
Converted 2006 by Andreas Bertelmann for ABBUC

Atari BASIC Source book

http://www.abbuc.de
http://www.atari-portal.de

Contents

Teil I Atari BASIC: A High-Level
Language Translator 3

Teil II Internal Design 8

Teil III Memory Usage 13

Teil IV Program Editor 21

Teil V Pre-Compiler 26

Teil VI Execution 36

Teil VII Execute Expression 40

Teil VIII Execution Boundary Conditions 49

Teil IX Program Flow Control Statements 52

Teil X Tokenized Program Save and
Load 56

Teil XI The LIST and ENTER Statements 59

Teil XII Atari Hardware Control
Statements 63

Teil XIII External Data I/O Statements 66

Teil XIV Internal I/O Statements 71

Teil XV Miscellaneous Statements 73

Teil XVI Initialization 76

Index 77

Atari BASIC Source bookI

Converted 2006 by Andreas Bertelmann for ABBUC

Converted 2006 by Andreas Bertelmann for ABBUC

Atari BASIC: A
High-Level Language

Translator

Part

I

3 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

1 Atari BASIC: A High-Level Language Translator
The programming language which has become the de facto standard for the
Atari Home Computer is the Atari 8K BASIC Cartridge, known simply as
Atari BASIC. It was designed to serve the programming needs of hoth the
computer novice and the experienced programmer who is interested in
developing sophisticated applications programs. In order to meet such a
wide range of programming needs, Atari BASIC was designed with some
unique features.

In this chapter we will introduce the concepts of high level language
translators and examine the design features of Atari BASIC that allow it
to satisfy such a wide variety of needs.

Language Translators

Atari BASIC is what is known as a high level language translator.

A language, as we ordinarily think of it, is a system for communication.
Most languages are constructed around a set of symbols and a set of
rules for combining those symbols. The English language is a good
example. The symbols are the words you see on this page. The rules that
dictate how to combine these words are the patterns of English grammar.
Without these patterns, communication would be very difficult, if not
impossible: Out sentence this believe, of make don't this trying if
sense you to! If we don't use the proper symbols, the results are also
disastrous: @twu2 yeggopt gjsiem, keorw?

In order to use a computer, we must somehow communicate with it. The
only language that our machine really understands is that strange but
logical sequence of ones and zeros known as machine language. In the
case of the Atari, this is known as 6502 machine language.

When the 6502 central processing unit (CPU) "sees" the sequence 01001000
in just the right place according to its rules of syntax, it knows that
it should push the current contents of
the accumulator onto the CPU stack. (If you don't know what an
"accumulator" or a "CPU stack" is' don't worry about it. For the
discussion which follows, it is sufficient that you be aware of their
existence.)

Language translators are created to make it simpler for humans to
communicate with computers. There are very few 6502 programmers, even
among the most expert of them, who would recognize 01001000 as the push-
the-accumulator instruction. There are more 6502 programmers, but still
not very many, who would recognize the hexadecimal form of 01001000,
$48, as the push-the-accumulator instruction. However, most, if not all,
6502 programmers will recognize the symbol PHA as the instruction which
will cause the 6502 to push the accumulator.

PHA, $48, and even 01001000, to some extent, are translations from the
machine's language into a language that humans can understand more
easily. We would like to be able to communicate to the computer in
symbols like PHA; but if the machine is to understand us, we need a
language translator to translate these symbols into machine language.

The Debug Mode of Atari's Editor/Assembler cartridge, for example, can
be used to translate the symbols $48 and PHA to the ones and zeros that
the machine understands. The debugger can also translate the machine's
ones and zeros to $48 and PHA. The assembler part of the
Editor/Assembler cartridge can be used to translate entire groups of
symbols like PHA to machine code.

4Atari BASIC: A High-Level Language Translator

Converted 2006 by Andreas Bertelmann for ABBUC

Assemblers

An assembler - for example, the one contained in the Assembler/Editor
cartridge - is a program which is used to translate symbols that a human
can easily understand into the ones and zeros that the machine can
understand. In order for the assembler to know what we want it to do, we
must communicate with it by using a set of symbols arranged according to
a set of rules. The assembler is a translator, and the language it
understands is 6502 assembly language.

The purpose of 6502 assembly language is to aid program authors in
writing machine language code. The designers of the 6502 assembly
language created a set of symbols and rules that matches 6502 machine
language as closely as possible.

This means that the assembler retains some of the disadvantages of
machine language. For instance, the process of adding two large numbers
takes dozens of instructions in 6502 machine language. If human
programmers had to code those dozens of instructions in the ones and
zeros of machine language, there would be very few human programmers.

But the process of adding two large numbers in 6502 assembly language
also takes dozens of instructions. The assembly language instructions
are easier for a programmer to read and remember, but they still have a
One-to-one core respondence with the dozens of machine language
instructions. The programming is easier, but the process remains the
same.

High Level Languages
High level languages, like Atari BASIC, Atari PILOT, and Atari Pascal,
are simpler for people to use because they more closely approximate
human speech and thought patterns. However, the computer still
understands only machine language. So the high level languages, while
seeming simple to their users, are really much more complex in their
internal operations than assembly language.

Each high level language is designed to meet the specific need of some
group of people. Atari Pascal is designed to implement the concept of
structured programming. Atari PILOT is designed as a teaching tool.
Atari BASIC is designed to serve both the needs of the novice who is
just learning to program a computer and the needs of the expert
programmer who is writing a sophisticated application program, but wants
the program to be accessible to a large number of users.

Each of these languages uses a different set of symbols and symbol-
combining rules. But all these language translators were themselves
written in assembly language.

Language Translation Methods
There are two different methods of performing language translation -
compilation and interpretation. Languages which translate via
interpretation are called interpreters. Languages which translate via
compilation are called compilers.

Interpreters examine the program source text and simulate the operations
desired. Compilers translate the program source text into machine
language for direct machine execution.

The compilation method tends to produce faster, more efficient programs
than does the interpretation method. However, the interpretation method
can make programming easier.

Problems with the Compiler Method

5 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

The compiler user first creates a program source file on a disk, using a
text editing program. Then the compiler carefully examines the source
program text and generates the machine language as required. Finally,
the machine language code is loaded and executed. While this three-step
process sounds fairly simple, it has several serious 'gotchas."

Language translators are very particular about their symbols and symbol-
combining rules. If a symbol is misspelled, if the wrong symbol is used,
or if the symbol is not in exactly the right place, the language
translator will reject it. Since a compiler examines the enure program
in one gulp, one misplaced symbol can prevent the compiler from
understanding any of the rest of the program - even though the rest of
the program does not violate any rules! The result is that the user
often has to make several trips between the text editor and the compiler
before the compiler successfully generates a machine language program.

But this does not guarantee that the program will work. If the
programmer is very good or very lucky, the program will execute
perfectly the very first time. Usually, however, the user must debug the
program.

This nearly always involves changing the source program, usually many
times. Each change in the source program sends the user back to step
one: after the text editor changes the program, the compiler still has
to agree that the changes are valid, and then the machine code version
must be tested again. This process can be repeated dozens of times if
the program is very complex.

Faster Programming or Faster Programs?
The interpretation method of language translation avoids many of these
problems. Instead of translating the source code into machine language
during a separate compiling step, the interpreter does all the
translation while the program is running. This means that whenever you
want to test the program you're writing, you merely have to tell the
interpreter to run it. If things don't work right; stop the program,
make a few changes, and run the program again at once.

You must pay a few penalties for the convenience of using the
interpreter's interactive process, but you can generally develop a
complex program much more quickly than the compiler user can.

However, an interpreter is similar to a compiler in that the source code
fed to the interpreter must conform to the rules of the language. The
difference between a compiler and an interpreter is that a compiler has
to verify the symbols and symbol-combining rules only once - when the
program is compiled. No evaluation goes on when the program is running.
The interpreter, however, must verify the symbols and symbol-combining
rules every time it attempts to run the program. If two identical
programs are written, one for a compiler and one for an interpreter, the
compiled program will generally execute at least ten to twenty times
faster than the interpreted program.

