8 bits, and a physical key number is returned in bits 16-23.
All other bits are set to 0.

2 - Write character to screen, c_conout
Parameters: word: character
Result: None
Stack: 4

This writes the given character to the screen. A 16-bit parameter is supported for future
expansion, so bytes should always be ANDed with $FF before the call, though currently the
upper 8 bits are ignored.

3 - Read character from serial port, c_auxin
Parameters: None
Result: DO.B=character read
Stack: 2

This waits for a byte to be received from the auxiliary device, which is the serial port.

4 - Write character to serial port, c_auxout
Parameters: word character
Result: None
Stack: 4

The Operating System Hisoft Devpac 3 Page 179

This sends the character out via the serial port. As with function c_conout, the upper 8 bits
of the word should be 0 for upward compatibility.

5 - Write character to printer, c_prnout
Parameters: word: character
Result: DO. W=0 if failed, -1 if OK
Stack: 4

This sends the character out via the parallel printer port. As with functions 2 and 4 above, bits
8-15 of the word should be 0.

6 - Raw I/O to standard I/O, c_rawio
Parameters: word: character for output, or $00FF to read
Result: DO. W if $00FF passed
Stack: 4

If the character is passed as $00FF then the keyboard is scanned and a result returned in DO.W
(or 0 if no key available). If the character is not $00FF, then it is printed on the screen.

7 - Raw input from keyboard, cjrawcin
Parameters: None
Result: DO.L=character read
Stack: 2

This waits for a key to be pressed and returns its value. It does not echo it to the screen.

8 - Read character from keyboard, no echo, c_necin
Parameters: None
Result: DO.L=character read
Stack: 2

This waits for a key to be pressed and returns its value. It does not echo, but the control keys
Control-C, Control-S and Control-Q are interpreted in their usual way - Control-C will abort
the program, Control-S will pause output and Control-Q will resume it.

9 - Write string to screen, c_conws
Parameters: long: address of string
Result: None
Stack: 6

This writes the given null-terminated string to the screen.

$A - Read edited string from keyboard, c_conrs
Parameters: long: address of input buffer
Result: None
Stack: 6

Before calling this, the first byte of the buffer should be set to the size of the data portion of
the buffer. On return, the second byte in the buffer will be set to the length of the string, and
the string itself starts at the third byte. No CR or null is stored in the returned string and
pressing Control-C will terminate the entire program.

$B - Check status of keyboard, c_conis
Parameters: None

The Operating System Hisoft Devpac 3 Page 180

Result: D0.L=-1 if character available, 0 if none
Stack: 2

This returns the status of the keyboard. The key itself should be read with another call.

$E - Set default drive, d_setdrv
Parameters: word: drive number
Result: DO.L=bit map of drives in the system
Stack: 4

This sets the default drive; a word of 0 denotes A:, 1 denotes B:, etc. The returned value has a
bit set for each installed drive, bit 0=A:, bit 1=B:, etc.

$10 - Check status of standard output, c_conos
Parameters: None
Result: D0.L=-1 if ready, 0 if not
Stack: 2

This tests to see if the console device is ready for output.

$ 11 - Check status of printer, c_prnos
Parameters: None
Result: D0.L=-1 if ready, 0 if not
Stack: 2

This tests the status of the printer port. If the printer is ready to receive a character it returns -
1, else it returns 0.

$ 12 - Check status of serial port input, c_auxis
Parameters: None
Result: D0.L=-1 if character waiting, 0 if not
Stack: 2

This tests the serial port and returns -1 if there is a character waiting to be read.

$13 - Check status of serial port output, c_auxos
Parameters: None
Result: D01=-1 if ready, 0 if not
Stack: 2

This tests the serial port and returns -1 if it is ready to receive a character.

$14 - Inform GEMDOS of alternative memory, m_addalt
Parameters: long.size, long: start of alternative memory area
Result: DO.W=0 if OK, else error code
Stack: 10

This call is used to inform GEMDOS of the presence of alternative RAM; it should not be
needed unless you have added custom memory to the system. This call was added in
GEMDOS version 0.25.

$19 - Get default drive, djgetdrv
Parameters: None
Result: D0.W=drive number

The Operating System Hisoft Devpac 3 Page 181

Stack: 2

This returns the number of the current drive, with A:=0, B:=l etc.

$1A - Set disk transfer address, f_setdta
Parameters: long: pointer to disk transfer address
Result: None
Stack: 6

This sets the address of a 44-byte buffer used for searching for filenames; it must be word-
aligned.

$20 - Get into Supervisor/User Mode, super
Parameters: long: value for stack, or 0 or 1
Result: D0.L=(depends on parameter)
Stack: 6

This has two functions - it can tell you if the program is in User or Supervisor mode and it can
switch from one mode to another. To find which mode the processor is in, call this routine
with a parameter of 1. The return value will be 0 for user mode, and -1 for supervisor. To
switch modes you have to supply a new stack pointer, or pass 0 if you want the stack to
remain unchanged. For example, if you are in user mode and want to switch to supervisor
mode using a SSP at address myssp, the code would be:

 move.l #myssp,-(a7)
 move.w #$20,-(a7)
 trap #1
 addq.l #6,a7

When switching to supervisor mode the old value of the SSP is returned in dO.l. If you only
want to go temporarily into Supervisor mode to hack protected memory, for example, the
XBIOS call supexec is a lot easier.

$2A - Get date, tjgetdate
Parameters: None
Result: D0.W=0 if OK, else error code
Stack: 2

This reads the date, with the result in this format:

Day bits 0-4
Month bits 5-8
Year bits 9-15 (since 1980).

$2B - Set date, t_setdate
Parameters: word: date
Result: DO. W=0 if OK, else error code
Stack: 4

This sets the date, using the same word format as the previous function.

$2C - Get time, t_gettime
Parameters: None
Result: DO.W

The Operating System Hisoft Devpac 3 Page 182

Stack: 2

This returns the time of the day, with the result in this format:

Seconds/2 bits 0-4
Minutes bits 5-10
Hours bits 11-15

$2D - Set time, t_settime
Parameters: word: time
Result: None
Stack: 4

This sets the current time of day, in the same word format as the previous function.

$2F - Get disk transfer address, fjgetdta
Parameters: None
Result: DO.L=pointer to disk transfer address
Stack: 2

This returns the current disk transfer address, and should always be even.

$30 - Get version number, s version
Parameters: None
Result: DO.W=version number
Stack: 2

This returns the GEMDOS version number, with the major number in the low byte, and the
minor number in the high byte. Known releases at this time are:

$0D00 version 0.13 (obsolete disk-based)
$1300 version 0.19 (ROM-based and Mega TOS)
$1500 version 0.21 (Rainbow and original STE TOS)
$1700 version 0.23 (STE TOS 1.62)
$1900 version 0.25 (MegsSTE, TT TOS)

$31 - Terminate and stay resident, p_termres
Parameters: word: exit code, long: bytes to keep
Result: None
Stack: 8

This allows a program to terminate while keeping part or all of it in memory. It is useful for
programs which extend the system, such as RAM disk drivers; if they terminated normally
the memory they lie in would get destroyed when the next program loaded. The memory that
can be retained is that starting at the base page, and the length parameter should include the
$100 of the base page, the required program length, data and stack space if relevant. Also any
RAM allocated via m_alloc and m_xalloc is retained, although any open files are closed.

$36 - Get drive free space, d_free
Parameters: word: drive code, long: pointer to buffer
Result: None
Stack: 8

The Operating System Hisoft Devpac 3 Page 183

This returns various bits of information about a particular disk drive. The drive code should
be 0 for the default drive, 1 for A:, 2 for B:, etc. The buffer should be 16 bytes long, and word
aligned. On return, it will contain 4 longs of information: free space, number of available
clusters, sector size (in bytes), and cluster size (in sectors).

$39 - Create a sub-directory, djcreate
Parameters: long: address of pathname
Result: DO. W=0 if OK, else error code
Stack: 6

This creates a new directory, according to the null-terminated string.

$3A - Delete a sub-directory, djdelete
Parameters: long: address of pathname
Result: DO.W=0 if OK, else error code
Stack: 6

This deletes a directory, so long as it has no files or other directories in it.

$3B - Set current directory, d_setpath
Parameters: long: address of pathname
Result: DO. W=0 if OK, else error code
Stack: 6

This sets the current directory, according to the null-terminated string. Note that drive
specifiers are not allowed - you should set the current drive then its directory.

$3C - Create a file, f_create
Parameters: word: attributes, long: pointer to string
Result: DO.W=file handle if successful, else error (and longword negative)
Stack: 8

This will attempt to create the given file and if successful will return a file handle that can be
used in other file GEMDOS calls. The attribute word can be these values:

01 read only
02 hidden file
04 system file
08 filename contains volume name in first 11 bytes

File handle numbers returned by this call and the following one start are words normally
starting at 6 and go upwards. Handles 0 to 5 are standard handles which are already open
when a program starts. They correspond to the following devices:

0 console input
1 console output
2 serial port
3 parallel port

There are three system device names, called CON:, AUX: and PRN: which can be used with
this and the following call. They return negative words, so to distinguish these from error
returns always TST.L / BMI for the error case.

The Operating System Hisoft Devpac 3 Page 184

The Operating System Hisoft Devpac 3 Page 185

$3D - Open a file, f_open
Parameters: word: mode, long: pointer to filename
Result: D0.W=file handle if successful, else error (and longword negative)
Stack: 8

This will open an existing file for reading, writing, or both. The mode word must be one of
the following:

0 open to read
1 open to write
2 open for both reading and writing

If successful this will return a handle which can be used subsequently, else an error number.

$3E - Close file, f_close
Parameters: word: handle
Result: DO.W=0 if OK, else an error number
Stack: 4

Given a file

same as the

 handle this will close the file. Do not close a standard handle.

This call, along with all the others that require handles, do not do very extensive
checks on the validity of the handle.

If you pass an invalid one you may get an error return, or the machine may crash!

$3F - Read file, f_read
Parameters: long: load address, long: number of bytes to read, word: handle
Result: DO.L=number of bytes read, or an error code
Stack: 12

This will attempt to read bytes from the given file. If an error occurs DO.L will be negative. If
the end of file is reached during the read operation an error code is not returned - if you wish
to check for this you have to compare the number of bytes you asked for with the result - if
they are different then you tried to read past the end of file.

$40 - Write file, f_write
Parameters: long: start address, long: number of bytes to write, word: handle
Result: DO.L=number of bytes written, or an error code
Stack: 12

This will attempt to write bytes to the given file. If an error occurs DO.L will be negative. If
the disk becomes full an error code will not be issued, but the value returned will not be the

 value passed to it as the number of bytes to write.

If you pass a negative length parameter GEMDOS may crash very badly.

$41 - Delete File, f_delete
Parameters: long: pointer to filename
Result: DO.W=0 if successful, else error code
Stack: 6

This will attempt to delete the given file.

$42 - Seek file pointer, f_seek
Parameters: word: mode, word: file handle, long: position
Result: DO.L=absolute position in file after seek
Stack: 10

This will move the file pointer to a given position in the file. The mode word should be one of
the following:

0 move to N bytes from the start of the file
1 move to N bytes from the current location
2 move to N bytes from the end of the file

If you try and move past either end of the file you will get a result of 0 (for the start) or the
actual length of the file.

$43 - Get/Set file attributes, f_attrib
Parameters: word: attributes, word: get/set, long: pointer to filename
Result: DO.W=new attributes, or an error code
Stack: 10

This can be used to get or set the attributes for a given file. The attributes word can be:

$01 read only
$02 hidden file
$04 hidden system file
$08 filename is actually the volume label in first 11 bytes
$10 sub-directory
$20 file is written and closed

The other word should be 0 to get the attribute, or 1 to set it.

$48 - Allocate Memory with preference, m_xalloc
Parameters: word.mode, long: number of bytes required
Result: DO.L=address of memory allocated, or 0 if failed
Stack: 8

This allocates the given amount of memory from the system pool, if available. The mode
parameter gives the type of memory that will be allocated, as follows:

0 System RAM only
1 Alternate only
2 either, system RAM preferred
3 either, alternate preferred

Thus for 'ordinary' memory, it is generally best to use mode 3 in order to take advantage of
any fast memory in the system; whereas for an area of screen memory you must use mode 0.

This call can also be used to find the amount of free memory of the particular type, if -1 is
passed, in which case the size of the largest block is returned. Modes 2 and 3 return the
largest block of either type. When a program terminates all its memory allocations are cleaned
up.

The Operating System Hisoft Devpac 3 Page 186

This call was added in GEMDOS 0.25.

$45 - Duplicate File Handle, fjdup
Parameters: word: standard handle
Result: D0.W=new handle, or error code
Stack: 4

Given a handle to a standard device (0-5), this function returns another handle that can be
used to address the same device. It can also be closed without affecting the standard device
handle.

$46 - Force file handle, fjforce
Parameters: word: non-standard handle, word: standard handle
Result: D0.W=0 if OK, else error code
Stack: 6

This forces the standard handle to point to the same device or file as the non-standard one,
and can be used, for example, to re-direct screen output to a disk file.

$47 - Get Current Directory, d_getpath
Parameters: word: drive number, long: pointer to buffer
Result: DO. W=0 if OK, else error code
Stack: 8

Given a drive number (default drive=0, A:=1, B:=2 etc.) this will return the current directory
in the given buffer, in null-terminated form.

$48 - Allocate Memory, m_alloc
Parameters: long: number of bytes required
Result: DO.L=address of memory allocated, or 0 if failed
Stack: 6

This allocates the given amount of memory from the system pool, if available. On the TT, the
system will attempt to allocate the memory from alternate RAM if the appropriate bits in its
header are set. See under COMMENT HEAD= in the assembler section of this manual. If this bit
is not set then the RAM will be allocated from system RAM.

When a program terminates all its memory allocations are cleaned up. This call can also be
used to find the amount of free memory, if -1 is passed, in which case the size of the largest
block of system or alternative RAM is returned depending on the malloc bit in the program's
header.

$49 - Free Allocated Memory, m_free
Parameters: long: address of area to free
Result: DO.W=0 if OK, else an error code
Stack: 6

This frees a block of memory allocated with m_alloc or m_xalloc above.

$4A - Shrink Allocated Memory, mshrink
Parameters: long: length to keep, long: start address to keep, word: 0
Result: DO. W=0 if OK, else an error code
Stack: 12

This is normally used when a program starts up and releases part of the allocated memory

The Operating System Hisoft Devpac 3 Page 187

back to GEMDOS. In fact, it can also be used to any block that is allocated to the program.

$4B - Load or Execute a Program, p_exec
Parameters: long: pointer to environment string, long: pointer to command line,
 long: pointer to filename, word: mode
Result: DO.L=(depends on mode)
Stack: 16

This call can be used for loading and chaining programs. The mode word can be one of:

0 load and execute
3 load but do not execute
4 execute base page
5 create base page
6 execute then free (GEMDOS 0.21 and above)
7 create base page (GEMDOS 0.25 and above)

For load and execute, the return value is either an error code, or the value returned when the
child program exited.

For load but don't execute the return value is either an error code, or a pointer to the base
page of the loaded program.

A discussion of using modes 4 - 7 is beyond the scope of this document.

The command line should be of the form of a length byte followed by the line itself.

The environment string may be passed as 0 to inherit the programs parents basepage, or as a
pointer to a list of null-terminated environment strings, ending in a double-null. The normal
environment looks like this:

 dc.b 'PATH=',0,'C:\',0,0

or

 dc.b 'PATH=',0,'A:\',0,0

on floppy-based machines.

$4C - Terminate Program, p_term
Parameters: word: return value
Result: N/A as doesn't return
Stack: N/A

This terminates the current program, returning control to the calling program. The word
value returned should be an error code, or 0 for no error. Returned error codes should be
positive, to avoid confusion with system error codes, which are negative.

$4E - Search for First, f_sfirst
Parameters: word: attributes, long: pointer to filespec
Result: DO. W=0 if found, else -33 not found
Stack: 8

This trap can be used to scan a directory using wild-cards to find all the files. This should be
called to find the first one, then f_snext should be called for the rest. When a file is found

The Operating System Hisoft Devpac 3 Page 188

http://p_ex.ec/

the parameters of the file are returned in the DTA buffer area. The attribute word determines
which file types are to be included in the search, and may be one of:

$00 normal files
$01 read only files
$02 hidden files
$04 system files
$08 return volume name only
$10 sub-directories
$20 files that have been written to and closed

The returned values in the DTA buffer are:

0-20 reserved for internal use
21 file attributes
22-23 file time stamp
24-25 file date stamp
26-29 file size (long)
30-43 name and extension of file, null terminated

The address of the DTA buffer can be set with function $1A, and read with function $2F.

$4F - Search for Next Occurrence, f_snext
Parameters: None
Result: DO. W=0 if found, else -33 not found
Stack: 2

After calling f_sfirst to find the first occurrence of a filespec, this call is used to find
subsequent files. When a file is found the DTA buffer is filled as described previously. For it
to work the first 21 bytes of the DTA must remain untouched between calls.

$56 - Rename a file, f_rename
Parameters: long: pointer to new name, long: pointer to old name, word: 0
Result: DO.W=0 if OK, else error code
Stack: 12

This will attempt to rename the file to the new name. A file with the new name must not
already exist.

$57 - Get/Set File Date & Time Stamp, f_datime
Parameters: word: 0 for Get / 1 for Set, word: file handle, long: pointer to buffer
Result: None
Stack: 10

This can be used to get or set the time and date stamp on an open file. The buffer should
contain two words, the first being the time, and the second the date, in the format already
described.

The Operating System Hisoft Devpac 3 Page 189

BIOS - Basic I/O System

The Atari BIOS is intended for low-level access to the screen, keyboard and disk drives. It is
accessed using the stack for parameters as described previously for GEMDOS, but using
TRAP #13 to invoke it. The BIOS handler preserves registers D3-D7/A3-A7 - all others may
be corrupted by a call. The values of the BIOS call names are supplied in the file BIOS.I. Thus
to find the device input status you could use:

 move.w #2,-(sp) console device
 move.w #bconstat,-(sp)
 trap #13
 addq.w #2,sp
 tst.w dO
 beq.s notready

BIOS 1 - Return device input status, bconstat
Parameters: word: device number
Result: DO.W=0 no characters -1 at least one character ready
Stack: 4

The device number are as follows:

 ST/STE/TT TT MegaSTE
0 Parallel printer

port

1 Auxiliary device
(the RS232 port)

2 Console device
3 MIDI port
4 Keyboard port

(IKBD)

5 Raw screen device

6 Modem 1 (ST-
compatible
serial)

Modem 1 (ST-
compatible
serial)

7 Modem 2 (SCC
channel B)

Modem 2 (SCC
channel B)

8 Serial 1 (3-wire
TTMFP)

Serial 2 (SCC
channel A)

9 Serial 2 (SCC
channel A)

Device numbers 4 and 5 are not applicable to this call. The auxiliary device (1) can be
switched from the default, the ST-compatible serial port, by using the bconmap (XBIOS $2C)
call described below. Note that devices 7-9 are machine specific (use the _MCH cookie).

BIOS 2 - Read a character from a device, bconin
Parameters: word: device number
Result: DO.L character found
Stack: 4

The device number should be as described in the table above. For the console (device 2)
bconin returns the scancode in the low byte of the upper word, and the ASCII character in the
low byte of the low word.

The Operating System Hisoft Devpac 3 Page 190

This gives the format:

bits 31-24 bits 23-16 bits 15-8 bits 7-0
Shift key
status

Keyboard
scan code

0 ASCII value of
character

Note that the shift key status is only returned if bit 3 in the system variable conterm (the
byte at $484) is set. This defaults to off.

The non-ASCII keys (e.g. the function and cursor keys) return 0 for the ASCII value, so that
the scan code is used to decipher them. The shift key status gives the state of the keyboard
modifiers (Shift, Control, Alt etc.) and are as described under the BIOS function kbshift

BIOS 3 - Write a character to a device, bconout
Parameters: word: character, word: device number
Result: D0.W=0 if OK, else error
Stack: 6

The device number should be as given under bconstat.

BIOS 4 - Read/Write logical sectors on a device, rwabs
Parameters: word: drive (A=0, B=l...etc)
 word: first logical sector
 word: number of sectors to transfer
 long: buffer for the transfer
 word: mode see below
Result: D0.W=0 on success, else negative error code
Stack: 14

Note that all devices do not support all bits. The bits currently used are:

0 Read/Write; write when bit is set.
1 If set then do not affect or check the media change status, or check it.
2 Disable retry when set.

3 If set do not translate logical sectors to physical sectors (i.e. a physical sector
rather than a logical sector number is supplied).

In order to read/write past 32767 sectors you should pass -1 as the record number and pass
the real record number as a long, pushing this onto the stack before the drive number. In this
case, the stack adjustment should be 18 bytes. This facility and Bits 2 & 3 of the mode word
were added by Atari's AHDI 3.0.

BIOS 5 - Set Exception Vector, setexc
Parameters: long: new vector address, -7 leave as is word: vector to change
Result: D0.L=old vector entry
Stack: 8

The setexc function is used to modify a system exception vector. The following values are
currently allowed as the vector to change:

0-$ff Standard 680x0 exception vectors.
$100 System timer vector (etv_timer).

The Operating System Hisoft Devpac 3 Page 191

$101 Critical error handler (etv_critic).
$102 Process terminate handler (etv_term).
$103 Reserved.
…
$107

If a program modifies any vectors it should always restore them to their original values
before terminating.

BIOS 6 - Get system timer 'tick' interval, tickcal
Parameters: None
Result: D0.L=system timer calibration in milliseconds
Stack: 2

The value return is the value passed to etv_timer as a parameter. For current systems it has
the value 50.

BIOS 7- Get BIOS parameter block for a device, getbpb
Parameters: word: drive (A=0, B=l...etc)
Result: DO.L=pointer to the BPB for this device; 0 if not found
Stack: 4

The BIOS parameter block returned by this function has the form:

rsreset
recsiz rs.w 1 bytes per sector
clsiz rs.w 1 sectors per cluster
clsizb rs.w 1 bytes per cluster
rdlen rs.w 1 length in sectors of root directory
fsiz rs.w 1 sectors per FAT
fatrec rs.w 1 record number of start of second FAT
datrec rs.w 1 record number of start of data
numcl rs.w 1 clusters per disk
bflags rs.w 1 bit 0 = 1 - 16 bit FAT, else 12 bit

BIOS 8 - Return device output status, bcostat
Parameters: word: device number
Result: DO.W=0 device not ready else ready for output
Stack: 4

The device number should be as described under bios 1 - bconstat

BIOS 9- Return media change status,mediach
Parameters: word: drive (A=0, B=l...etc)
Result: DO. W see below
Stack: 4

The possible return values are:

0 Media definitely has not changed
1 Media might have changed
2 Media definitely has changed

The Operating System Hisoft Devpac 3 Page 192

BIOS $A - Return bitmap of mounted drives, drvmap
Parameters: None
Result: DO.L=Bitmap of mounted drives (Bit 0 = drive A)
Stack: 2

Note that on a bare single floppy system with no other devices installed 3 will be returned
(indicating that drives A and B are present) because 'virtual disking' will be used on the single
physical drive.

BIOS $B - Find state of keyboard 'shift' keys, kbshift
Parameters: word: -1 to read else bitmap of state to set
Result: DO.W=bitmap of state before call
Stack: 44

This function is normally passed -1 to read the current state of the shift keys, the return value
being a bit map as follows:

Bit Meaning (when set)
0 Right shift key down
1 Left shift key down
2 Control key down
3 Alt key down
4 Caps-lock engaged
5 Clr/Home key down
6 Insert key down

It can also be used to 'tell' the operating system that a certain set of keys are pressed by
passing it a bitmap of the same form.

The Operating System Hisoft Devpac 3 Page 193

XBIOS Extended BIOS

The XBIOS consists of functions for a wide variety of functions including hardware access,
screen control, and keyboard mapping The XBIOS handler preserves registers D3-D7/A3-A7
- all others can be corrupted by a call. The calling sequence is the usual one: put parameters
on the stack, put a function word on the stack, do a TRAP #14, then restore the stack. The
constant names given below are defined in XBIOS.I.

The XBIOS functions are:

XBIOS 0 - Set mouse mode and packet handler, initmous
Parameters: long: pointer to mouse interrupt handler
 long: pointer to mouse mode parameter
 block
 word: new mouse mode
Result: None
Stack: 12

The mode parameter should be one of:

0 Disable mouse.
1 Enable relative mouse mode
2 Enable absolute mouse mode
4 Enable mouse keycode mode

The meaning of the other parameters is beyond the scope of this document.

XBIOS 2 - Get Physical Screen Address, physbase
Parameters: None
Result: DO.l=start of screen
Stack: 2

This will return the physical address of the screen. On the ST and STe this will be 32000 bytes
long. For the TT modes this is 153600 bytes. On the ST it will be aligned on a 256-byte
boundary, on the STE a 2-byte boundary and on the TT an 8-byte boundary.

XBIOS 3 - Get Logical Screen Address, logbase
Parameters: None
Result: DO.L=start of screen
Stack: 2

This will return the logical address of the screen; that is the address that GEM calls will write
to at the moment.

XBIOS 4 - Get Screen Resolution, getrez
Parameters: None
Result: DO. W=0 ST low, 1 ST medium, 2 ST high, 4 TT medium, 6 TT high, 7 TT low
Stack: 2

This will return the current screen resolution. Note that you should avoid using this call if at
all possible because otherwise your program will not work on ST large screen monitors, add-
on graphics hardware or future video modes. The sole legitimate use for this call is when
opening a virtual workstation in order to obtain the correct set of fonts and driver for a

The Operating System Hisoft Devpac 3 Page 194

resolution.

XBIOS 5 - Set Screen Address & Mode, setscreen
Parameters: word: mode, long: physical address, long: logical address
Result: None
Stack: 12

This lets you change the screen resolution and addresses. If any parameter is specified as -1
then it is left alone. Changing the screen mode will clear the screen, but GEM will not be re-
initialised.

XBIOS 6 - Set display palette, setpalette
Parameters: long: pointer to a 16 word screen palette
Result: None
Stack: 6

This function is used to change the 16 colours in the currently selected palette bank at once.
The individual items are in BCD form (as per setcolor below). Note that this function name
was originally misspelt by the Atari bindings.

XBIOS 7 - Set display palette, setcolor
Parameters: word: new BCD colour value
 word: logical colour to set
Result: DO.W=New BCD colour value
Stack: 6

This function is used to change the mapping from logical to physical colours. Colour values
are stored in a BCD manner with the least-significant bit replacing the most-significant bit. A
physical colour is packed in the following manner:

bits 15-12 bits 11-8 (Red) bits 7-4 (Green) bits 3-0 (Blue)
Unused R0 R3 R2 R1 G0 G3 G2 G1 B0 B3 B2 B1

R0 represents the least-significant bit of the red component of the colour, R3 the most-
significant. Similarly, G0-G3 give the green component and B0-B3 the blue component.

Note that the peculiar packing method is to ensure backward compatibility from the Atari TT
and STE to the Atari ST, hence bits R0, G0and B0 are not used on the ST. If the new BCD
colour value is -1 then the colour is not changed.

Note that this call effects the current bank of the TT's colour lookup table. To update any of
the full 256 colours you should use esetcolor (XBIOS $53) as described below.

XBIOS 8 - Read sectors from a floppy disk, floprd
Parameters: word: number of sectors to read
 word: side (0 or 1)
 word: track (0 to 79)
 word: first sector to read
 word: drive (0=drive A, 7= drive B)
 long: unused (use 0 for future compatibility)
 long: pointer to word-aligned buffer where data will be stored
Result: D0.W=0 success else error code
Stack: 20

This reads one or more sectors from a floppy disk. Note that this function will only read

The Operating System Hisoft Devpac 3 Page 195

consecutive physical sectors within a track and the BIOS rwabs call should be used to obtain
logical sectors.