Pre-compiling Interpreter
Atari BASIC has been incorrectly called an interpreter. It does have
many of the advantages and features of an interpretive language
translator, but it also has some of the useful features of a compiler. A
more accurate term for Atari's BASIC Language Translator is pre-
compiIing interpreter.

Atari BASIC, like an interpreter, has a text editor built into it. When
the user enters a source line, though, the line is not stored in text
form, but is translated into an intermediate code, a set of symbols
called tokens. The program is stored by the editor in token form as each
program line is enterred. Syntax and symbol errors are weeded out at

6Atari BASIC: A High-Level Language Translator

Converted 2006 by Andreas Bertelmann for ABBUC

that time.

Then, when you run the program, these tokens are examined and their
functions simulated; but hecause much of the evaluation has already been
done, the execution of an Atari BASIC program is faster than-that of a
pure interpreter. Yet Atari BASIC's program-building process is much
simpler than that of a compiler.

Atari BASIC has advantages over compilers and interpreters alike. With
Atari BASIC, every time you enter a line it is verified for language
correctness. You don't have to wait until compilation; you don't even
have to wait until a test run. When you type RUN you already know there
are no syntax errors in your program.

Converted 2006 by Andreas Bertelmann for ABBUC

Internal Design

Part

II

8Internal Design

Converted 2006 by Andreas Bertelmann for ABBUC

2 Internal Design
Atari BASIC is divided into two major functional areas: the Program
Constructor and the Program Executor. The Program Constructor is used
when you enter and edit a BASIC program. The source line pre-compiler,
also part of the Program Constructor, translates your BASIC program
source text lines into tokenized lines. The Program Executor is used to
execute the tokenized program - when you type RUN, the Program Executor
takes over.

Both the Program Constructor and the Program Executor are designed to
use data tables. Some of these tables are already contained in BASIC's
ROM (read-only memory). Others are constructed by BASIC in the user RAM
(random-access memory). Understanding these various tables is an
important key to understanding the design of Atari BASIC.

Tokens
In Atari BASIC, tokens are the intermediate code into which the source
text is translated. They represent source-language symbols that come in
various lengths - some as long as 100 characters (a long variable name)
and others as short as one character ("+" or "-"). Every token, however,
is exactly one eight-bit byte in length.

Since most BASIC Language Symbols are more than one character long, the
representation of a multicharacter BASIC Language Symbol with a single-
byte token can mean a considerable saving of program storage space.

A single-byte token symbol is also easier for the Program Executor to
recognize than a multi-character symbol, since it can be evaluated by
machine language routines much more quickly. The SEARCH routine - 76
bytes long - located at $A462 isa good example of how much assembly
language it takes to recognize a multi-character symbol. On the other
hand, the two instructions located at $AB42 are enough to determine if a
one-byte token is a variable. Because routines to recognize Atari
BASIC'so one-byte tokens take so much less machine language, they
execute relatively quickly.

The 256 possible tokens are divided into logical numerical groups that
also make them simpler to deal with in assembly language. For example,
any token whose value is 128 ($80) or greater represents a variable
name. The logical grouping of the token values also means faster
execution speeds, since, in
effect, the computer only has to check bit 7 to recognize a variable.

The numerical grouping of the tokens is shown below:

Token Value (Hex) Description
00-0D Unused
0E Floating Point Numeric Constant.

The next six bytes will hold its value.

0F String Constant.
The next byte is the string length.
A string of that length follows.

10-3C Operators.
See table starting at $A7E3 for specific
operators and values.

39-54 Functions.
See table starting at $A820 for specific
functions and values.

55-7F Unused.

9 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

80-FF Variables.

In addition to the tokens listed above, there is another set of single-
byte tokens, the Statement Name Tokens. Every statement in BASIC starts
with a unique statement name, such as LET, PRINT, and POKE. (An
assignment statement such as "A = B + C," without the word LET, is
considered to begin with an implied LET.) Each of these unique statement
names is represented by a unique Statement Name Token. The Program
Executor does not confuse Statement Name Tokens with the other tokens
because the Statement Name Tokens are always located in the same place
in every statement - at the beginning. The Statement Name Token value is
derived from its entry number, starting with zero, in the Statement Name
Table at $A4AF.

Tables
A table is a systematic arrangement of data or inforrnation. Tables in
Atari BASIC fall into two distinct types: tables that are part of the
Atari BASIC ROM and tables that Atari BASIC builds in the user RAM area.

ROM Tables
The following is a brief description of the various tables in the Atari
BASIC ROM. The detailed use of these tables will be explained in
subsequent chapters.

Statement Name Table ($A4AF). The first two bytes in each entry point to
the information in the Statement Syntax Table for this statement. The
rest of the entry is the name of the statement name in ATASCII. Since
name lengths vary, the last character of the statement name has the most
signiflcant bit turned on to indicate the end of the entry. The value of
the Statement Name Token is derived from the relative (from zero) entry
number of the statement name in this table.

Statement Execution Table ($AA00). Each entry in this table is the two-
byte address of the 6502 machine language code which will simulate the
execution of the statement. This table is organized with the statements
in the same order as the statements in the Statement Name Table.
Therefore, the Statement Name Token can be used as an index to this
table.

Operator Name Table ($A7E3). Each entry comprises the ATASCII text of an
Operator Symbol. The last character of each entry has the most
significant bit turned on to indicate the end of the entry. The relative
(from zero) entry number, plus 16 ($10), is the value of the token for
that entry. Each of the entries is also given a label whose value is the
value of the token for that symbol. For example, the ";" symbol at $A7E8
is the fifth (from zero) entry in the table. The label for the ";" token
is CSC, and the value of CSC is $15, or 21 decimal (1

l6
+5).

Operator Execution Table ($AA70). Each two-byte entry points to the
address, minus one, of the routine which simulates the execution of an
operator. The token value, minus 16, is used to access the entries in
this table during execution time: The entries in this table are in the
same order as in the Operator Name Table.

Operator Precedence Table ($AC3F). Each entry represents the relative
execution precedence of an individual operator. The table entries are
accessed by the operator tokens, minus 16. Entries correspond with the
entries in the Operator Name Table. (See Chapter 7.)

Statement Syntax Table ($A60D). Entries in this table are used in the
process of translating the source program to tokens. The address pointer
in the first part of each entry in the Statement Name Table is used to
access the specific syntax information for that statement in this table.
(See Chapter 5.)

10Internal Design

Converted 2006 by Andreas Bertelmann for ABBUC

RAM Tables
The tables that BASIC builds in the user RAM area will be explained in
detail in Chapter 3. The following is a brief description of these
tables:

Variable Name Table. Each entry contains the source ATASCII text for the
corresponding user variable symbol in the program. The relative (from
zero) entry number of each entry in this table, plus 128, becomes the
value of the token representing the variable.

Variable Value Table. Each entry either contains or points to the
current value of a variable. The entries are accessed by the token
value, minus 128.

Statement Table. Each entry is one tokenized BASIC program line. The
tokenized lines are kept in this table in ascending numerical order by
line number.

Array/String Table. This table contains the current values for all
strings and numerical arrays. The location of the specific values for
each string and/or array variable is accessed from information in the
Variable Value Table.

Runtime Stack. This is the LIFO Runtime Stack, used to control the
execution of GOSUB/RETURN and similar
statements.

Pre-compiler
Atari BASIC translates the BASIC source lines from text to tokens as
soon as they are entered. To do this, Atari BASIC must recognize the
symbols of the BASIC Language. BASIC also requires that its symbols be
combined in certain specific patterns. If the symbols don't follow the
required patterns, then Atari BASIC cannot translate the line. The
process of checking a source line for the required symbol patterns is
called syntax checking.

BASIC performs syntax checking as part of the tokenizing process. When
the Program Editor receives a completed line of input, the editor hands
the line to the syntax routine, which examines the first word of the
line for a statement name. If a valid statement name is not found, then
the line is assumed to
be an implied LET statement.

The grammatical rules for each statement are contained in the Statement
Syntax Table. A special section of code examines the symbols in the
source line, under the dfrection of the grammatical rules set forth in
the Statement Syntax Table. If the source line does not conform to the
rules, then it is reported
back as an error. Otherwise, the line is translated to tokens. The
result of this process is returned to the Program Editor for further
processing.

Program Editor
When Atari BASIC is not executing statements, it is in the edit mode.
When the user enters a source line and hits return, the editor accepts
the line into a line buffer, where it is examined by the pre-compiler.
The pre-compiler returns either tokens or an error text line.

If the line started with a line number, the editor inserts the tokenized
line into the Statement Table. If the Statement Table already contains a
line with the same line number, then the old line is removed from the
Statement Table. The new line is then inserted just after the statement
with the next lower line
number and just before the statement with the next higher line number.

11 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

If the line has no line number, the editor inserts the line at the end
of the Statement Table. It then passes control to the Program Executor,
which will carry out the statement(s) in the line at the end of the
Statement Table.

Program Executor
The Program Executor has a pointer to the statement that it is to
execute. When control is passed to the executor, the pointer points to
the direct (command) line at the end of the statement table. If that
statement causes some other line to be executed (RUN, GOTO, GOSUB,
etc.), the pointer is changed to the
new line. Lines continue to be executed as long as nothing stops that
execution (END, STOP, error, etc.). When the program execution is
stopped, the Program Executor returns control to the editor.

When a statement is to be executed, the Statement Name Token (the first
code in the statement) directs the interpreter to the specific code that
executes that statement. For instance, if that token represents the
PRINT statement, the PRINT execution code is called. The execution code
for each statement then examines the other tokens and simulates their
operations.

Execute Expression
Arithmetic and logical expressions (A+B, C/D+E, F<G, etc.) are simulated
with the Execute Expression code. Expression operators (+,-,*,etc.) have
execution precedence - some operators must be executed before some
others. The expression 1 + 3*4 has a value of 13 rather than 16 because
* had a higher precedence than + . To properly simulate expressions,
BASIC rearranges the expression with higher precedence first.

BASIC uses two temporary storage areas to hold parts of the rearranged
expression. One temporary storage area, the Argument Stack, holds
arguments - values consisting of constants, variables, and temporary
values resulting from previous operator simulations. The other temporary
storage area, the Operator Stack, holds operators. Both temporary
storage areas are managed as Last-In/First-Out (LIFO) stacks.

LIFO Stacks
A LIFO (Last In/First Out) stack operates on the principle that the last
object placed in the stack storage area will be the first object removed
from it. If the letters A, B, C, and D, in that order, were placed in a
LIFO stack, then D would be the first letter removed, followed by C, B,
and A. The operations
required to rearrange the expression using these stacks will be
explained in Chapter 7

BASIC also uses another LIFO stack, the Runtime Stack, in the simulation
of statements such as GOSUB and FOR. GOSUB requires that BASIC remember
where in the statement table the GOSUB was located so it will return to
the right spot

Then RETURN is executed. If more than one GOSUB is executed before a
RETURN, BASIC returns to the statement after the most recent GOSUB.

Converted 2006 by Andreas Bertelmann for ABBUC

Memory Usage

Part

III

13 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

3 Memory Usage
Many of BASIC's functions are controlled by a set of tables built in RAM
not already occupied by BASIC or the Operating System (OS). Figure 3.1
is a diagram of memory use by both programs. Every time a BASIC
programmer enters a statement, memory requirements for the RAM tables
change. Memory use by the OS also varies. Different graphics modes, for
example, require different amounts of memory.

These changing memory requirements are monitored, and this series of
pointers keeps BASIC and the OS from overlaying each other in memory:

 * High memory address (HMADR) at location $02E5
 * Application high memory (APHM) at location $000E
 * Low memory address (LMADR) at location $02E7

When a graphics mode requires larger screen space, the OS checks the
application high memory address (APHM) that has been set by BASIC. If
there is enough room for the new screen, the OS uses the upper portion
of space and sets the pointer HMADR to the bottom of the screen to tell
the application how much space the OS is now using.

BASIC builds its table toward high memory from low memory. The pointer
to the lowest memory available to an application, called LMADR in the
BASIC listing, is set by the OS to tell BASIC the lowest memory address
that BASIC can use. When BASIC needs more room for one of its tables,
BASIC checks HMADR. If there is enough room, BASIC uses the space and
puts the highest address it has used into APHM for OS.

BASIC's operation consists primarily of building, reading, and modifying
tables. Pointers to the RAM tables are kept in consecutive locations in
zero page starting at $80. These tables are, in order,

 * Multipurpose Buffer
 * Variable Name Table
 * Variable Value Table
 * String/Array Table
 * Statement Table
 * Runtime Stack

BASIC reserves space for a buffer at LMADR. It then builds the tables
contiguously (without gaps), starting at the top of the buffer and
extending as far as necessary towards APHM. When a new entry needs to be
added to a table, all data in the tables above is moved upward the exact
amount needed to fit the new entry into the right place.

Figure 3-1. Memory usage

FFFF | Operating System |
| ROM |

E000 ----------------------
| Floating Point |
| ROM |

D800 ----------------------
| Hardware Registers |

D000 ----------------------
| Unused |

BFFF ----------------------
| BASIC ROM |

A000 ----------------------
| Screen |

14Memory Usage

Converted 2006 by Andreas Bertelmann for ABBUC

----------------------<----HMADR

 Free RAM

----------------------<---- APHM
| BASIC |
| RAM |
| Tables |
----------------------<---- LMADR
| Operating System |
| RAM |

0000 ----------------------

Variable Name Table
The Variable Name Table (VNT) is built during the pre-compile process.
It is read, but not modified, during execution but only by the LIST
statement. The VNT contains the names of the variables used in the
program in the order in which they were entered.

The length of entries in the Variable Name Table depends on the length
of the variable name. The high order bit of the last character of the
name is on. For example, the ATASCII code for the variable name ABC is
414243 (expressed in hexadecimal). In the Variable Name Table it looks
like this:

 41 42 C3

The $ character of a string name and the (character of an array element
name are stored as part of the variable name. The table entries for
variables C, AA$, and X(3) would look like this:

 C C3
 AA$ 41 41 A4
 X(3) 58 A8

It takes only two bytes to store X(3) because this table stores only X(.

A variable is represented in BASIC by a token. The value of this token
is the position (relative to zero) of the variable name in the Variable
Name Table, plus $80. BASIC references an entry in the table by using
the token, minus $80, as an index. The Variable Name Table is not
changed during execution time.

The zero page pointer to the Variable Name Table is called VNTP in the
BASIC listing.

Variable Value Table
The Variable Value Table (VVT) is also built during the precompile
process. It is both read and modified during execution. There is a one-
to-one correspondence in the order of entries between the Variable Name
Table and the Variable Value Table. If XXX is the fifth variable in the
Variable Name Table, then XXX's value is the fifth entry in the Variable
Value Table. BASIC references a table entry by using the variable token,
minus $80, as an index

Each entry in the Variable Value Table consists of eight bytes. The
first two bytes have the following meaning:

 1 2

| | |

15 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

 type vnum

type = one byte, which indicates the type of variable
$00 for floating point variable
$40 for array variable
$80 for string variable

vnum = one byte, which indicates the relative position of the
variable in the tables

The meaning of the next six bytes varies, depending on the type of
variable (floating point, string, or array). In all three cases, these
bytes are initialized to zero during syntaxing and during the execution
of the RUN or CLR.

When the variable is a floating point number, the six bytes represent
its value.

When the variable is an array, the remaining six bytes have the
following format

 1 2 3 4 5 6 7 8

 | | | | | | | | |

 |disp | dim1| dim2

disp = the two-byte displacement into string/array space of
this array variable

dim1 = two bytes indicating the first dimension value
dim2 = two bytes indicating the second dimension value

All three of these values are set appropriately when the array is
DIMensioned during execution.