XBIOS 9 - Write sectors to a floppy disk, flopwr
Parameters: word: number of sectors to write
 word: side (0 or 1)
 word: track (0 to 79)
 word: first sector to read
 word: drive (0= drive A, 1 = drive B)
 long: unused (use 0 for future compatibility)
 long: pointer to word-aligned buffer from which data will be written
 Result: DO.W=0 success else error code
Stack: 20

This writes one or more sectors to a floppy disk. Note that this function will only write
consecutive physical sectors within a track and the BIOS rwabs call should be used for logical
sectors.

XBIOS $A- Format a track on a floppy disk, flopfmt
Parameters: word: new data (normally $E5E5)
 long: magic (must be $87654321)
 word: sector interleave factor
 word: side (0 or 1)
 word: track (0 to 79)
 word: sectors per track (9 for normal disks)
 word: drive (0=drive A, I = drive B)
 long: pointer to skew table long: pointer to workspace buffer (word aligned)
Result: DO.W=0 success else error code
Stack: 26

The sector interleave factor parameter gives the interleave which is to be used when creating
the sectors, typically this will be 1 giving consecutive sectors. If it has the special value -1 then
the skew table parameter is used and should point to a list of words one for sector per track
giving the required layout of sectors (e.g. 1,6,2,7,3,8,4,9,5 in the normal case). The skew
parameter is ignored by TOS 1.0.

The workspace buffer should be at least 8K bytes long. On return it will contain (as a list of
words) the sectors which failed during the verify phase. Note that these are not necessarily in
numerical order and are 0 terminated. If no sectors failed then the first word in the buffer will
be 0.

XBIOS $C- Write string to the MIDI port, midiws
Parameters: long: address of string to send
 word: number of characters to write-1
Result: None
Stack: 8

This call is writes the given number of characters (less 1) directly to the MIDI port.

XBIOS $D- Set the MFP interrupt handler, mfpint
Parameters: long: address of new interrupt handler
 word: interrupt no to change
Result: None
Stack: 8

The Operating System Hisoft Devpac 3 Page 196

This call is use to change a multi-function peripheral adaptor (MFP) vector. The vectors are as
follows:

0 Parallel port
1 RS-232 Data Carrier Detect
2 RS-232 Clear-To-Send
3 BitBlt complete
4 RS-232 baud rate generator (Timer D)
5 200Hz System clock (Timer C)
6 Keyboard/MIDI
7 Floppy and Hard disk
8 Horizontal Blank (Timer B)
9 RS-232 transmit error
10 RS-232 transmit buffer empty
11 RS-232 receive error
12 RS-232 receive buffer full
13 DMA sound (Timer A)
14 RS-232 ring indicator
15 Mono monitor detect /DMA sound complete

Note that installing a handler does not enable an interrupt this must be done separately via
jenabint; note also that DMA sound option is only implemented on the Atari STE and TT.

XBIOS $E - Find serial device I/O structure, iorec
Parameters: word: device number
Result: DO.L =pointer to I/O record
Stack: 4

The device number parameter should be one of:

0 RS-232
1 Keybord
2 MIDI

The I/O record returned has the form:

rsreset
ibuf rs.l 1 pointer to buffer
ibufsiz rs.w 1 size of buffer
ibufhd rs.w 1 head index
ibuftl rs.w 1 tail index
ibuflow rs.w 1 low-water mark
ibufhi rs.w 1 high-water mark

If the structure requested was the for the RS-232 port then a second identical structure follows
the first giving the RS-232 output buffer structure.

XBIOS $F - Configure RS232 port, rsconf
Parameters: word: synchronous character register
 word: transmit status register
 word: receive status register
 word: USART control register
 word: flow control mode

The Operating System Hisoft Devpac 3 Page 197

 word: new RS-232 speed request
Result: DO.L= old 68901 configuration
Stack: 14

The speed parameter should be one of:

0 19200 5 2000 10 200
1 9600 6 1800 11 150
2 4800 7 1200 12 134
3 3600 8 600 13 110
4 2400 9 300 14 75

15 50

The flow control modes are

0 No flow control (default)
1 XON/XOFF(AS/^Q)
2 RTS/CTS
3 XON/XOFF and RTS/CTS

The USART control register (UCR) bits are as follows:

Bit 7
CLK/16

Bits 6-5
00-8 bits
01-7 bits
10-6 bits
11-5 bits

Bits 4-3
00-No Start/Stop
01-1 Start,l Stop
10-1 Start,l;Stop
11-1 Start, 2 Stop

Bit 2
Parity

Bit 1
Odd
parity

Bit 0
Unused

The receiver status register (RSR) bits are

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Buffer
full

Overrun Parity
error error

Frame
error

Break
detect

Match
busy

Sync
strip

Receiver
enable

tsr sets the transmit status register (TSR), the low byte only is used:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Buffer Underrun Frame Send Match Sync Receiver
empty error error error break busy strip enable

Only the low byte of the synchronous character register, giving the character that will be
searched for when an underrun error occurs in synchronous mode.

If any of the parameters has the value -1 then it is ignored and the current setting is
unchanged.

The result contains the old UCR, RSR and TSR register values. The most significant byte is the
UCR, the second most significant RSR and the third most the TSR value. If you pass -2 as the
speed parameter the current speed will be returned. This is implemented on TOS 1.4 and
above.

The above information assumes that the port is connected to a 68901. The only bits that are
correct for devices 7 to 9 are bits 1-6 of the UCR and bit 3 of the TSR.

The Operating System Hisoft Devpac 3 Page 198

XBIOS $10- Get/Set keyboard translation tables, keytbl
Parameters: long: Caps-lock translation table
 long: shift translation table
 long: un-shifted translation table
Result: DO.L=pointer to structure as shown below
Stack: 14

This call is used to set/get the mapping from keyboard scan codes to key-presses. Note that
all keyboards return identical scan-codes for keys in the same place, but it is these translation
tables, which give the ASCII value for the legend marked on a key, that are used to
internationalise a keyboard.

The input pointers should point to arrays of 128 bytes which map scan-codes into ASCII
codes when the appropriate key is depressed. If a scan-code does not have an ASCII
representation the value returned is 0. If you do not wish to change one of the translation
tables the value -1 should be passed.

The structure returned has the following form:

 rsreset
unshift rs.l 1 pointer to the normal table
shift rs.l 1 pointer to the shifted table
capslock rs.l 1 pointer to the Caps-lock table

XBIOS $11 - Obtain random number, random
Parameters: None
Result: DO.L random number
Stack: 2

This returns a 24 bit random number. Note that the algorithm used gives an exact 50%
distribution for bit 0 and so this function should be used with care.

XBIOS $12 - Build prototype boot sector, protobt
Parameters: word: O=non-executable boot sector,1 =executable, -1 leave alone
 word: disk type see below
 long: serial no
 long: pointer to 512 byte buffer
Result: None
Stack: 14

This call is used to build a boot sector for freshly formatted floppies in the buffer that is
passed as a parameter; it should contain any boot sector code you require.

If the serial number has the value -1 then the current serial number in the boot sector is
unchanged, otherwise if it has a value >= 0x0l0000 then a random serial number is computed
and used. The disk type should be one of:

0 40 tracks, single sided, 9 sectors per track (180K)
1 40 tracks, double sided, 9 sectors per track (360K)
2 80 tracks, single sided, 9 sectors per track (360K)
3 80 tracks, double sided, 9 sectors per track (720K)
4 80 tracks, double sided, 18 sectors per track
-1 Do not change type information

Note that if using a disk type of 4 then you should ensure that a suitable floppy device driver

The Operating System Hisoft Devpac 3 Page 199

is installed by interrogating the _FDC cookie.

XBIOS $13 - Verify sectors from a floppy disk, flopver
Parameters: word: number of sectors to verify
 word: side (0 or 1)
 word: track (0 to 79)
 word: first sector to verify
 word: drive (0=drive A, 1 = drive B)
 long: unused (use 0 for future compatibility)
 long: pointer to 1K word-aligned buffer where list of bad sectors
 will be stored
Result: D0.W=0 success else error code
Stack: 20

This verifies one or more sectors within a track on a floppy disk. The buffer will be filled with
a word list of sectors which is terminated with a word of zero in an identical manner to that
produced by flopfmt.

XBIOS $14 - Copy screen to printer, scrdmp
Parameters: None
Result: None
Stack: 2

This function dumps the screen to the printer in the same form as with the Alt-Help key.

XBIOS $15 - Configure VT52 cursor, cursconf
Parameters: word: new flash rate,
 word: function no
Result: DO.W old flash rate (if function 5)
Stack: 6

This is used to configure the VT52 cursor. The function number should have a value giving
the parameter you wish to change:

0 Hide cursor.
1 Show cursor.
2 Enable blinking.

3 Disable blinking.
4 Set blink rate to rate parameter.
5 Return current blink rate.

The blink rate (for mode 4 and 5) is specified in half-frame rates.

XBIOS $16 - Set IKBD time, settime
Parameters: DO.L= time/date as shown below
Result: None
Stack: 6

This returns sets the IKBD time given a packed long word as follows:

0-4 Second/2 (0 to 29)
5-10 Minute (0 to 59)
11-15 Hour (0 to 23)
16-20 Day (0 to 31)

The Operating System Hisoft Devpac 3 Page 200

21-24 Month (1 to 12)
25-31 Year-1980 (0 to 127)

XBIOS $17- Get IKBD time, gettime
Parameters: None
Result: D0.L= time/date as shown below
Stack: 2

This returns the IKBD time as a packed long word in the same format as that used by settime
(XBIOS $16).

XBIOS $18 - Reset keyboard translation tables, bioskeys
Parameters: None
Result: None
Stack: 2

This is used to restore the default power-up setting of the keyboard translation tables. This
will normally only be required if they have been changed via keytbl.

XBIOS $19- Write string to keyboard processor, ikbdws
Parameters: long: pointer to string to write
 word: number of characters to write less 1
Result: None
Stack: 8

This call writes the given number of characters (less 1) directly to the IKBD processor.

XBIOS $1A- Disable 68901 interrupt, jdisint
Parameters: word: interrupt to enable
Result: None
Stack: 4

This call disables the given interrupt on the 68901 chip.

XBIOS $1B- Enable 68901 interrupt, jenabint
Parameters: word: interrupt to enable
Result: None
Stack: 4

This call enables the given interrupt on the 68901 chip.

XBIOS $1C- Read/Write sound chip registers, giaceess
Parameters: word: register to get /set
 word: new data
Result: DO.W=value of register
Stack: 6

This function is used to access the Atari ST sound chip directly. If the register field has bit 7
set then the register is written to; otherwise it is read and its current value returned. The
possible register values are as follows:

0,1 Channel A frequency
2,3 Channel B frequency
4,5 Channel C frequency

The Operating System Hisoft Devpac 3 Page 201

6 Noise period
7 Enable flags
10 Channel A amplitude
11 Channel B amplitude
12 Channel C amplitude
13,14 Envelope period
15 Envelope shape

XBIOS $1D - Reset bit on port A of sound chip, offgibit
Parameters: word: bit mask
Result: None
Stack: 4

This call resets the given bit on port A of the sound chip atomically. This atomic access is
essential as the BIOS often modifies these bits under interrupt control. The bits are used as
follows:

0 Floppy Side Select
1 Floppy 0 Select
2 Floppy 1 Select
3 RS-232 RTS
4 RS-232 DTR
5 Centronics Strobe
6 General Purpose Output
7 Unused

A bit should be 1 to remain unchanged or 0 to clear that bit.

XBIOS $1E - Set bit on port A of sound chip, ongibit
Parameters: word: bit mask
Result: None
Stack: 4

This call sets the given bit on port A of the sound chip atomically. The bits are described
under offgibit above, except that a 1 is used to set the bit or 0 for no change.

XBIOS $1F - Configure MFP timer, mfpint
Parameters: long: address of new handler
 word: value for timer data register
 word: value for timer control register
 word: timer to change (0 for A, 1 for B etc)
Result: None
Stack: 12

The timers are used as follows:

A DMA sound counter
B HBlank counter
C 200Hz System timer
D RS-232 baud rate generator

The Operating System Hisoft Devpac 3 Page 202

XBIOS $20- Initialise sound daemon, dosound
Parameters: long: pointer to command stream
Result: None
Stack: 6

Starts a new sound sequence through the sound daemon. The parameter should point to a
byte stream consisting of commands for the daemon consisting (in general) of one byte
opcode and one byte operand pairs.

Commands 0-15 select a register, the following byte is then loaded into that register.

Command $80 stores the next byte into a temporary register for use by command $81.

Command $81 takes three parameters. The first is a register to load with the value in the
temporary register, the second a signed value to add to the temporary register and the third
the final value of the temporary register. The value of the temporary register is then stored
into the register mentioned and modified by the increment until the termination condition is
reached.

The final command is $82 (in fact any value >=$82) which has an argument which specifies
the number of ticks (50Hz) until the next command should be executed, or the special value 0
to terminate processing.

XBIOS $21 - Set/Get printer configuration, setprt
Parameters: word: new configuration (or-1 to get configuration)
Result: word: old configuration
Stack: 4

The currently defined bits are:

Bit When clear When set
0 Dot matrix Daisy wheel
1 Monochrome Colour
2 Atari mode 'Epson' compatible

3 Preview mode Final mode
4 Parallel port RS-232 port
5 Continuous Single sheet

XBIOS $22 - Get system ACIA dispatch handler, kbdvbase
Parameters: None
Result: DO.L=pointer to structure
Stack: 2

The use of the elements of this structure is beyond the scope of this document, but they are as
follows:

 rsreset
midivec rs.l 1 MIDI-input
vkbderr rs.l 1 keyboard error
vmiderr rs.l 1 MIDI error
statvec rs.l 1 IKBD status packet
mousevec rs.l 1 mouse packet
clockvec rs.l 1 clock packet
joyvec rs.l 1 joystick packet

The Operating System Hisoft Devpac 3 Page 203

midisys rs.l 1 system MIDI vector
ikbdsys rs.l 1 system IKBD vector
busyflag rs.b 1 0 if IKBD is not sending

XBIOS $23- Get/Set keyboard repeat and delay, kbrate
Parameters: word: new repeat rate
 word: new delay rate
Result: DO. W=old repeat rate
 high word of DO=old delay rate
Stack: 6

This call is use to set/get the keyboard repeat and delay rates. These are expressed in 50ths of a
second. If either of the input parameters is -1 then that rate is not changed.