When the variable is a string, the remaining six bytes have the
following meaning:

 1 2 3 4 5 6 7 8

 | | | | | | | | |

 |disp | curl| maxl

disp = the two-byte displacement into string/array space of this
string variable. This value is set when the string is DIMensioned during
execution.
curl = the two-byte current length of the string. This value
changes as the length of the string changes during execution.
maxl = the two-byte maximum possible length of this string. This
value is set to the DIM value during execution.

When either a string or an array is DIMensioned during execution, the
low-order bit in the type byte is turned on, so that the array type is
set to $41 and the string type to $81. The zero page pointer to the
Variable Value Table is called VVTP in the BASIC listing.

Statement Table
The Statement Table, built as each statement is entered during editing,
contains tokenized forms of the statements that were entered. This table
determines what happens during execution. The format of a Statement
Table entry is shown in Figure 3-2. There can be several tokens per
statement and several statements per line.

16Memory Usage

Converted 2006 by Andreas Bertelmann for ABBUC

Figure 3-2. Format of a Statement Table Entry

 ---+----------------------- ----------------------- ---------------
 | | | | | | | | | | | |
 ---+----------------------- ----------------------- ---------------
 |lnum | llen| slen| snt | toks | eos |slen | snt | toks | eos | eol |

lnum = the two-byte line number (low-order, high-order)
llen = the one-byte line length (the displacement to the next line in
the table)
slen = the one-byte statement length (the displacement to the next
statement in the line)
snt = the one-byte Statement Name Token
toks = the other tokens that make up the statement (this is variable in
length)
eos = the one-byte end of statement token
eol = the one-byte end of line token

The zero page pointer to the Statement Table is called STMTAB in the
BASIC listing.

String/Array Table
The String/Array Table (also called String/Array Space) is created and
modified during execution. Strings and arrays can
be intermixed in the table, but they have different formats. Each array
or string is pointed to by an entry in the Variable Value Table. The
entry in the String/Array Table is created when the string or array is
DIMensioned during execution. The data in the entry changes during
execution as the value of the string or an element of the array changes.

An entry in the String/Array Table is not initialized to any particular
value when it is created. The elements of arrays and the characters in a
string cannot be counted upon to have any particular value. They can be
zero, but they can also be garbage-data previously stored at those
locations.

Array Entry
For an array, the String/Array Table contains one six-byte entry for
each array element. Each element is a floating point number, stored in
raveled order. For example, the entry in the String/Array Table for an
array that was dimensioned as A(1,2) contains six elements, in this
order: A(0,0) A(0,1) A(0,2) A(1,0) A(1,1) A(1,2)

String Entry
A string entry in the String/Array Table is created during execution,
when the string is DiMensioned. The size of the entry is determined by
the DIM value. The "value" of the string to BASIC at any time is
determined by the data in the String/Array Table and the current length
of the string as set in the Variable Value Table.

The zero page pointer to the String/Array Table is called STARP in the
BASIC listing.

The Runtime Stack is created during execution. BASIC uses this LIFO
stack to control processing of FOR/NEXT loops and GOSUBs. When either a
FOR or a GOSUB statement is encountered during execution, an entry is
put on the Runtime Stack. When a NEXT, RETURN, or a POP statement is
encountered, entries are pulled off the stack.

Both the FOR entry and the GOSUB entry have a four-byte header:

17 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

| | + | |

type lnum disp

type = one byte indicating the type of element
 GOSUB type = 0
 FOR type = non-zero

lnum = the two-byte number of the line which contains the statement
(low-order, high-order)
disp = one byte indicating the displacement into the line in the
Statement Table of the token which caused this stack entry.

The FOR-type byte is actually the token representing the loop control
variable from the FOR statement. (In the statement FOR I = I to 10, I is
the loop control variable.) So the FOR-type byte will have a value of
$80 through $FF - the possible values of a variable token. The FOR entry
contains 12 additional bytes, formatted like this:

 1 2 3 4 5 6 7 8 9 10 11 12
 -----+----+----+----+----+---------+----+----+----+----+-----
 | | |
 -----+----+----+----+----+---------+----+----+----+----+-----

 sval step

sval = the six-byte (floating point) limit value at which to stop
the loop
step = the six-byte (floating point) STEP value to increment by

The GOSUB entry consists entirely of the four-byte header. The LIST and
READ statements also put a GOSUB type entry on the Runtime Stack, so
that the line containing the LIST or READ can be found again when the
statement has finished executing.

The zero page pointer to the Runtime Stack is called RUNSTK in the BASIC
listing.

Zero Page Table Pointers
The starting addresses of the tables change dynamically during both
program construction and program execution. BASIC keeps the current
start addresses of the tables and other pointers required to manage
memory space in contiguous zeropage cells. Each pointer is a two-byte
address, low byte first.

Since these zero page cell addresses remain constant, BASIC is always
able to find the tables. Here are the zero page pointers used in memory
management, their names in the BASIC listing, and their addresses:

Multipurpose Buffer $80,$81
Variable Name Table VNTP $82,$83
VNT dummy end VNTD $84,$85
Variable Value Table VVTP $86,$87
Statement Table STMTAB $88,$89
Current Statement Pointer STMCUR $8A,$8B
StringlArray Table STARP $8C,$8D
Runtime Stack RUNSTK $8C,$8E
Top of used memory MEMTOP $90,$91

Memory Management Routines
Memory Management routines allocate space to the BASIC tables as needed.
There are two routines: expand, to add space, and contract, to delete
space. Each routine has one entry point for cases in which the number of
bytes to be added or deleted is less than 256, and another when it is
greater than or equal to 256.

18Memory Usage

Converted 2006 by Andreas Bertelmann for ABBUC

The EXPAND and CONTRACT routines often move many thousands of bytes each
time they are called. The 6502 microprocessor is designed to move fewer
than 256 bytes of data very quickly. When larger blocks of data are
moved, the additional 6502 instructions required can make the process
very slow. The EXPAND and CONTRACT routines circumvent this by using the
less-than-256-byte fast-move capabilities in the movement of thousands
of bytes. The end result is a set of very fast and very complex data
movement routines.

All of this complexity does have a drawback. The infamous Atari BASIC
lock-up problem lives in these two routines. If an EXPAND or CONTRACT
requires that an exact multiple of 256 bytes be moved, then the routines
move things from the wrong place in memory to the wrong place in memory,
whereupon the computer locks up and won't respond. The only way to avoid
losing hours of work this way is to SAVE to disk or cassette frequently.

EXPAND ($A881)
Parameters at entry:

 register
X = the zero page address containing the pointer to

the location after which space is to be added
Y = the low-order part of the number of bytes to

expand
A = the high-order part of the number of bytes to

expand

The routine creates a hole in the table memory, starting at a requested
location and continuing the requested number of bytes. The routine first
checks to see that there is enough free memory space to satisfy the
request. It adds the requested expand size to each of the zero-page
table pointers between the one pointed to by the X register and MEMTOP.
Then each pointer will point to the correct address when EXPAND is done.

EXPAND then creates space at the address indicated by the X register.
The number of bytes required is contained in the Y and A registers. (Y
contains the least significant byte, while A contains the most
significant.) All data from the requested address to the address pointed
to by MEMTOP is moved toward high memory by the requested number of
bytes. This creates a hole of the proper size.

The routine then sets Application High Memory (APHM) to the value in
MEMTOP. This tells the OS the highest memory address that BASIC is
currently using.

EXPLOW ($A87F)
Parameters at entry:

 register
X = zero page address containing the pointer to the

location after which space is to be added
Y = number of bytes to expand (low-order byte only)

This is an additional entry point for the EXPAND routine. It is used
when the number of bytes to be added to the table is
less than 256. This routine first loads the 6502 accumulator with zero
to indicate the most significant byte of the expand length. It then
functions exactly like EXPAND.

CONTRACT ($A8FD)
Parameters at entry:

 register

19 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

X = zero page address containing the pointer to the starting
location where space is to be removed

Y = the low-order part of the number of bytes to contract
A = the high-order part of the number of bytes to contract

This routine removes a requested number of bytes at a requested location
by moving all the data from higher in the tables downward the exact
amount needed to replace the unwanted bytes.

It subtracts the requested contract size from each of the zero page
table pointers between the one pointed to by the X register and MEMTOP.
Then each pointer will point to the correct address when CONTRACT is
done. The routine sets application high memory (APHM) to the value in
MEMTOP to indicate to the OS the highest memory address that BASIC is
currently using. The block of data to be moved downward is defined by
starting at the address pointed to by the zero-page address pointed to
in X, plus the offset number stored in Y and A, and then continuing to
the address specified at MEMTOP. Each byte of data in that block is
moved downward in memory by the number of bytes specified in Y and A,
effectively erasing all the data between the specified address and that
address plus the requested offset.

CONTLOW ($A8FB)
Parameters at entry:
 register

X = the zero page address containing the pointer to the location
at which space is to be removed

Y = the number of bytes to contract (low-order byte only)

This routine is used to remove fewer than 256 bytes from the tables at a
requested location by moving all the data from higher in the tables
downward the exact amount needed to replace the unwanted bytes. This
routine first loads the 6502 accumulator with zero to serve as the most
significant byte of the contract length. It then functions exactly like
CONThACT.

Miscellaneous Memory Allocations
Besides the tables, which change dynamically, BASIC also uses buffers
and stacks at fixed locations. The Argument/Operator Stack is allocated
at BASIC's low memory address and occupies 256 bytes. During pre-
compiling it is used as the output buffer for the tokens. During
execution, it is used while evaluating an expression. This buffer/stack
is referenced by a pointer at location $80. This pointer has several
names in the BASIC listing: LOMEM, ARGOPS, ARGSTK, and OUTBUFF.

The Syntax Stack is used during the process of syntaxing a statement. It
is referenced directly that is, not through a pointer. It is located at
$480 and is 256 bytes long. The Line Buffer is the storage area where
the statement is placed when it is EN'TERed. It is the input buffer for
the edit and pre-compile processes. It is 128 bytes long and is
referenced directly as LBUFF. Often the address of LBUFF is also put
into INBUFF so that the buffer can be referenced through a pointer,
though INBUFF can point to other locations during various phases of
BASIC's execution.

Converted 2006 by Andreas Bertelmann for ABBUC

Program Editor

Part

IV

21 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

4 Program Editor
The Atari keyboard is the master Control panel for Atari BASIC.
Everything BASIC does has its origins at this control panel. The Program
Editor's job is to service the control panel and respond to the commands
that come from it. The editor gets a line from the user at the keyboard;
does some preliminary processing on the line; passes the line to the
pre-compiler for further processing; inserts, deletes, or replaces the
line in the Statement Table; calls the Program Executor when necessary;
and then waits to receive the user's next line input.

Line Processing The Program Editor, which starts at $A060, begins its
process by resetting the 6502 CPU stack. Resetting the CPU stack is a
drastic operation that can only occur at the beginning of a logical
process. Each time Atari BASIC prepares to get a new line from the user,
it restarts its entire logical process.

Getting a Line The Program Editor gets a user's line by calling CIO. The
origin of the line is transparent to the Program Editor. The line may
have been typed in at the keyboard or entered from some external device
like the disk (if the ENTER command was given). The Program Editor
simply calls CIO and asks it to put a line of not more than 255 bytes
into the buffer pointed to by INBUFF (sF3). INBUFF points to the 128-
byte area defined at LBUFF ($580). The OS'S screen editor, which is
involved in getting a line from the keyboard, will not pass BASIC a line
that is longer than 120 bytes. Normally, then, the 128-byte buffer at
LBUFF is big enough to contain the user's line. Sometimes, however, if a
line was originally entered from the keyboard with few blanks and many
abbreviations, then LISTed to and re-ENTERed from the disk, an input
line may be longer than 128 bytes. When this happens, data in the $600
page is overlaid. A LINE TOO LONG error will not necessarily 25 occur at
this point. A LINE TOO LONG error occurs only if the Pre-compiler
exceeds its stack while processing the line or if the tokenized line
OUTBUFF exceeds 256 bytes. These overflows depend on the complexity of
the line rather than on its actual length. When CIO has put a line into
the line buffer (LBUFF) and the Program Editor has regained control, it
checks to see if the user has changed his mind and hit the break key. If
the user did indeed hit break, the Program Editor starts over and asks
CIO for another line.

Flags and Indices In order to help control its processing, the Program
Editor uses flags and indices. These must be given initial values.

CIX and COX. The index CIX (sF2) is used to access the user's input line
in the line buffer (LBUFF), while COX ($94) is used to access the
tokenized statement in the output buffer (OUTBUFF). These buffers and
their indices are also used by the pre-compiler. The indices are
initialized to zero to indicate the beginning of the buffers.

DIRFLG. This flag byte ($A6) is used by the editor to remember whether a
line did or did not have a line number, and also to remember if the pre-
compiler found an error in that line. DIRFLG is initialized to zero to
indicate that the line has a line number and that the pre-compiler has
not found an error.

MAXCIX. This byte ($9F) is maintained in case the line contains a syntax
error. It indicates the displacement into LBUFF of the error. The
character at this location will then be displayed in inverse video. The
Program Editor gives this byte the same initial value as CIX, which is
zero.

SVVNTP. The pointer to the current top of the Variable Name Table (VNTD)
is saved as SVVNTP (SAD) so that if there is a syntax error in this
line, any variables that were added can be removed. If a user entered an

22Program Editor

Converted 2006 by Andreas Bertelmann for ABBUC

erroneous line, such as 100 A=XAND B, the variable XAND would already
have been added to the variable tables before the syntax error was
discovered. The user probably meant to enter 100 A=X AND B, and, since
there can only be 128 variables in BASIC, he probably does not want the
variable XAND using up a place in the variable tables. The Program
Editor uses SVVNTP to find the entry in the Variable Name Table soit can
be removed. 26

SVVYTE. The process used to indicate which variable entries to remove
from the Variable Value Table in case of error is different. The number
of new variables in the line (SVVVTE1$B1) is initialized to zero. The
Program Pre-compiler increments the value every time it adds a variable
to the Variable Value Table. If a syntax error is detected, this number
is multiplied by eight (the number of bytes in each entry on the
Variable Value Table) to get the number of bytes to remove, counting
backward from the most recent value entered.

Handling Blanks In many places in the BASIC language, blanks are not
significant. For example, 100 IFX=6THENGOTO500 has the same meaning as
100 IF X = 6 THEN GOTO 500. The Program Editor, using the SKIPBLANK
routine ($DBA1), skips over unnecessary blanks.

Processing the Line Number Once the editor has skipped over any leading
blanks, it begins to examine the input line, starting with the line
number. The floating point package is called to determine if a line
number is present, and, if so, to convert the ATASCII line number to a
floating point number. The floating point number is converted to an
integer, saved in TSLNUM for later use, and stored in the tokenized line
in the output buffer (OUTBUFF). The routine used to store data into
OUTBUFF is called :SETCODE ($A2C8). When :SETCODE stores a byte into
OUTBUFF, it also increments COX, that buffer's index. BASIC could
convert the ATASCII line number directly to an integer, but the routine
to do this would not be used any other time. Routines to convert ATASCII
to floating point and floating point to integer already exist in BASIC
for other purposes. Using these existing routines conserves ROM space.
An interesting result of this sequence is that it is valid to enter a
floating point number as a line number. For example, 100.1, 10.9, or
2.05E2 are valid line numbers. They would be converted to 100, 11, and
205 respectively If the input line does not start with a line number,
the line is considered to be a direct statement. DIRFLG is set to $80 so
27

Chapter Four that the editor can remember this fact. The line number is
set to 32768 ($8000). This is one larger than the largest line number a
user is allowed to enter. BASIC later makes use of this fact in
processing the direct statement.