XBIOS $24- Print bitmap, prtblk
Parameters: long: pointer to prtarg structure
Result: DO.W=error status
Stack: 2

The use of the elements of this structure is beyond the scope of this document.

XBIOS $25 - Wait for vertical sync to occur, vsync
Parameters: None
Result: None
Stack: 2

This is often used to prevent 'flicker' when drawing graphics or to ensure that vertical blank
driven objects are complete before being reused (e.g. setpalette).

XBIOS $26 - Call Supervisor Routine, supexec
Parameters: long: address of routine
Result: None
Stack: 6

This calls the given routine in supervisor mode. You should be careful if it wishes to call the
BIOS or XBIOS since these are only re-entrant to three levels.

XBIOS $27- Discard AES, puntaes
Parameters: None
Result: None
Stack: 2

This is used to throw away the AES and any memory it occupies. Note that this function will
only work for RAM-loaded TOS.

XBIOS $29- Set floppy disk step rate, floprate
Parameters: word: new rate,
 word: drive (0= drive A, 1 = drive B)
Result: D0.W=old rate
Stack: 6

This is used to change the track-to-track stepping rate of the floppy disk controller for each
drive.The rate has the values:

The Operating System Hisoft Devpac 3 Page 204

0 6ms
1 12ms
2 2ms
3 3ms

Note that to simply inquire the seek rate the value -1 may be used for rate. This function is
only available on TOS 1.04 and above, for earlier versions the system variable seekrate should
be used instead, but, unlike floprate, does not allow different seek rates on each of the drives.

XBIOS $2A- Read sectors from a device, dmaread
Parameters: word: device number
 long: pointer to word-aligned buffer where data will be stored
 word: number of sectors to read
 long: first sector to read
Result: D0.L=0 success else error code
Stack: 14

The device numbers that are currently assigned are as follows:

0-7 ACSI devices 0-7
8-15 SCSI devices 0-7

Note that you cannot read from an ACSI device to alternative (fast or TT) RAM. See the _FRB
cookie in the Cookie Jar section of this appendix. This call was added in TT TOS.

XBIOS $2B- Write sectors to a device, dmawrite
Parameters: word: device number
 long: pointer to word-aligned buffer from where data will be written
 word: number of sectors to write
 long: first sector to write
Result: DO.L=0 success else error code
Stack: 14

The device numbers that are currently assigned are as follows:

0-7 ACSI devices 0-7
8-15 SCSI devices 0-7

Note that you cannot write to an ACSI device from alternative (fast or TT) RAM. See the _FRB
cookie in the Cookie Jar section of this appendix. This call was added in TT TOS.

XBIOS $2C- Get/Set mapping of AUX device , bconmap
Parameters: word=new device number mode, -1 just read,
 -2 used for adding device drivers
Result: D0.W=previous device number
Stack: 4

This call is used to control the mapping of the AUX: device (BIOS device 1) which is initially
set to the ST compatible serial port. Valid bconmap device assignments for the MegaSTE and
TT are:

 TT MegaSTE
6 Modem 1 (ST-compatible

serial)
Modem 1 (ST-compatible
serial)

The Operating System Hisoft Devpac 3 Page 205

7 Modem 2 (SCC channel B) Modem 2 (SCC channel B)
8 Serial 1 (3-wire TT MFP) Serial 2 (SCC channel A)
9 Serial 2 (SCC channel A)

Note that the meanings for devices 7-9 are machine specific and you should interrogate the
_MCH cookie to find their meanings.

This call normally returns the previous device assignment except when -2 is passed. The
return value in this case is beyond the scope of this document.

To detect the presence of the bconmap call in TOS, you should call bconmap(0); this will
return 0 on machines which are bconmap-aware.

XBIOS $2E- Access non-volatile memory, nvmaccess
Parameters: long: pointer to buffer from where data will be written/read
 word: number of bytes to read/write
 word: first byte to read/write
 word: operation 0=Read, 1=Write,2=lnit
Result: D0.L=0 success else error code
Stack: 12

This calls access the 50 bytes of non-volatile memory in TT's real time clock. The usage of
these bytes will be specified by Atari - so don't use this call until you have contacted them!
This call ensures that the checksum is maintained and was added in TT TOS.

XBIOS $40 - Get/Set blitter configuration, blitmode
Parameters: word: new mode or -1 to read mode
Result: D0.W=old blitter configuration
Stack: 4

This is used to detect the presence and alter the configuration of a hardware blitter. Currently
only a single bit in new mode is allocated, with bit 0 being set to enable the hardware blitter,
or 0 to disable. Alternatively the value -1 may be used to obtain the current blitter status
which is return in DO as follows:

Bit Meaning when set
0 Perform blits in hardware
1 Hardware blitter is available

XBIOS $50 - Set current video shift mode, esetshift
Parameters: word: new shift ,mode register value
Result: DO.W=previous video shirt mode
Stack: 4

This call is used to set the TT's entire video shift register. The meaning of the bits is as shown
below:

Bit 15 Bit 12 Bits 10-8 Bits 3-0
Smear
Mode

Grey
Mode

Screen mode:
000 ST low
001 ST medium
010 ST high
100 TT
medium

Current colour
bank

The Operating System Hisoft Devpac 3 Page 206

110 TT high
lll TTlow

If you are only interested in the setting of part of the register it is best to use one of the more
specific calls below or in the case of the screen mode getrez (XBIOS 4). esetshift was
introduced in TT TOS and requires the TT video hardware.

XBIOS $51 - Get current video shift mode, egetshift
Parameters: None
Result: D0.W=current video shift mode
Stack: 2

This call is used to return the current state of the TT's video shift register. The meaning of the
bits is as shown above. If you are only interested in the setting of part of the register it is best
to use one of the more specific calls below. This call was introduced in TT TOS and requires
the TT video hardware.

XBIOS $52 - Get/Set colour look up bank, esetbank
Parameters: word=bank number to set (0-15), or negative to read
Result: D0.W=previous bank number
Stack: 4

The TT's colour lookup table has 256 entries for use in TT low resolution mode. This call lets
you select which bank (collection of 16 entires) will be used in the other modes, thus enabling
you to switch between palettes very easily. When setting the bank number, the new bank's
colours are copied to the old ST colour mode register. This call was introduced in TT TOS and
requires the TT video hardware.

XBIOS $53 - Get/Set a single colour entry, esetcolor
Parameters: word:new BCD colour value or negative to read
 word:colour number to set (0-255)
Result: DO.W=previous colour value
Stack: 4

This call is used to read/write a single entry in the TT's colour palette. The BCD colour value
is encoded as shown below:

bits 15-12 bits 11-8 (Red) bits 7-4 (Green) bits 3-0 (Blue)
Unused R0 R3 R2 R1 G0 G3 G2 G1 B0 B3 B2 B1

R0 represents the least-significant bit of the red component of the colour, R3 the most-
significant. Similarly, G0-G3 give the green component and B0-B3 the blue component.

Note that this (and the other TT specific palette calls) do not use the ST compatible method of
encoding the colour as per setcolor (XBIOS 7) and that this call uses the absolute colour
number rather than the current bank and so can access all 256 entries. This call was
introduced in TT TOS and requires the TT video hardware.

XBIOS $54 - Set look up table registers, esetpalette
Parameters: long-.area to read palette from,word:
number of colours to transfer, word: first colour to set
Result: None
Stack: 10

This call is used to set the values of the TT's colour lookup table, or palette. It can be used to

The Operating System Hisoft Devpac 3 Page 207

set the palette for a single colour, the whole palette or part of it. The colour words are
encoded in the standard manner as described under esetcolor (XBIOS $53). This call was
introduced in TT TOS and requires the TT video hardware.

XBIOS $55 - Get look up table registers, egetpalette
Parameters: long: area to store palette,
 word: number of colours to transfer,
 word: first colour to move
Result: None
Stack: 10

This call is used to read the values of the TT's colour lookup table, or palette. It can be used to
read the details, for a single colour, the whole palette or part of it. It was introduced in TT
TOS and requires the TT video hardware.

XBIOS $56 - Get/Set grey mode, esetgray
Parameters: word=0 colour mode, positive grey mode, or negative to read
Result: D0.W=previous grey mode value
Stack: 4

This call is used to read/write the TT video hardware's grey mode bit. When grey mode is
set, the bottom eight bits of the palette value are used as one of 256 possible grey levels. The
best way to see the effect of this is using the Colour part of the Control Panel (just click on the
Grey button). This call was introduced in TT TOS and requires the TT video hardware.

XBIOS $57- Get/Set video smear mode, esetsmear
Parameters: word=0 normal mode, positive smear mode, or negative to read
Result: D0.W=previous smear mode value
Stack: 4

This call is used to read/write the TT video hardware's smear mode bit. When smear mode is
set, the video hardware displays video pixels with value 0 as the last non-zero colour rather
than colour zero itself. This can be used to change the colour of a filled-polygon by only
changing its outline rather than via a complete re-fill. This call was introduced in TT TOS and
requires the TT video hardware.

GEM Libraries

GEM itself consists of two components; the VDI and the AES.

The GEM VDI (for Virtual Device Interface) is the main part of the operating system that
draws graphics and text on the screen.

The GEM AES (for Application Environment Services) is the part of the operating system that
provides the user-interface facilities of GEM such as windows, menus and dialog boxes.

This section is intended to give details of the supplied library files and calling conventions
used. It does not attempt to describe either the VDI or the AES in great detail - the books in
the Bibliography should be referred to for this. However, details are given of information that
we feel is badly documented or not documented at all.

The Operating System Hisoft Devpac 3 Page 208

The Operating System Hisoft Devpac 3 Page 209

GEM AES Library

The calling sequence to the AES is based on various arrays of words and longwords. These
arrays are defined using DS directives and are:

control words
int_in words
addr_in longwords
int_out words
addr_out longwords

aes_params longwords
global words

For example the C program segment

val = int_out[2] + int_out[3];

could be converted into this assembly language:

 move.w irrt_out+4,d0
 add.w int_out+6,d0

Note the way that the array index is doubled before adding to the start of the array, as it is an
array of words. For an array of longs the index should be quadrupled.

A macro file, called GEMMACRO.I should be used which defines various macros and, if
xecutable code, the file AESLIB.S should be included at the end of assembly. generating e

Prior to Devpac 3 GEMMACRO.I was called GEMMACRO.S.

he macros take a varying number of parameters and place them in the required places in the

 move.w 3,int_in
_in

The first line will cause a run-time error, the parameter should have been #3. There are a few

The following descriptions assume all parameters to be word sized, unless shown with a .L

T
AES arrays, before making a call to the general AES routine. If passing a constant to a macro
be sure to precede it with a # sign, for example passing the parameters 3, mypt r to a macro
could generate the code

 move.l myptr,addr

AES macros which do not take all the required parameters - additional information may have
to be placed in other arrays. On return from an AES macro D0.W (and the flags) reflect the
contents of the array int_out [0], normally useful. Various return values can often be found in
the int_out array.

suffix, denoting a longword parameter.

Application Library

appl_init

Must be called at the start of any AES program.

applread id,length,buffer.L

appl_write id,length,buffer.L

applfind name.L

Find a named program, normally a desk accessory.

appltplay memory.L,number,scale

appltrecord memory.L,count

appl_exit

Must be just before an AES program terminates. It sends AC_CL0SE type messages to all desk
accessories.

Event Library

evnt_keybd

evnt button clicks,mask,state

The return value is the number of times the button entered the desired state. Array elements
1-4 of int_out contain the X coordinate, the Y co-ordinate, the button state and the keyboard
state at the time of the event in that order.

evnt mouse flags,x,y,w,h

The return values are as described for the previous call.

evntmesag buffer.L

evnt_timer count.L

evnt multi flags,clicks,mask,bstate,&m1flags,m1x,m1y,m1w>m1h,
 &m2flags,m2x,m2y,m2w,m2h,messbuf.l,count.L

All parameters except the first are optional, specifying a null parameter means nothing is
placed in the relevant element of int_in. It is shown above with the syntax of a multi-line
macro call but this is not obligatory. The int_out array contains which event, mouse X, mouse
Y, button, keyboard state, keyboard code and button value, respectively.

The Operating System Hisoft Devpac 3 Page 210

evnt_dclick new, get set

Menu Library

menu_bar tree.L,shovf

menu_icheck tree.L,item,check

menu_ienable tree.L,item,enable

menu_tnormal tree.L,title,normal

menu_text tree.L,item.text.L

menu_register id,string.L

Normally a menu tree is generated by a resource editor, such as HiSoft WERCS,
though they can be constructed, with a great deal of care, by hand.

Another alternative is to use the MENU2ASM compiler, detailed later in this section.

Object Library

Object trees are normally constructed with a resource editor, though they can be constructed
by hand if required. Dialog boxes are the easiest type of object tree to construct by hand and
menus the most difficult.

objc_add tree.L,parent,child

objcdelete tree.L,object

objc_draw tree.L,startob,depth,x,y,w,h

objc_find tree.L,startob,depth,x,y

objcoffset tree.L,object

Elements 1 and 2 of int_out contain the returned X and Y coordinates.

objc_order tree.L,object,newpos

objc_edit tree.L,object,char,idx,kind

intout[1] contains the new idx.

The Operating System Hisoft Devpac 3 Page 211

objc_change tree. L,object,x,y,w,h,new,redraw

Form Library

form do tree.L,startob

Never pass startob as -1 as often documented, use 0 instead.

form_dial flag,x I,y I,wl,fi I,x2,y2,w2,h2

form_alert button,string.L

form_error errnum

Error numbers should be positive and less than 64.

formcenter tree.L

form keybd tree.L,obj,nxt_obj,thechar

form_button tree.L,object,elks

Graphics Library

graf_rubberbox x,y,w,h

int_out[1] contains the finish width, int_out[2] the height.

grafdragbox w,h,x,y,bx,by,bw,bh

int_out[1] contains the finish X co-ordinate, int_out[2] the Y.

graf_movebox w,h,x,y,dx,dy

graf_growbox x,y,w,h,fx,fy,fw,fh

grafjshrinkbox x,y,w,h,sx,sy,sw,sh

graf_watchbox tree.L,object,instate,outstate

grafslidebox tree.L,parent,obj,vh

graf_handle

The int_out array will contain the VDI handle, character cell width, then height, system
font width, then height.

grafmouse number,address.L

The address parameter is optional, only required if defining you own shape.