Line length. The byte after the line number in the tokenized line in
OUTBUFF is reserved so that the line length (actually the displacement
to the next line) can be inserted later. (See Chapter 2.) The routine
:SETCODE is called to reserve the byte by incrementing (COX) to indicate
the next byte.

Saving erroneous lines. In the byte labeled STMSTART, the Program Editor
saves the index intQ the line buffer (LBUFF) of the first non-blank
character after the line number. This index is used only if there is a
syntax error, so that all the characters in the erroneous line can be
moved into the tokenized line buffer and from there into the Statement
Table. There are advantages to saving an erroneous line in the Statement
Table, because you can LIST the error line later. The advantage is
greatest, not when entering a program at the keyboard, but when entering
a program originally written in a different BASIC on another machine
(via a modem, perhaps). Then, when a line that is not correct in Atari
BASIC is entered, the line is flagged and stored - not discarded. The

23 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

user can later list the program, find the error lines, and re-enter them
with the correct syntax for Atari BASIC.

Deleting lines. If the input line consists solely of a line number, the
Program Editor deletes the line in the Statement Table which has that
line number. The deletion is done by pointing to the line in the
Statement Table, getting its length, and calling CONTRACT. (See Chapter
3.)

Statement Processing The user's input line may consist of one or more
statements. The Program Editor repeats a specific set of functions for
each statement in the line.

Initializing The current index (COX) into the output buffer (OUTBUFF) is
saved in a byte called STMLBD. A byte is reserved in OUTBUFF by the
routine :SETCODE. Later, the value in 28 STMLBD will be used to access
this byte, and the statement length (the displacement to the next
statement) will be stored here.

Recognizing the Statement Name After the editor calls SKBLANK to skip
blanks, it processes the statement name, now pointed to by the input
index (CIX). The editor calls the routine SEARCH ($A462) to look for
this statement name in the Statement Name Table. SEARCH saves the table
entry number of this statement name into location STENUM. The entry
number is also the Statement Name Token value, and it is stored into the
tokenized output buffer (OUTBUFF) as such by :SETCODE. The SEARCH
routine also saves the address of the entry in SRCADR for use by the
pre-compiler. If the first word in the statement was not found in the
Statement Name Table, the editor assumes that the statement is an
implied LET, and the appropriate token is stored. It is left to the pre-
compiler to determine if the statement has the correct syntax for LET
The editor now gives control to the pre-compiler, which places the
appropriate tokens in OUTBUFF, increments the indices CIX and COX to
show current locations, and indicates whether a syntax error was
detected by setting the 6502 carry flag on if there was an error and
clearing the carry flag if there was not. (See Chapter 5.)

If a Syntax Error Is Detected If the 6502 carry flag is set when the
editor regains control, the editor does error processing. In MAXCIX, the
pre-compiler stored the displacement into LBUFF at which it detected the
error. The Program Editor changes the character at this location to
inverse video. The character in inverse video may not be the point of
error from your point of view, but it is where the pre-compiler detected
an error. For example, assume you entered X YAND Z. You probably meant
to enter X Y AND Z, and therefore would consider the error to be between
Y and AND. However, since YAND is a valid variable name, X=YAND is a
valid BASIC statement. The pre-compiler doesn't know there is an error
until it encounters B. The value of highlighting the error with inverse
29 video is that it gives the user an approximation of where the error
is. This can be a big advantage, espedally if the input line contained
multiple statements or complex expressions. The next thing the editor
does when a syntax error has been detected is set a value in DIRFLG to
indicate this fact for future reference. Since the DIRE LG byte also
indicates whether this is a direct statement, the error indicator of $40
is ORed with the value already in DIRELG. The editor takes the value
that it saved in STMSTRT and puts it into CIX so that CIX now points to
the start of the first statement in the input line in LBUFF. STMLBD is
set to indicate the location of the first statement length byte in
OUTBUFF. (A length will be stored into OUTBUFF at this displacement at a
later time.) The editor sets the index into OUTBUFF (COX) to indicate
the Statement Name Token of the first statement in OUTBUFF, and stores a
token at that location to indicate that this line has a syntax error.
The entire line (after the line number) is moved into OUTBUFF. At this
point COX indicates the end of the line in OUTBUFF. (Later, the contents

24Program Editor

Converted 2006 by Andreas Bertelmann for ABBUC

of OUTBUFF will be moved to the Statement Table.) This is the end of the
special processing for an erroneous line. The process that follows is
done for both correct and erroneous lines.

Final Statement processing During initial line processing, the Program
Editor saved in STMLBD a value that represents the location in OUTBUFF
at which the statement length (displacement to the next statement)
should be stored. The Program Editor now retrieves that value from
STMLBD. Using this value as an index, the editor stores the value from
COX in OUTBUFF as the displacement to the next statement The Program
Editor checks the next character in LBUFF. If this character is not a
carriage return (indicating end of the line), then the statement
processing is repeated. When the carriage return is found, COX will be
the displacement to the next line. The Program Editor stores COX as the
line length at a displacement of two into OUTBUFF. 30

Statement Table Processing The final tokenized form of the line exists
in OUTBUFF at this point. The Program Editor's next task is to insert or
replace the line in the Statement Table. The Program Editor first needs
to create the correct size hole in the Statement Table. The editor calls
the GETSTMT routine ($A9A2) to find the address where this line should
go in the Statement Table. If a line with the same line number already
exists, the routine returns with the address in STMCUR and with the 6502
carry flag off. Otherwise, the routine puts the address where the new
line should be inserted in the Statement Table into STMCUR and turns on
the 6502 carry flag. (See Chapter 6.) If the line does not exist in the
Statement Table, the editor loads zero into the 6502 accumulator. If the
line does exist, the editor calls the GETLL routine ($A9DD) to put the
line length into the accumulator. The editor then compares the length of
the line already in the Statement Table (old line) with the length of
the line in OUTBUFF (new line). If more room is needed in the Statement
Table, the editor calls the EXPLOW ($A87F; see Chapter 3). If less space
is needed for the new line, it calls a routine to point to the next line
(GNXTL, at location $A9D0; see Chapter 6), and then calls the CONTLOW
($A8FB; see Chapter 3). Now that we have the right size hole, the
tokenized line is moved from OUTBUFF into the Statement Table at the
location indicated by STMCUR.

Line Wrap-up After the line has been added to the Statement Table, the
editor checks DIRFLG for the syntax error indicator. If the second most
significant bit ($40) is on, then there is an error.

Error Wrap-up If there is an error, the editor removes any variables
that were added by this line by getting the number of bytes that were
added to the Variable Name Table and the Variable Value Table from
SVVNTP and SVVVTE. It then calls CONTRACT ($A8FD) to remove the bytes
from each table. Next, the editor lists the line. The Statement Name
Token, which was set to indicate an error, causes the word "ERROR" 31 to
be printed. An inverse video character indicates where the error was
detected. The editor now waits for you to enter another line.

Handling Correct Lines If the line was syntactically correct, the editor
again examines DIRFLG. In earlier processing, the most significant bit
($80) of this byte was set on if the line was a direct statement. If it
is not a direct statement, then the editor is finished with the line,
and it waits for another input line. If the line is a direct statement,
earlier processing already assigned it a line number of 32768 ($8000),
one larger than the largest line number a user can enter. Since lines
are arranged in the Statement Table in ascending numerical order, this
line will have been inserted at the end of the table. The current
statement pointer (STMCUR-$8A $8B) points to this line. The Program
Editor transfers control to a Program Executor routine, Execution
Control (EXECNL at location $A95F), which will handle the execution of
the direct statement. (See Chapter 6.) 32

Converted 2006 by Andreas Bertelmann for ABBUC

Pre-Compiler

Part

V

26Pre-Compiler

Converted 2006 by Andreas Bertelmann for ABBUC

5 Pre-Compiler
The symbols and symbol-combining rules of Atari BASIC are coded into
Syntax Tables, which direct the Program Pre— compiler in examining
source code and producing tokens. The information in the Syntax Tables
is a transcription of a meta— language definition of Atari BASIC.

The Atari BASIC Meta-language A meta-language is a language which
describes or defines another language. Since a meta-language is itself a
language, it also has symbols and symbol-combining rules - which define
with precision the symbols and symbol-combining rules of the subject
language. Atari BASIC is precisely defined with a specially developed
meta-language called the Atari BASIC Meta-language, or ABMI,. (ABML was
derived from a commonly used compiler- technology meta-language called
BNF.) The symbols and symbol-combining rules of ABML were intentionally
kept very simple.

Making Up a Language To show you how ABML works, we'll create an
extremely simple language called SAP, for Simple Arithmetic Process. SAP
symbols consist of variables, constants, and operators.

· Variables: The letters A, B, and C only.
· Constants: The numbers 1,2,3,4,5,6,7,8, and 9 only.
· Operators: The characters +, -, *, /, and ! only. Of course, you

already know the functions of all the operators except "!" The
character! is a pseudo-operator of the SAP language used to denote
the end of the expression, like the period that ends this
sentence.

The grammar of the SAP language is precisely defined by the ABML
definition in Figure 5-1. 33

Figure 5-1 The SAP Language Expressed in ABML
 SAP := <expression>!
<expression> := <value> <operation> |
 <operation> := <operator> <expression>
 <value> := <constant> | <variable>
 <constant> := 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 <variable> := A | B | C
 <operator> := + | - | * | /

The ABML symbols used to define the SAP language in Figure
5-1 are:

:= is defined as Whatever is on the left of : = is defined as
consisting of whatever is on the right of :=,
and in that order.

| or The symbol | allows choices for what
something is defined as. For instance, in the
sixth line <variable> can be A or B or C.
If does not appear between two symbols,
then there is no choice. For example, in the
second line <expression> must have both
<value> and <operation>, in that order,
to be valid.

<> label Whatever comes between < and> is an
ABML label. All labels, as non-terminal
symbols, must be defined at some point,
though the definitions can be circular -
notice that <operation> is part of the
definition of <expression> in the second
line, while in the third line <expression>
is part of the definition of <operation>.

terminal Symbols used in definitions, which are not

27 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

symbols enclosed by < and > and are also not one
of the ABML symbols, are terminal symbols
in the language being defined by ABML. In
SAP, some terminal symbols are A, !, B, *,
and 1. They cannot be defined as consisting
of other symbols - they are themselves the
symbols that the SAP language manipu
lates, and must appear exactly as they are
shown to be valid in SAP. In effect, they are
the vocabulary of the SAP language.

Figure 5-2. The Generation of One Possible SAP Statement

(1) SAP := <expression>!
(2) SAP := <value> <operation>!
(3) SAP := <variable> <operation>!
(4) SAP := B< operation>!
(5) SAP := B<operator> <expression>!
(6) SAP := B*<expression>!
(7) SAP := B*<value> <operation>!
(8) SAP := B*<constant> <operation>!
(9) SAP := B*4<operation>!
(10) SAP := B*4< operator> <expression>!
(11) SAP := B*4+<expression>!
(12) SAP := 8*4+<value> <operation>!
(13) SAP := B*4+<variable> <operation>!
(14) SAP := B*4+C<operation>!
(15) SAP := B*4+C!

In (2), <value> <operation> replaces <expression> because the ABML
definition of SAP (FigureS-I) defines <expression> as <value>
<operation>.
In (3), the non-terminal <value> is replaced with <variable>. The
definition of <value> gives two choices for the substitution of <value>.
We happened to choose <variable>.
In (4), we reach a terminal symbol, and the process of defining <value>
ends. We happened to choose B to replace <variable>.
In (5), we go back and start defining <operation>. There are two choices
for the replacement of <operation>, either <operator> <expression> or
nothing at all (since there is nothing to the right of in the second
line of Figures 5-1). If nothing had been chosen, then (5) would have
been: SAP :=B! The statement B! has no further non-terminals; the
process would have been finished, and a valid statement would have been
produced. Instead we happened to choose <operator> <expression>.

The SAP definition for <expression> is
<value> <operation>. If we replace <operation> with its
definition we get:

<expression> : = <value> <operator> <expression>

The definition of <expression> includes <expression> as part of its
definition. If the <operator> <expression> choice were always made for
<operation>, then the process of replacement would never stop. A SAP
statement can be infinitely long by definition. The only thing which
prevents us from always having an infinitely long SAP statement is that
there is a second choice for the replacement of <operation>: nothing.

The replacements in (5) and (10) reflect the repetitive choices of
defining <expression> in terms of itself. The choice in (15) reflects
the nothing choice and thus finishes the replacement process.

Computerized Statement Generation If we slightly modify our procedure
for generating statements, we will have a process that could be easily

28Pre-Compiler

Converted 2006 by Andreas Bertelmann for ABBUC

programmed into a computer. Instead of arbitrarily replacing the
definition of non- terminals, we can think of the non-terminal as a
GOSUB. When we see <X> := <Y> <Z>, we can think of <Y> as being a
subroutine-type procedure:

(a) Go to the line that has <Y> on the left side.
(b) Process the definition (right side) of <Y>.
(c) If while processing the definition of <Y>, other non- terminals are
found, GOSUB to them. (d) If while processing the definition of <Y> we
encounter a terminal, output the terminal symbol as the next symbol of
the generated statement.
(e) When the definition of <Y> is finished, return to the place that <Y>
was called from and continue.

Since ABML is structured so that it can be programmed, a fascinating
exercise is to design a simple English sentence grammar with ABML, then
write a BASIC program to generate valid English sentences at random. The
randomness of the sentences would be derived by using the RND function
to select from the definitions or choices. An example of such a grammar
is shown in Figure 5-3. (The programming exercise is left to you.)

Figure 5-3. A Simple English Sentence Grammar in ABML

 SENTENCE := <subject> <adverb> <verb> <object>.
 <subject> := The <adjective> <noun>
 <verb> := eats | sleeps | drinks | talks | hugs
 <adverb> := quickly | silently | slowly | viciously |
 lovingly | sadly |
 <object> := at home | in the car | at the table | at
 school | <subject>
 <noun> := boy | girl | dog | programmer | computer
 | teacher
<adjective> := happy | sad | blue | light | round | smart
 | cool | nice |

Syntactical Analysis The process of examining a language statement for
grammatical correctness is called syntactical analysis, or syntaxing.
Statement verification is similar to statement generation. Instead of
arbitrarily choosing which or definition to use, however, the choices
are already made, and we must check to see whether the statement symbols
are used in valid patterns. To do this, we must process through each or
definition until we find a matching valid terminal symbol. The result of
statement generation is a valid, grammatically correct statement, but
the result of statement verification is a statement validity indication,
which is a simple yes or no. Either the statement is grammatically
correct or it is not.Failure occurs when some statement symbol cannot be
matched with a valid terminal symbol under the rules of the grammar.

The Reporting System To use the pass/fail result of statement
verification, we must build a reporting system into the non4erminal
checking process. Whenever we, in effect, GOSUB to a non-terminal
definition, that non-terminal definition must report its pass/fail
status. A fail status is generated and returned by a non-terminal
definition when it finds no matching terminal for the current statement
symbol. If the current statement symbol is B and the <constant>
definition in the SAP language is called, then <constant> would report a
fail status to the routine that called it. A pass status is returned
when a terminal symbol is found which matches the current statement
symbol. If our current statement symbol had been 7 instead of B, then
<constant> would have reported pass. Whenever such a match does occur,
we return to the statement, and the next symbol to the right becomes the
new current symbol for examination and verification.