The Operating System Hisoft Devpac 3 Page 212

graf mkstate

The int_out array will contain a reserved value, mouse X and Y position, mouse button
state and keyboard state.

Scrap Library

scrp_read buffer.L

scrp_write buffer.L

File Selector Library

fsel_input path.L,filename.L

fsel_exinput path.L,filename.L,title.L (TOS 1.4 and above)

The path parameter should point to a buffer containing the null-terminated path, such as
A:*.S, and the new path will be returned in it, so be sure it is large enough. The filename
buffer should be 13 bytes, with a maximum of 12 used for the filename, for example TEST.S. If
D0.W is zero on return then it means there was not enough free memory to invoke the
selector, else intout[1] will contain 0 if Cancelled.

On TOS 1.4 and above, the extended file selector call is available, which allows a title to be
displayed in the file selector. The title parameter should point to a buffer of no more than 30
characters containing the null-terminated title.

The Operating System Hisoft Devpac 3 Page 213

Window Library

wind_create kind,x,y,w,h

wind_open handle,x,y,w,h

wind_close handle

wind_delete handle

wind_get handle,field

wind_set handle,field

wind_find x,y

wind update begend

wind_calc type,kind,inx,iny,inw,inh

wind_new (TOS 1.4 and above)

Resource Library

rsrc_load filename.L

rsrc_free

rsrc_gaddr type/index.

The result address may be found in addr_out.

rsrc_saddr type,index,saddr.L rsrc_obfix tree.L,object

Shell Library

shel_read command.L,shell.L

shel_write doex.,sgr,scr,cmd.L,shell.L

shel_find buffer.L

The buffer should be a minimum of 80 bytes.

The Operating System Hisoft Devpac 3 Page 214

shel_envrn value.L,string.L

shel_get buffer.L,length shel_put buffer.L,length

Debugging AES Calls

Unlike the calls to the VDI, calls to the AES are not immediately obvious when viewed from
MonTT as they are of the form

 moveq #??,d0 AES function number
 bsr CALL AES

As an aid to decoding these, here is a table listing all the AES calls and their hex function
numbers:

A appl_init B applread
C appl_write D appl_find
E appl_tplay F appl_trecord
13 appl_exit 14 evnt_keybd
15 evnt_button 16 evntjnouse
17 evntjnesag 18 evnt_timer
19 evnt_multi 1A evnt_dclick
1E menu_bar 1F menu_icheck
20 menu_ienable 21 menu_tnormal
22 menu_text 23 menu_register
28 objc_add 29 objcdelete
2A objc_draw 2B objc_find
2C objc_offset 2D objcorder
2E objc_edit 2F objc_change
32 form_do 33 form_dial
34 form_alert 35 form_error
36 forme-enter 37 formkeybd
38 form_button 46 grafrubberbox
47 grafdragbox 48 graf_movebox
49 graf_growbox 4A graf_shrinkbox
4B grafwatchbox 4C grafslidebox
4D graf_handle 4E graf_mouse
4F graf_mkstate 50 scrpread
51 scrpwrite 5A fsel_input
5B fsel_exinput 64 wind_create
65 wind_open 66 wind_close
67 wind_delete 68 wind_get
69 wind_set 6A wind_find
6B wind_update 6C wind_calc
60 wind_new 6E rsrc_load
6F rsrc_free 70 rsrc_gaddr
71 rsrc_saddr 72 rsrc_obfix
78 shel_read 79 shel_write
7A shel_get 7B shelput
7C shel_find 7D shel_envrn

The Operating System Hisoft Devpac 3 Page 215

GEM VDI Library

The calling sequence itself to the VDI is, like the AES, based on various arrays of words and
longwords. These arrays are defined using DS directives and are:

contrl words
intin words
ptsin words
intout words
ptsout words
vdi_params longwords

All (but one) VDI calls require a VDI handle, which by tradition is a parameter to every call.
However, the majority of programs only use one handle, to a virtual workstation (the screen),
so the supplied VDI libraries use a word called current_handle as the handle to pass on to
the VDI itself. This saves an appreciable amount of code and is the same way the HiSoft
BASIC libraries work. As the source to the library is supplied you could change this, if
required.

The macro file GEMMACRO.I should be used which defines various macros and, if generating
executable code, the file VDILIB.S should be included at the end of assembly.

The macros take a varying number of parameters and place them in the required places in the
VDI arrays, before making a call to a VDI library routine. The warning about # signs in
parameters described previously applies to the VDI too. There are a number of VDI macros
which do not take all the required parameters - additional information may have to be placed
in other arrays. On return, various return values can often be found in the intout and ptsout
arrays.

The following descriptions assume all parameters to be word sized, unless shown with a .L
suffix, denoting a longword parameter.

Control Functions

v_opnwk Open Workstation

This should not be used unless GDOS is installed. The intin array should be suitably
initialised, current_handle will be set to the result of this call.

v_clswk Close Workstation

v_opnvwk Open Virtual workstation

This uses current_handle to open another workstation and sets current_handle to the
result, intin is normally filled with 10 words of 1 and one word of 2 (denoting RC co-
ordinates).

The Operating System Hisoft Devpac 3 Page 216

v_clsvwk Close Virtual Workstation

v_clrwk Clear Workstation

v_updwk Update Workstation

vst_load_fonts Load Fonts

Do not attempt this unless GDOS is loaded.

vst_unload_fonts Unload Fonts

Fonts must be unloaded before a workstation is closed.

vs_clip flag,xl,yl,x2,y2 Set Clipping Rectangle

Output Functions

v_pline count Polyline

The input co-ordinates should be copied to intin before the call.

v_pmarker counf Polymarker

The input co-ordinates should be copied to intin before the call.

v_gtext x,y,string.L Text

The string should be in the from of null-terminated bytes.

v_fillarea count Filled Area

The input co-ordinates should be copied to in tin before the call.

The Operating System Hisoft Devpac 3 Page 217

v_contourfill x,y,index Contour Fill

vr_recfl x\,y1,x2,y2 Fill Rectangle

v_bar x1,yl,x2,y2 Bar

v_arc x,y,radius,start,end Arc

vpieslice x,y,radius,start,end Pie

v_circle x,y,radius Circle

v_ellarc x,y,xradius,yradius,start,end Elliptical Arc

v_ellpie x,y,xradius,yradius,start,end Elliptical Pie

v_ellipse x,y,xradius,yradius Ellipse

vjrbox xl,y I,x2,y2 Rounded Rectangle

v_rfbox xl,yl,x2,y2 Filled Rounded Rectangle

vjustified x,y,string.L,length,ws,cs Justified Graphics Text

The string should be null-terminated.

Attribute Functions

vswr mode mode Set Writing Mode

vs_color index,red,green,blue Set Colour Representation

vsl_type style Set Polyline Line Type

vsl_udsty pattern Set User Defined Line Style Pattern

vsl_width width Set Polyline Line Width

vsl color index Set Polyline Colour Index

vsl_ends begin,end Set Polyline End Styles

vsm_type symbol Set Polymarker Type

vsmjieight height Set Polymarker Height

vsm_color index Set Polymarker Colour Index

vstheight height Set Character Height, Absolute Mode

The ptsout array will contain the selected size.

The Operating System Hisoft Devpac 3 Page 218

vst_point point Set Character Height, Points Mode

The ptsout array will contain the selected size.

vstrotation angle Set Character Baseline Vector

vst_font font Set Text Face

vst_color index Set Graphic Text Colour Index

vst_effects effect Set Graphic Text Special Effects

vst_alignment horizontal,vertical Set Graphic Text Alignment

vsfjnterior style Set Fill Interior Style

vsf_style index Set Fill Style Index

vsf_color index Set Fill Colour Index

vsf_perimeter vis Set Fill Perimeter Visibility

vsf_udpat Set User Defined Fill Pattern

The intin array should be filled with the pattern and contrl[3] set suitably.

Raster Operations

vro_cpyfm mode,source.L,dest.L Copy Raster, Opaque

This is the general blit call, most often used for scrolling the screen. The source and
destination parameters should point to a memory form definition block (MFDB) which
describes the format of the memory to blit. An MFDB consists of ten words:

 rsreset
fd_addr rs.l 1 form address
fd_w rs.w 1 width in pixels
fd_h rs.w 1 height in pixels
fd_wdwidth rs.w 1 width in words
fd_stand rs.w 1 form flag
fd_nplanes rs.w 1 number of planes
fd_r1 rs.w 1 reserved, set to 0
fd_r2 rs.w 1 reserved, set to 0
fd_r3 rs.w 1 reserved, set to 0

The address in the first two words is normally either the screen address or the address of a
buffer being used for the blit. It can also be 0 if you are using a physical device such as the
screen, in which case the remainder of the fields will be filled in for you.

The width and height fields should be those suitable for the screen size and the number of
planes can be found from a vq_extnd 1 call in intout[4]. When scrolling the screen the
source and destination parameters may point to the same MFDB.

The Operating System Hisoft Devpac 3 Page 219

The source and destination rectangles should be placed in the ptsin array, each in the form
x1,y1,x2,y2. A mode of 3 means replace.

vrt_epyfm mode,source.L,dest.L,i 1,12 Copy Raster, Transparent

vr_trnfm source.L,destination.L Transform Form

v_get_pixel x,y Get Pixel

Input Functions

vex_timv newtimer Exchange Timer Interrupt Vector

v_show_c reset Show Cursor

v_hide_c Hide Cursor

vqmouse Sample Mouse Button State

vexbutv newxbuf Exchange Button Change Vector

vex_motv newmofv Exchange Mouse Movement Vector

vex_curv newcursor Exchange Cursor Change Vector

vq_key_s Sample Keyboard State Information

Inquire Functions

vqextnd flag Extended Inquire

vq_color index,flag Inquire Colour Representation

vql_attributes Inquire Polyline Attributes

vqm_attributes Inquire Polymarker Attributes

vqf_attributes Inquire Fill Area Attributes

vqt_attributes Inquire Graphic Text Attributes

vqt_extent string.L Inquire Text Extent

The string should be null-terminated, the results will be found in ptsout.

The Operating System Hisoft Devpac 3 Page 220

vqt_width char Inquire Character Cell Width

vqt_name number Inquire Face Name & Index

vqt_fontinfo Inquire Current Face Information

AES & VDI Program Skeleton

The general structure of a GEM-type program is as follows:

 shrink memory call

 call appl_init

 set current_handle to the result from graf_handle

 open a virtual workstation using this handle

 open a window, perhaps

main wait for events & act on them as required

quit close any window

 close virtual workstation

 call appl_exit

 finally p_term

Desk Accessories

A desk accessory is an executable file with the extension .ACC loaded during AES
initialisation. We have never seen any official documentation on desk accessories, and the
following information has been learnt the hard way, mainly when writing our Saved!
program.

The first thing to be wary of is that it is not a normal GEMDOS program. When it starts up all
registers including A7 are 0, with the exception of A0 which points to the basepage. An
accessory must include all the memory it requires within itself, the BSS segment being a good
place. An accessory must not do a GEMDOS shrink call or attempt to terminate.

The main loop of an accessory is like any other AES program, consisting of an event loop, but
note that most documentation details incorrect message numbers - AC_0PEN is really 40 and
AC_CL0SE is 41.

Other programmers have reported problems using the VDI from within an accessory. The
recommended method is to open a virtual workstation only when you have to (i.e. before
creating a window) and always close it (when you close your window or, failing that, when
receiving an AC_CL0SE message). The example accessory supplied, like our Saved! program,
does not use the VDI at all - paranoia rules!

The Operating System Hisoft Devpac 3 Page 221

If your accessory responds to timer events ensure that no GEMDOS calls (Trap #1s) are
made unless your window is the front one, otherwise time bombs will be set and a crash is
highly likely.

The file DESKACC.S contains the source to an example accessory, which simply displays the
system free memory in an alert box. It has a label called RUNNER which can be set to 1 to
produce a standalone application instead of an accessory. This can be invaluable during
program development as you can symbolically debug a standalone program, while an
accessory has to be debugged using AMon.

Linking with AES & VDI Libraries

The supplied macro file GEMMACRO.I is designed to be used in executable or linkable
programs. The files AESLIB.S and VDILIB.S contain the actual code and should be included at the
end of programs when generating executable code, but if generating linkable code they
should not. If you look at GEMTEST.S you can see how a conditional is used to make this
automatic.

When developing a program using these libraries we recommend executable code as it
greatly reduces development time. However the file size can be reduced by using the
selective library feature of the GST linker and using the GEMLIB.BIN library file.

So when you have produced a linkable file called GEMTEST.BIN, it can be linked with this
library by passing LinkST the command line

gemtest -wgemlib

The GEMLIB.LNK control file will do the rest. If you want to reduce your program to the
absolute minimum then you can change the libraries as you require, which is why we supply
the source code.

Menu Compiler

For those who wish to use menus without using a resource editor we supply the program
MENU2ASM.TTP which converts a menu definition file into assembly language source
statement for inclusion in your program. In general most people find using a resource editor,
such as HiSoft WERCS, considerably easier because of the immediate visual feedback.

The menu specification should be created in a text file with the extension .MDF and an
example follows:

[Desk | About Program]
[File I New \ Load \(-------\ Quit]
[Search | Find]

and so on. Line breaks are ignored. Each menu title and its items are enclosed in square
brackets [and]. There is a vertical bar (|) after each title and the individual items separated
by back-slashes (\). For grey items precede the text with an open parentheses (. The first
menu is always the desk title (normally Desk); the currently loaded desk accessories will be
added by the AES. (It is no coincidence that this is the same syntax as that accepted by our
BASICs).

We recommend that you precede each menu item with two spaces and have at least one space

The Operating System Hisoft Devpac 3 Page 222

after the item. Menu titles should have one space before and after them.

To compile a file double-click on MENU2ASM.TTP and enter the filename, without an extension.
It will produce a file with an extension of .MNU which may be included in your program.

The file MENUTEST.MDF contains an example definition of a menu and MENUTEST.S the source
code to a program illustrating its use, as well as showing other AES features.

VT52 Screen Codes

When writing to the screen via GEMDOS or the BIOS calls, the screen driver emulates VT52
protocols. The control codes are sent via escape sequences, which means an escape character is
sent (27 decimal, or $1B) followed by one or more other characters.

ESC A Cursor up; no effect if at the top line

ESC B Cursor down; no effect if at the bottom line

ESC C Cursor right; no effect if on the right hand side

ESC D Cursor left; no effect if on left hand side

ESC E Clear screen and home cursor

ESC H Home cursor

ESC I Move cursor up one line; if at top scrolls the screen down a line

ESC J Erase to end of screen, from the cursor position onwards

ESK K Clear to end of line

ESC L Insert a line by moving all following lines down. Cursor is positioned at start of the
new line

ESC M Delete a line by moving all following lines up

ESC Y Position cursor; should be followed by two characters, the first being the Y position,
the second the X. Row and column numbering starts at (32, 32) which is the top left

ESC b Foreground colour; should be followed by a character to determine the colour, of
which the four lowest bits are used

ESC C Background colour; similar to above

ESC d Erase from beginning of display to the cursor position

ESC e Enable cursor

ESC f Disable cursor

ESC j Save the current cursor position

ESC k Restore a cursor position saved using ESC j; note that this is not supported on the
original 1.0 ROMs

The Operating System Hisoft Devpac 3 Page 223

ESC l Erase a line and put cursor at start of line

ESC o Erase from start of line to cursor position

ESC p Inverse video on

ESC q Inverse video off

ESC V Wrap around at end of line on

ESC w Wrap around at end of line off

Note that the ESC j/ESC k pair do not work on the original ROM TOS (TOS 1.0).

Cookie Jar

If you wish to write a program that runs on the whole range of Atari 680x0 machines and
your program has enhanced code for particular hardware, how does it check to see that these
facilities are available? The answer is to look in the 'Cookie Jar'. This is a convention,
introduced in STE TOS, whereby the system (and third party suppliers) can indicate the
capabilities of the machine.

The long word at address $5A0 points to list of longword pairs. The first longword in a pair is
a 4 character ASCII name; the second word is a value corresponding to that name. The list is
terminated by a 0 long word as the name. Cookies beginning with _ are reserved for Atari's
system cookies and are as follows:

_CPU the bottom 2 digits of the main processor number (e.g.
$0 for 68000, $1E for 68030)

_FDC This gives an indication of the highest density floppy
unit installed in the machine. The high byte of its value
indicates the highest density floppy present:
0 360Kb/720Kb (double-density)
1 1.44Mb (high-density)
2 2.88Mb (extra-high-density)
The low three bytes give an indication of the origin of
the unit, the value 0x415443 CATC) indicates an Atari
line-fit or retro-fitted unit.

_FPU This gives an indication of any floating point unit
installed in the machine. Only the high word is used at
the time of writing. The bits are used as follows (when
set):
0 I/O mapped 68881 (e.g. Atari's SFP004)
1 68881 /68882 (unsure which)
2 If bit 1 == 0 then 68881, else 68882
3 68040 internal floating point support

_FRB 'Fast RAM Buffer'. This is used on the TT to give the
address of a 64K buffer in ST RAM that all ACSI devices
performing DMA can use, when transfers to TT RAM
are requested. It is not present if there is no fast RAM.

The Operating System Hisoft Devpac 3 Page 224

_MCH This gives the machine type; it consists of a minor
number (low word) and a major number (high word) as
follows:
Major Minor Machine
0 0 520/1040 or Mega ST
1 0 STe
1 16 Mega STe
2 0 TT
Normally you should use the more specific cookies
given above, in case some one has added a 68030
processor to an STe, for example.
One possible use for this cookie is to detect the presence
of the extra TT serial ports.

_SND This is bit oriented as follows:
bit 0 1 if ST style GI/Yamaha chip available bit 1 1
if TT/STe style DMA sound available

_SWI The STe and TT have internal configuration switches;
this gives their value.

_VDO the major/minor part number of the video shifter. At
present the least significant word is always zero and the
high word is one of:
0 ST
1 STe
2 TT

Although the cookie jar was introduced with STE TOS it can be retrofitted to earlier STs so
don't assume that if there is a Cookie Jar then you are running on at least and STE.

Here is a subroutine that looks in the cookie jar; it assumes that the program is running in
user mode.

*In D3 Cookie we are looking for
*Out EQ if found DO is value
* NE if not found
* Destroys A0-2,A4,D0-D2
GetCookie
 clr.w -(sp)
 move.w #super,-(sp)
 trap #1 into supervisor
 addq.l #6,sp
.storessp
 opt nochkimm
 move.l $5a0,a4 a4 is the Cookie Ptr
 opt chkimm
 move.l dO,-(sp)
 move.w #super,-(sp)
 trap #1 back into user
 addq.l #6,sp
 move.l a4,d0
 beq.s .failed
.loop move.l (a4)+,d0
 beq.s .failed
 cmp.l d0,d3
 beq.s .success
 addq.l #4,a3
 bra.s .loop

The Operating System Hisoft Devpac 3 Page 225

.success
 move.l (a4)+,d0
 cmp.b dO,dO EQ
 rts
.failed
 moveq #-1,d0 NE
 rts

Below is an example of the use of this routine to check th< program is running on a 68020 or
higher processor:

 move.l #'_CPU',d3
 bsr GetCookie
 bne.s .notfound
 cmp.b #20,dO
 bcc.s .ok
* Less than 68020 found - give error message
.notfound
...
.ok
* We have at least a 68020.

Operating system version numbers

The operating system version numbers on Atari 16 bit computers have been the source of a
great deal of confusion, not least because Atari have have changed the nomenclature they
themselves use. Note that there are many releases of the operating system after ROM version
1.62 (there are at least 5 or 6 different TOS 2.0x - Mega STE TOS and TOS 3.0x - TT TOS
releases).

Name ROM version s_version AES version
ROM $100 (1.00) $1300 (0.13) $120 (1.2)
Blitter $102 (1.02) $1300 (0.13) $120 (1.2)
Rainbow $104 (1.04) $1500 (0.15) $140 (1.4)
STE $106 $1500 (0.15) $140 (1.4)
 $162 (1.62) $1700 (0.17) $140 (1.4)
TT $301 (3.01) $1900 (0.19) $300 (3.0)

The hex version numbers shown are those returned by the appropriate OS call or structure;
the number shown in parentheses is the accepted nomenclature for these releases.

To check for BIOS and XBIOS features you should use the ROM version number or a suitable
cookie jar entry. It is best to use the GEMDOS version number (as returned by s_version)
and the AES version number (returned in the first word of the global array) when checking to
see if the appropriate OS facilities are available. This is not always possible, as ROM TOS and
Blitter TOS have the same AES version number, even though the AES was modified
considerably between these two versions.

The OS header

The OS header gives information about the system including the operating system version

The Operating System Hisoft Devpac 3 Page 226

number and the 'nationality' of the system. The structure is as follows:

 rsreset
os_entry rs.w 1 branch to reset handler
os_version rs.w 1 version number as above
reseth rs.l 1 address of reset handler
os_beg rs.l 1 base of the operating system
os_end rs.l 1 end of BIOS/XBIOS/VDI ram usage
os_rsvl rs.l 1 reserved
osjnagic rs.l 1 GEM memory usage parameter block
os_date rs.l 1 date of system build YYYYMMDD in BCD
os_conf rs.w 1 operating system configuration word
os_dosdate rs.w 1 date of system build in DOS format
p_root rs.l 1 pointer to base of the OS pool
p_kbshift rs.l 1 pointer to keyboard shift state var
p_run rs.l 1 pointer to current GEMDOS pid
p_rsv2 rs.l 1 reserved

The last four entries are only present on Blitter/Mega TOS (1.2) and above.

The bottom bit of the os_conf variable is 1 on PAL systems and 0 for NTSC. The other bits
contain the country code as follows:

USA equ 0 United States of America
FRG equ 1 Germany
FRA equ 2 France
UK equ 3 United Kingdom
SPA equ 4 Spain
ITA equ 5 Italy
SWE equ 6 Sweden
SWF equ 7 Switzerland (French)
SWG equ 8 Switzerland (German)
TUR equ 9 Turkey
FIN equ 10 Finland
NOR equ 11 Norway
DEN equ 12 Denmark
SAU equ 13 Saudi Arabia
HOL equ 14 Netherlands

The variable at $4F2 gives a pointer to the OS header, but some times this is a RAM copy
created by a harddisk driver which has some of the fields incorrect. So to see if you are
running on a U.K. system you could use:

 pea get_osheader(pc)
 move.w #supexec,-(a7)
 trap #14 run routine in supervisor
 addq.w #6,a7
 move.w os_conf(a3),d0
 lsr.b dO
 cmp.b #UK,dO
 bne.s .notuk
* UK specific code - e.g. £ for the currency symbol
get_osheader
 move.l $4F2.w,aO
 move.l os_beg(aO), a3
 rts

The Operating System Hisoft Devpac 3 Page 227

This code assumes that you have included XBIOS.I and the constants above.

Changing window colours

There have been two additions to the wind_set call in TT TOS which you may not find in
your AES documentation, so we give their details here. There are two new field types,
WF_COLOR($12) and WF_DCOLOR($13). WF_COLOR is used to change the colour attributes
for a particular window (the handle is passed in the word at int_in as usual) whereas
WF_DCOLOR is used to set the default colours. You should only use WF_DCOLOR if you are
providing a Control Panel style utility. Also, well mannered applications that set the window
colours allow the user to tailor those colours to their own preferences.

The next parameter of the field (starting at int_in+4) gives the element to be changed and
can be one of:

W_BOX 0 window's parent object
WJTITLE 1 parent of close,name and full areas
W_CL0SER 2 close box
W_NAME 3 title and move bar
W_FULLER 4 full box
W_INFO 5 info line
W_DATA 6 surrounds the 'lower7 window elements
WJWORK 7 application's work area

W_SIZER 8 size box
W_VBAR 9 surrounds the vertical scroll bar
WJJPARROW $A vertical scroll bar up arrow
W_DNARROW $B vertical scroll bar down arrow
W_VSLIDE $C vertical scroll bar background

W_VELEV $D vertical scroll bar position indicator
W_HBAR $E surrounds the vertical scroll bar
W_LFARROW $F horizontal scroll bar left arrow
W_RTARROW $10 horizontal scroll bar right arrow
W_HSLIDE $11 horizontal scroll bar background
W_VELEV $12 horizontal scroll bar position indicator

The following parameters (at int_in+6 and int_in+8) called tcolor and bcolor give the
colour words for the window when it is topped and when it is a background window
respectively. If either parameter has the value -1 then that component is left as it was.

The colour word format is the same as that used by AES objects, as follows:

Bits 15-12
Border
Colour

Bits 11-8
Text Colour

Bit 7
Transparent
/Opaque

Bits 6-4
Fill Pattern

Bits 3-0 Fill
Colour

The Operating System Hisoft Devpac 3 Page 228

Appendix E - The Floating Point
Co-processor

This Appendix is designed to give a quick overview of the 68881/68882 maths co-processor's
registers and formats as the Motorola M68000 Family Programmer's Reference Manual lacks
this, although it does include full details of the co-processor instructions.

The FPUs contain 8 data registers, named FP0-FP7, each of which stores an 80 bit extended
format number, and three control registers, the floating point control register (FPCR), floating
point status register (FPSR) and floating point instruction address register (FPIAR).

Although the floating point data registers always store 80 bit extended precision numbers, the
chip can convert these to and from a number of different formats as detailed below:

Extended precision

Extended precision format is stored in memory as 12 bytes. The bit layout is:

95 94-80 79-64 63-0
Sign Exponent zero Mantissa

The sign bit is 0 for positive numbers and 1 for negative numbers. The mantissa has an
implied binary point at bit 63 and thus ranges in value from 1.0 to <2.0.

The exponent is held in excess 16383 ($3FFF) format with values of 0 and $7FFF being treated
specially.

When the exponent is $7FFF, the value represents Not-A-Number (NaN), the type of which is
determined by the mantissa. Zero mantissas indicate infinity (°°), whilst non-zero mantissas
indicate other NaN conditions.

With an exponent of 0 there are two possibilities. The number zero is represented by all bits
zero, whereas other values are de-normalised numbers with an exponent of -16383 ($3FFF).

Double precision

The double precision IEEE format represents a number in 8 bytes. The bit layout is:

63 62-52 51-0
Sign Exponent Mantissa

The sign bit is 0 for positive numbers and 1 for negative numbers. The mantissa has an
implied binary point at bit 51 and thus ranges in value from 1.0 to <2.0.

The exponent is held in excess 1023 ($3FF) format with values of 0 and $7FF being treated
specially.

Floating point proccesor Hisoft Devpac 3 Page 229

When the exponent is $7FF, the value represents Not-A-Number (NaN), the type of which is
determined by the mantissa. Zero mantissas indicate infinity (°°), whilst non-zero mantissas
indicate other NaN conditions.

With an exponent of 0 there are two possibilities. The number zero is represented by all bits
zero, whereas other values are de-normalised numbers with an exponent of -1022 ($3FE).

Single Precision

The single precision IEEE format represents a number in 4 bytes. The bit layout is:

31 30-23 22-0
Sign Exponent Mantissa

The sign bit is 0 for positive numbers and 1 for negative numbers. The mantissa has an
implied binary point at bit 23 and thus ranges in value from 1.0 to <2.0.

The exponent is held in excess 127 format with values of 0 and $FF being treated specially.

When the exponent is $FF, the value represents Not-A-Number (NaN), the type of which is
determined by the mantissa. Zero mantissas indicate infinity (°°), whilst non-zero mantissas
indicate other NaN conditions.

With an exponent of 0 there are two possibilities. The number zero is represented by all bits
zero, whereas other values are de-normalised numbers with an exponent of -126.

Packed Decimal

Packed decimal numbers are stored is stored in memory as 12 bytes. The bit layout is:

Bit Meaning
95 Sign of mantissa.
94 Sign of exponent.
93-92 If %11 (i.e. both bits set) then a NAN or infinity (°°).

Otherwise 0. See below.
91-80 3 least significant digits of exponent in decimal.
76-79 Most significant digit of exponent in decimal on a

FMOVE. P to memory if a fourth digit is required;
otherwise don't care.

75-68 Don't care.
67-64 Most significant digit of the mantissa.
63-0 Remainder of digits of the mantissa.

If bits 93 and 92 are both one then bits 91-80 (the exponent) will be $FFF. If bits 63 to 0 are all
zero then this represents infinity (bit 95 giving the sign) otherwise the value is Not-A-Number
(NaN).

We will now discuss the floating point control registers.

Floating point proccesor Hisoft Devpac 3 Page 230

FPCR Floating point control register

Although this is a 32 bit register only the bottom two bytes are defined as yet. The more
significant byte is known as the FPCR Exception Enable Byte and controls whether particular
conditions will cause an exception (if the corresponding bit is one) or whether the appropriate
bit in the FPSR exception status byte is set. See below. The bits are as follows:

Bit Name Meaning
8 INEX1 Inexact decimal input
9 INEX2 Inexact operation
10 DZ Divide by zero
11 UNFL Underflow
12 OVFL Overflow
13 OPERR Operand error
14 SNAN Signalling Not-A-Number (NaN)
15 BSUN Branch/set on unordered

The least significant byte selects the rounding mode and rounding precision and is known as
the FPCR Mode Control Byte. It is laid out as follows:

Bits Name Meaning
3-0 Zero
5-4 ROUND Rounding direction. Towards:

00 nearest
01 zero
10 minus infinity
11 plus infinity

7-6 PREC Rounding precision:
00 Extended
01 Single
10 Double
11 Reserved

FPSR Floating point status register

This is a 32 bit register, which is divided into four bytes:

31-25
condition
code

24-17
quotient

16-8
exception
status

7-0
accrued
exception

The FPSR Condition Code Byte is updated after all the floating point instructions (other than
FMOVEM) whose destination is a single floating point register FP0-7. The bits are as follows:

Floating point proccesor Hisoft Devpac 3 Page 231

Bit Name Meaning
24 NAN Not a number
25 I Infinity
26 Z Zero
27 N Negative
31-28 Always 0

The quotient byte contains the sign of the quotient (bit 24) and 7 least significant bits (bits 23-
17) of the quotient after an FMOD or FREM instruction. This is normally used as the first stage
of performing approximations to trigonometric functions by taking the remainder after a
division by a fraction of pi.

The FPSR Exception Status Byte (EXC) is updated after all the floating point instructions (other
than FMOVEM) whose destination is a single floating point register FPO-7. The bits are as
follows:

Bit Name Meaning
8 INEX1 Inexact decimal input
9 INEX2 Inexact operation
10 DZ Divide by zero
11 UNFL Underflow
12 OVFL Overflow
13 OPERR Operand error
14 SNAN Signalling Not-A-Number (NAN)
15 BSUN Branch/set on unordered

In the FPSR Accrued Exception Byte (AEXC) the bits are 'sticky' i.e. only cleared by an explicit
move into the FPSR. It is updated after all the floating point instructions (other than FMOVEM)
whose destination is a single floating point register FP0-7. In the table below, the Exception
status bits column gives the condition in the FPSR Exception Status byte that will cause the
appropriate bit to be set:

Bit Name Exception status bits Meaning
2-0 Always 0
3 INEX INEX1!INEX2!0VFL Inexact
4 DZ DZ Divide by zero
5 UNFL UNFL&INEX2 Underflow
6 OVFL OVFL Overflow
7 IOP BSUN!SNAN!OPERR Invalid operation

In the table above, ! means OR and & meaning AND. Thus bit 3 of the AEXC will be set after an
instruction if it was already set or if the INEX1, INEX2 or OVFL bits in the EXC byte get set.

FPIAR Floating point instruction address
register

The floating point co-processor stores the current program counter in the floating point
instruction address register when it starts to process an instruction, so that exception handlers

Floating point proccesor Hisoft Devpac 3 Page 232

can determine the instruction that cause the exception. The handler cannot just look at its own
program counter as most of the floating point instructions are executed concurrently with the
main processor and so will refer to a later instruction.

Floating point proccesor Hisoft Devpac 3 Page 233

Appendix F - Converting from
other Assemblers

Most 68000 assemblers for TOS follow, to one degree or another, the Motorola standard.
While the instructions themselves are thankfully standard, the syntax rules for labels,
comments and directives can, and do, vary. This Appendix covers the changes most likely to
be made when converting programs from another assembler, whether they are your old
source files or a program listed in a magazine. It does not attempt to detail the differences in
user interfaces or options between the different assemblers.

Atari MadMAC

Devpac does not require colons after labels or comments to be delimited with semicolons, but
it does not allow instructions or directives to start in the label field.

The syntax and rules for local labels are the same, though $ and ? are not valid in Devpac
symbols. The use of \ in quoted strings may have to be changed, and some arithmetic
operators and priorities are different.

MadMAC allows directives to start with dot, if these are removed most directives are the
same as Devpac. Those that differ, and their Devpac equivalents, are:

ABS=OFFSET, ENDIF=ENDC, EXITM=MEXIT, GLOBL and EXTERN=XREF or XDEF,
EJECT=PAGE, TITLE=TTL, NLIST=NOLIST.

INIT can be converted to DC or DCB statements.

MadMAC s macro syntax is unique and its named parameters will need conversion,
equivalents for its parameters are \ -= \ @ and \ ? can be emulated using IFC or IFNC. The
6502 options of MadMAC are not supported.

GST-ASM

GST-ASM labels are significant only to the first 8 characters and are case insensitive so OPT
C8- may be required. Its rules for expression evaluation are very similar though $ is not
allowed within a Devpac symbol.

Most directives are the same, those requiring name changes are PAGEWID=LLEN and
PAGELEN=PLEN. Macro definitions will require conversion as will GST's unique form of local
symbols.

Built-in functions and structure statements are not supported.

MCC Assembler

Very few changes are required, only the string operators are not supported and the need to
add .L to XREF directives of absolutes.

Converting Hisoft Devpac 3 Page 234

K-Seka

Colons are not required after labels in Devpac though instructions or directives that start in
the label field will need a tab added before them. Several Seka directives default to byte
instead of word sizes for some reason. Equivalent directives names are:

D=DC, BLK=DS, CODE=SECTION TEXT, IF=IFNE, ENDIF=ENDC.

Macro syntax requires ?s to be changed to \s, except ?0 which should be replaced with \ @.

Fast ASM

The syntax of Fast ASM was designed around Gen 1.2 so few changes are required. Tokenised
source files will need conversion to ASCII (using the Clipboard) before attempting to load
them into the Devpac editor. The main change involves comment delimiters - Fast ASM lines
starting with \ should be changed to start with * or ; - \ s used after instructions will not
require any changes.

Converting Hisoft Devpac 3 Page 235

Appendix G - New Features

Summary of Version 3 Improvements

This section is intended as a quick guide to the main additional facilities that Devpac 3
provides for users who are familiar with version 2.2 of DevpacST. Users of earlier versions of
DevpacST 2 should note that a considerable number of features were added during its life
time.

We will give an overview of the new features here; for further details you should consult the
relevant sections of this manual.

The Editor

This has been greatly enhanced, with multi-window editing, full mouse control, bookmarks,
cut-and-paste, pop-up option menus, visual shell facilities, faster search and replace, different
font sizes being some of the major highlights.

The Assembler

The assembler now fully supports all the 68000 to 68040 and 68332 processors, the 68881/2
maths co-processor and the 68851 MMU. It can also produce S-records & Lattice linkable code
in addition to standard TOS executable and DRI/GST linkable code. To complement the
production of S-records we supply an S-record splitter for use with EPROMs that are not the
same width as the processor's bus.

The assembler can now generate and process pre-assembled include files. This increases the
speed of assembly of programs that use the operating system include files.

LINE and HCLN debug hunks can be generated so that debuggers (including Mon version 3)
can track the source code that corresponds to a given address and vice versa.

The range of options has been extended and options may now be specified by name rather
than using cryptic letters. Command line support has been enhanced to allow the setting of
labels and otherwise unavailable options. Options are also read from a default file and this
can be created using the editor.

The assembler now gives an indication of where in a line an error was detected. The full
range of relational operators are now supported.

Options have been added for listings on pass 1 and for tracing conditional assembly. The use
of privileged instructions can now be controlled using the SUPER and USER options.

Further optimisation facilities are provided.

The CARGS and RADIX directives have been added.

\# may now be used as a synonym for NARGS in macros and the macro .w feature has been
added for macros that must generate code on even boundaries. \? may be used to find the
length of a macro parameter.

New features Hisoft Devpac 3 Page 236

Default module names are more descriptive.

Compatibility Issues

Most source files should assemble with no changes although the new directive names may
clash with existing macro names. Also .b may not be used as a local label.

If you are using shell scripts or make files you should note that the standalone version of the
assembler is now called Gen.

The GEMMACRO.S file has been renamed GEMMACRO.I.

The Debugger

The front panel window display of Mon can now be organised as you wish. Windows can be
split horizontally, vertically and also stacked in order to extend the number of available work
areas. Each stacked window may be locked to an arbitrary expression allowing interactive
monitoring of complex data structures.

Any number of source files may be loaded into each window along with any associated line
number debugging information such as that output by Gen. Multi-module programs can thus
be single stepped line by line from your original source file. Two powerful new operators are
provided which convert a program address into a source line number and locate any part of
the program from its position in the source.

Mon 'understands' the new video modes, 68030 and 68881 registers and instructions and the
TT memory map. It also includes commands to read and write individual hardware ports via
the Query Port and Transfer to Port commands, compare memory and dynamic symbol table
loading. The full range of relational operators are now supported.

Integration

The integration of the package has been further enhanced so that the Next Error (Alt-J)
command now works in multiple files and the assembler will read include files from memory
without the need to save these to disk. The full range of assembly options is now available via
the assembly option dialogs.

New tools

Devpac 3 also includes CLink, the Lattice C format linker, our reset-proof ramdisk, more
include files for accessing the operating system and a utilities for splitting S-record files,
SRSplit and removing debug information from files, Strip.

Features added to Devpac ST 2

This section indicates some of features that were added to DevpacST 2 before version 2.2 was
released; if you are familiar with an early version of this product you should find it useful.

The operating system libraries have been expanded to cover the new calls that been

New features Hisoft Devpac 3 Page 237

introduced.

Mon

Labels that are embedded in data areas, and full MOVEM register lists are now shown when
disassembling to disk. The search command is now more flexible.

Gen

A number of new optimisations and error checking options were added. The @ character is
now allowed in symbols. Labels may be defined on the command line and this version of the
assembler returns an appropriate GEMDOS return code. Local labels ending with a $ are now
supported.

The GEMDOS header load bits by now be set using COMMENT HEAD=. The new directives
TEXT, DATA and BSS are supported for increased compatibility. One line IFs (via the IIF)
are also available.

LinkST

LinkST is very much faster than its original version.

New features Hisoft Devpac 3 Page 238

Appendix H - Technical Support
HiSoft Devpac comes with 30 days free technical support, starting from the date of
registration; therefore you should send in your registration card quickly. Technical support is
available by telephone during our Technical Support Hour, by letter or by fax.

Should you wish to receive extended technical support, please complete the relevant sections
on the registration card, indicating whether you would like to take up the Silver or the Gold
service.

In addition to your name, address and postcode (very important for UK customers), we need
payment details before we can accept your extended registration. You can pay by credit card
(Mastercard, Eurocard, Access, Visa etc.), UK debit card (Switch, Connect etc.), Eurocheque,
UK cheque or Postal Order.

You may have already registered another HiSoft product under our Gold or Silver service; in
this case, there is no need to fill out the payment section.

Technical support Hisoft Devpac 3 Page 239

Appendix I -

Bibliography
This bibliography contains our suggestions for further reading on the subject of the Atari's
operating system, 680x0 assembly language and programming in general. The views
expressed are our own and as with all reference books there is no substitute for looking at the
books in a good bookshop before making a decision.

Atari

DocSupport 1 - GEMDOS/BIOS & General Programming
 Atari Corp. (UK) Ltd. [1991]

Atari Corp. (UK) Ltd, Atari House, Railway Terrace, Slough, SL2 5BZ, England.

DocSupport 2 New Machine Programming Guides
 Atari Corp. (UK) Ltd. [1991]

Atari Corp. (UK) Ltd, Atari House, Railway Terrace, Slough, SL2 5BZ, England.

DocSupport 3 - GEM Virtual Device Interface/GEM Application
Environment Services
 Atari Corp. (UK) Ltd. [1991]

Atari Corp. (UK) Ltd, Atari House, Railway Terrace, Slough, SL2 5BZ, England.

Atari ST Internals 3rd Edition
 Brückmann, Rolf, Lothar Englisch and Klaus Gerits [1988]

ISBN 0-916439-46-1, Data Becker GmbH, Merowingerstrafie 30, 4000 Diisseldorf, Germany.

COMPUTE! s Technical Reference Guide, Atari ST

Volume I: VDI Sheldon Lee man [1987]

ISBN 0-87455-093-9, COMPUTE! Publications, Inc., P.O. Box 5406 Greensboro, NC 27403,
USA.

Concise Atari ST 68000 Programmer's Reference
 Katherine D. Peel [1986]

ISBN 1-85181-017-X, Glentop Publishers Ltd., Standfast House, Bath Place, High Street Barnet,
Herts EN5 5XE, U.K.

Professional GEM Oren, Tim [1985]

ANTIC Publishing

Bibliography Hisoft Devpac 3 Page 240

Programmers Guide to GEM
 Balma, Phillip and William Fitler [1986]

ISBN 0-89588-297-3, SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710, USA.

680x0

68000 Assembly Language Programming 2nc' Edition
 Kane, G., D.Hawkins and L.Leventhal [1987]

ISBN 0-07-881232-1, Osborne/McGraw-Hill, 2600 Tenth Street, Berkely, CA 94710, USA.

68000, 68010, 68020 Primer
 Kelly-Bootle, Stan and Bob Fowler [1985]

ISBN 067-22405-4, Howard' W.Sams & Co., 4300 W.62nd Street, Indianapolis, IN 46268, USA.

Mastering The 68000 Microprocessor
 Robinson, Phillip R. [1985]

ISBN 0-8306-1886-4, Tab Books Inc., Blue Ridge Summit, PA 17214, USA.

Microprocessor Systems: A 16-Bit Approach
 Eccfes, William J. [1985]

ISBN 0-201-11985-4, Addison-Wesley Publishing Company, Reading, MA, USA.

Programming the 68000 Williams, Steve [1985]

ISBN 0-89588-133-0, SYBEX Inc., 2021 Challenger Drive #100, Alameda, CA 94501, USA.

M68000 Family Programmer's Reference Manual
 Motorola Inc. [1989]

Motorola Literature Distribution, P.O. Box 20912 Phoenix, AZ 85036, USA.

M68000 8-/16-/32-Bit Microprocessors User's Manual
7th Edition Motorola Inc. [1989]

ISBN 0-13-567074-8, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

MC68020 32-Bit Microprocessors User's Manual
 Motorola Inc. [1985]

ISBN 0-13-566878-6, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

Bibliography Hisoft Devpac 3 Page 241

MC68030 32-Bit Microprocessors User's Manual
 Motorola Inc. [1987]

Motorola Literature Distribution, P.O. Box 20912 Phoenix, AZ 85036, USA.

MC68EC020 32-Bit Embedded Controller User's Manual
 Motorola Inc. [1991]

Motorola Literature Distribution, P.O. Box 20912 Phoenix, AZ 85036, USA.

MC68EC030 32-Bit Embedded Controller User's Manual
 Motorola Inc. [1990]

Motorola Literature Distribution, P.O. Box 20912 Phoenix, AZ 85036, USA.

MC68040 Microprocessors User's Manual
 Motorola Inc. [1992]

Motorola Literature Distribution, P.O. Box 20912 Phoenix, AZ 85036, USA.

MC68881/MC68882 FPU User's Manual
 Motorola Inc. [1987]

ISBN 0-13-566936-7, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

MC68851 PMMU User's Manual Motorola Inc. [1989]

ISBN 0-13-566993-6, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

Algorithms & Data Structures

Compilers: Principles, Techniques and Tools
 Aho, Alfred V, Ravi Sethi and Jeffrey D. Ullman [1986]

ISBN 0-201-10194-7, Addison-Wesley Publishing Company, Reading, MA, USA.

Algorithms Sedgewick, Robert [1988]

ISBN 0-201-06673-4, Addison-Wesley Publishing Company, Reading, MA, USA.

Data Structures and Algorithms
 Aho, Alfred V, John E. Hopcroft et al [1983]

ISBN 0-201-00023-7, Addison-Wesley Publishing Company, Reading, MA, USA.

Fundamental Algorithms Knuth, Donald E. [1973]

ISBN 0-201-03809-9, Addison-Wesley Publishing Company, Reading, MA, USA.

Bibliography Hisoft Devpac 3 Page 242

Seminumerical Algorithms Knuth, Donald E. [1981]

ISBN 0-201-03822-9, Addison-Wesley Publishing Company, Reading, MA, USA.

Sorting and Searching Knuth, Donald E. [1973]

ISBN 0-201 -03803-X, Addison-Wesley Publishing Company, Reading, MA, USA.

Bibliography Hisoft Devpac 3 Page 243

	Chapter I - Introduction
	Introduction
	Devpac 3 Disk Contents
	Making a Working Copy
	Registration Card
	The README File
	Installation
	How to use the Manual
	A Course for the Beginner
	A Course for Seasoned Assembler Programmers
	Devpac Version 2 Users
	System Requirements
	Typography
	Typefaces
	Type styles
	Special Characters

	Acknowledgements
	A Quick Tutorial

	Chapter 2 - Using the Editor
	Introduction
	A word about pop-up menus and dialogs
	The Editor's windows
	Switching Windows
	Entering text and moving the cursor
	Cursor keys
	Tab key
	Backspace key
	Delete key
	The Edit menu
	Go to top of file
	Go to end of file
	Goto line
	Block Commands
	Marking a block
	The Clipboard: Copy, Cut & Paste
	Saving a block
	Copying a block
	Deleting a block
	Copy block to block buffer
	Pasting a block
	Printing a block
	Deleting text
	Delete line
	Delete to end of line
	UnDelete Line
	Delete block

	Searching and Replacing Text
	Bookmarks
	Disk Operations
	New
	Loading Text
	Revert
	Save As...
	Save
	Inserting Text
	Delete File
	Close
	Change Directory
	Quitting HiSoft Devpac
	Configuring the editor
	Auto-indent lines
	Auto-save configuration
	Cursor mode numeric pad
	Hide mouse when typing
	Make backups
	Show matching parentheses
	Stop at end of line
	Save files on Quit
	Save files on run other
	Tab setting
	Text Buffer
	Cursor
	Load...
	Saving preferences
	Reset
	Running other programs
	Tools Menu
	Menu entry
	Command line
	Directory
	Save files
	Path
	Pause on return
	Report all errors
	Run as TOS & Run as GEM
	Make resident
	Running Tools
	Run Other…

	Run with Shell...
	Setting the Path
	Environment...
	Miscellaneous Commands
	Fonts...
	About Devpac-3...
	ASCII Table...
	Help Screen
	Desk Accessories
	Automatic Launching
	The Program Menu
	Assemble
	Check
	Output Symbols
	Running Programs
	Please Note

	Run with GEM
	Run Directory
	Debug
	Mon
	Debugger options
	Auto '©'/'_' prefix labels
	Auto-load source
	Display 'ZAn' in disassembly
	Enable timed screen switching
	Follow TRAPs
	Ignore cartridge area
	Ignore label case
	Interpret relative offsets
	Symbol significance: sig
	Source line numbers
	Start at label: label

	Assembly Errors
	Resident Tools

	Chapter 3 - The Assembler
	Introduction
	Invoking the Assembler
	From the Editor
	The Control dialog
	The Listing dialog
	The Options dialog
	The Optimisations dialog

	Running the assembler
	Assembly to Memory
	Stand-Alone Assembler
	Command Line Format
	Defining Labels on the Command-Line

	Assembly Process
	Return Codes
	Binary file types
	Output Filename

	Types of code
	Assembler Statement Format
	Label field
	Mnemonic Field
	Operand Field
	Comment Field
	Examples of valid lines

	Expressions
	Operators
	Numbers
	Character Constants
	Floating point constants
	Allowed Type Combinations
	Addressing Modes
	Extended Index Registers for 68020
	New 68020 Modes
	bd - Base Displacement
	Xn - Index Register, with optional size and scale
	od - Outer Displacement

	New 68020 Syntax for Old Modes
	Ordering Rules
	Data Register Indirect
	Special Addressing Modes

	Local Labels
	Symbols and Periods

	Instruction Set
	Word Alignment
	Instruction Set Extensions
	Condition Codes
	Branch instructions
	DBRA Instruction
	ILLEGAL Instruction
	LINK Instruction
	MOVE from CCR Instruction
	MOVEQ Instruction

	Assembler Directives
	Assembly Control
	 END
	 INCLUDE filename
	Pre-assembled files
	 INCDIR pathnamelisf
	 OPT option[,option ...]

	Processor selection
	68020 Default Displacement Sizes
	Branch Control
	Symbol Case Sensitivity
	Listing Control
	Output File Format
	Optimisation
	Source Checking
	Miscellaneous
	Option Summary

	Assembler Directives
	 FAIL
	 __LK (reserved symbol)

	Repeat Loops
	[label] REPT expression
	 …
	 ENDR

	Listing Control
	 LIST
	 NOLIST
	 PLEN expression
	 LLEN expression
	 TTL string
	 SUBTTL string
	 SPC expression
	 PAGE
	 LISTCHAR expression[,expression ...]
	 FORMAT parameter[,parameter ...]

	Label Directives
	label EQU expression
	label = expression
	label EQUENV var
	label EQUR register
	label SET expression
	label REG register-list
	Defining offsets
	 RSRESET
	 RSSET expression
	 RS (reserved symbol)
	 OFFSET expression
	 CARGS [#offset,]lab1.size[,lab2.size ...J

	Floating Point Directives
	label FEQU.x constant
	 FOPT option[,option...]

	Conditional Assembly
	 IFEQ expression
	 IFNE expression
	 IFGT expression
	 IFGE expression
	 IFLT expression
	 IFLE expression
	 IIF exp-statement
	 IFD label
	 IFND label
	 IFC “string1”, “string2”
	 IFNC “string1”, “string2”
	 ELSEIF
	 ELSE
	 ENDC

	Macro Operations
	label MACRO
	Macro Parameters
	Macro Examples
	Example I - Calling the BDOS
	Example 2 - an INC instruction
	Example 3 - A Factorial Macro
	Example 4 - Conditional Return Instruction
	Example 5 - Numeric Substitution
	Example 6 - Processor selection
	Example 7 - Complex Macro Call

	Output File Directives
	Atari Executable (ATARI, L0)
	 OPT DEBUG
	 OPT XDEBUG
	 OPT LINE
	 OPT HCLN
	 COMMENT HEAD=expression
	 TEXT
	 CODE
	 DATA
	 BSS
	 ORG expression

	GST Linkable (GST, L1)
	Expressions containing imports
	Writing GST Libraries

	DRI Linkable (DRI, L2)
	Motorola S-records (SREC, 16)
	Lattice C linkable (LATTICE, 17)
	Using Imports in Expressions

	Directive Summary
	Assembly Control
	Repeat Loops
	Listing Control
	Label Directives
	Floating Point Directives
	Conditional Assembly
	Macros
	Output File Directives
	Reserved Symbols

	Chapter 4 - The Debugger
	Introduction
	Mon Concepts
	Exceptions
	Front Panel Display
	Mon's Windows
	Stacking Windows
	Locking Windows
	The Current Window

	Symbolic Debugging
	Mon Dialogs
	Command Input
	Mon Overview
	Starting Mon
	Debugging a Program

	Mon Reference
	Numeric Expressions
	Source Operators
	Indirection
	Memory Registers

	Window Types
	Register Window
	Disassembly Window
	Memory Window
	Source Window

	Cursor Keys
	Window Commands
	Other Alt- Commands
	Screen Switching
	Breaking into Programs
	Breakpoints
	Simple Breakpoint [1]
	Stop Breakpoint [n]
	Count Breakpoint [=]
	Permanent Breakpoint [*]
	Conditional Breakpoint [?]

	History
	Quitting Mon
	Loading & Saving
	Executing Programs

	Searching Memory
	Searching Source-Code Windows

	Miscellaneous
	Screen timer
	Follow traps
	NOTRACE Program
	Auto load source file
	Source line numbers
	Automatic '_' or '@' prefix
	Ignore case
	Start at label
	Symbol length
	Relative offsets
	Display ZAn in disassembly
	Ignore Cartridge Area
	Top of RAM/Top of ST RAM
	Top of TT RAM
	Save preferences
	Printer Output

	Auto-Resident Mon
	Command Summary
	Window Commands
	Screen Switching
	Breakpoints
	Loading and Saving
	Executing Programs
	Searching Memory
	Miscellaneous

	Debugging Stratagem
	Hints & Tips
	Bug Hunting
	AUTO-folder programs
	Desk Accessories
	Exception Analysis
	Bus Error
	Address Error
	Illegal Instruction
	Privilege Violation
	Divide by Zero
	Floating Point Exceptions

	Chapter 5 – Clink The Linker
	A simple CLink command line
	Concepts
	ALVs
	Near DATA/BSS
	Directives
	Input directives
	Output directives
	Pre-linking

	Map files
	Options
	'WITH' files
	CLINKWITH; the Clink environment variable
	Reserved symbols
	CLink Messages
	CLink Warnings/messages
	Clink Errors

	Chapter 6 - Other Tools
	S-record Splitter
	Command line examples
	Ramdisk
	Symbol Strip Utility
	Example

	Appendix A - GEMDOS error codes
	Appendix B - Devpac error messages
	Errors
	Warnings

	Appendix C - TOS Memory Map
	The Different Sorts of RAM
	Processor Dump Area
	Base Page Layout
	Hardware Memory Map

	Appendix D - GST Support
	LinkST, The GST format linker
	Introduction
	Invoking LinkST
	Example Command Lines

	LinkST Running
	Control Files
	LinkST Warnings
	LinkST General Errors
	LinkST Input/Output (I/O) Errors
	LinkST Binary File Errors
	'Linker Bug' Messages

	GSTlib, The GST format librarian
	Replace modules
	Update modules
	Load modules
	Delete modules
	Move modules
	Tabulate modules
	Extract modules
	Librarian command files
	Example command lines

	Appendix D - Calling the Operating System
	GEMDOS - Disk and Screen I/O
	Program Startup and Termination
	GEMDOS Summary
	BIOS - Basic I/O System
	XBIOS Extended BIOS
	GEM Libraries
	GEM AES Library
	Application Library
	Event Library
	Menu Library
	Object Library
	Form Library
	Graphics Library
	Scrap Library
	File Selector Library
	Window Library
	Resource Library
	Shell Library
	Debugging AES Calls

	GEM VDI Library
	Control Functions
	Output Functions
	Attribute Functions
	Raster Operations
	Input Functions
	Inquire Functions
	AES & VDI Program Skeleton
	Desk Accessories
	Linking with AES & VDI Libraries
	Menu Compiler
	VT52 Screen Codes
	Cookie Jar
	Operating system version numbers
	The OS header
	Changing window colours

	Appendix E - The Floating Point Co-processor
	Extended precision
	Double precision
	Single Precision
	Packed Decimal
	FPCR Floating point control register
	FPSR Floating point status register
	FPIAR Floating point instruction address register

	Appendix F - Converting from other Assemblers
	Atari MadMAC
	GST-ASM
	MCC Assembler
	K-Seka
	Fast ASM

	Appendix G - New Features
	Summary of Version 3 Improvements
	The Editor
	The Assembler
	Compatibility Issues

	The Debugger
	Integration
	New tools
	Features added to Devpac ST 2
	Mon
	Gen
	LinkST

	Appendix H - Technical Support
	Appendix I -
	Bibliography
	Atari
	680x0
	Algorithms & Data Structures