Cycling Through the Definitions In SAP, the <constant> definition is

29 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

called from the <value> definition. If <constant> reports fail, then we
examine the next or choice, which is <variable>. The current symbol is
B, so <variable> reports pass. Since at least one of the or choices of
<value> has reported pass, <value> will report pass to its caller. If
both <constant> and <variable> had reported fail, then <value> would
report fail to its caller. The caller of <value> is <expression>. If
<value> reports pass, <operation> is called. If <operation> reports
pass, then <expression> can report pass to its caller. If either <value>
or <operation> reports fail, then <expression> must report fail, since
there are no other or choices for <expression> The definition of
<operation> contains a special pass/fail property. If either <operator>
or <expression> reports fail, 38

Chapter Five then the or choice must be examined. In this case the or
choice is nothing. The or nothing means something special: report pass,
but do not advance to the next symbol. The final pass/fail report is
generated from the first line of the definition. If <expression> reports
pass and the next symbol is!, then SAP reports pass. If either one of
these conditions has a fail status, then SAP must report fail to
whatever called SAP from outside the language.

Backing Up Sometimes it is necessary to back up over symbols which have
already been processed. Let's assume that there was a definition of the
type <X> : <Y>I<z>. It is possible that while <Y> is attempting to
complete its definition, it will find a number of valid matching
terminal symbols before it discovers a symbol that it cannot match. In
this case, <Y> would have consumed a number of symbols before it decided
to report fail. All of the symbols that <Y> consumed must be unconsumed
before <Z> can be called, since <Z> will need to check those same
symbols. The process of unconsuming symbols is called backup. Backup is
usually performed by the caller of <Y>, which remembers which source
symbol was current when it called <Y>. If <Y> reports fail, then the
caller of <Y> restores the current symbol pointer before calling <Z>.

Locating Syntax Error When a final report of fail is given for a
statement, it is often possible to guess where the error occurred. In a
left-to-right system, the symbol causing the failure is usually the
symbol which follows the rightmost symbol found to be valid. If we keep
track of the rightmost valid symbol during the various backups, we can
report a best guess as to where the failure- causing error is located.
This is exactly what Atari BASIC does with the inverse video character
in the ERROR line. For simplicity, our example was coded for SAP, but
the syntactical analysis we have just described is essentially the
process that the Atari BASIC pre-compiler uses to verify the grammar of
a source statement. The Syntax Tables are an ABML description of Atari
BASIC. The pre-compiler, also known as the syntaxer, contains the
routines which verify BASIC statements. 39

Chapter Five Statement Syntax Tables There is one entry in the Syntax
Tables for each BASIC statement. Each statement entry in the Syntax
Table is a transcription of an ABML definition of the grammar for that
particular statement. The starting address of the table entry for a
particular statement is pointed to by that statement's entry in the
Statement Name Table. The data in the Syntax Tables is very much like a
computer machine language. The pseudo-computer which executes this
pseudo-machine language is the pre-compiler code. Like any machine
language, the pseudo-machine language of the Syntax Tables has
instructions and instruction operands. For example, an ABML non4erminal
symbol is transcribed to a code which the pre-compiler executes as a
type of "GOSUB and report pass/fail" command. Here are the pseudo-
instruction codes in the Syntax Tables; each is one byte in length.

Absolute Non-Terminal Vector

30Pre-Compiler

Converted 2006 by Andreas Bertelmann for ABBUC

Name: ANTV
Code: $00

This is one of the forms of the non-terminal GOSUB. It is followed by
the address, minus 1, of the nonAerminal's definition within the Syntax
Table. The address is two bytes long, with the least significant byte
first.

External Subroutine Call
Name: ESRT
Code: $01

This instruction is a special type of terminal symbol checker. It is
followed by the address, minus 1, of a 6502 machine language routine.
The address is two bytes long, with the least significant byte first.
The ESRT instruction is a deus ex machina - the "god from the machine"
who solved everybody's problems at the end of classical Greek plays.
There are some terminals whose definition in ABML would be very complex
and require a great many instructions to describe. In these cases, we go
outside the pseudo-machine language of the Syntax Tables and get help
from 6502 machine language routines - the deus ex machina that quickly
gives the desired result. A numeric constant is one example of where
this outside help is required.

ABML or
Name: OR
Value: $02

This is the familiar ABML or symbol (|). It provides for an
alternative definition of a non-terminal.

Return
Name: RTN
Value: $03

This code signals the end of an ABML definition line. When we write an
ABML statement on paper, the end of a definition line is obvious - there
is no further writing on the line. When ABML is transcribed to machine
codes, the definitions are all pushed up against each other. Since the
function that is performed at the end of a definition is a return, the
end of definition is called return (RTN).

Unused (Codes $04 through $0D are unused.)

Expression Non-Terminal Vector
Name: VFXP
Value: $0E

The ABML definition for an Atari BASIC expression is located at $A60D.
Nearly every BASIC statement definition contains the possibility of
having <expression> as part of it. VEXP is a single-byte call to
<expression>, to avoid wasting the two extra bytes that ANTV would take.
The pseudo- machine understands that this instruction is the same as an
ANTV call to <expression> at $A60D.

Change Last Token
Name: CHNG
Value: $0F

This instruction is followed by a one-byte change to token value. The
operator token instructions cause a token to be placed into the output
buffer. Sometimes it is necessary to change the token that was just
produced. For example, there are several = operators. One = operator is
for the assignment statement LET X = 4. Another = operator is for

31 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

comparison operations like IF Y = 5. The pseudo-machine will generate
the assignment = token when it matches =. The context of the grammar at
that point may have required a comparison = token. The CHNG instruction
rectifies this problem.

Operator Token
Name: (many)
Value: $10 through $7F

These instructions are terminal codes for the Atari BASIC Operators. The
code values are the values of each operator token. The values, value
names, and operator symbols are defined in the Operator Name Table (see
Chapter 2). When the pseudo-machine sees these terminal symbol
representations, it compares the symbol it represents to the current
symbol in the source statement. If the symbols do not match, then fail
status is generated. If the symbols match, then pass status is
generated, the token (instruction value) is placed in the token output
buffer, and the next statement source symbol becomes the current symbol
for verification.

Relative Non-Terminal Vectors
Name: (none)
Value: $80- $BF (Plus) $C0 - $FF (Minus)

This instruction is similar to ANTV, except that it is a single byte.
The upper bit is enough to signal that this one-byte code is a non-
terminal GOSUB. The destination address of the GOSUB is given as a
position relative to the current table location. The values $80 through
$BF correspond to an address which is at the current table address plus
$00 through $31'. The values $C0 through $FF correspond to an address
which is at the current table address minus $01 through $31'.

Pre-compiler Main Code Description The pre-compiler, which starts at
SYNENT ($A1C3), uses the pseudo-instructions in the Syntax Tables to
verify the correctness of the source line and to generate the tokenized
statements. The pre-compiler uses a LIFO stack in its processing. Each
time a non-terminal vector ("GOSUB") is executed, the pre-compiler must
remember where the call was made from. It must also remember the current
locations in the input buffer (source statement) and the output buffer
(tokenized statement) in case the called routine reports fail and backup
is required. This LIFO stack is called the Syntax Stack. The Syntax
Stack starts at 5480 at the label SIX. The stack is 256 bytes in size.
Each entry in the stack is four bytes long. The stack can hold 64 levels
of non4erminal calls. If a sixty-fifth stack entry is attempted, the
LINE TOO LONG error is reported. (This error should be called LINE TOO
COMPLEX, but the line is most likely too long also.) The first byte of
each stack entry is the current input index (CIX). The second byte is
the current output index (COX). The final two bytes are the current
address within the syntax tables. The current stack level is managed by
the STKLVL ($A9) cell. STKLVL maintains a value from $00 to $FC, which
is the displacement to the current top of the stack entry.

Initialization The editor has saved an address in SRCADR ($96). This
address is the address, minus 1, of the current statement's ABML
instructions in the Syntax Tables. The current input index (CIX) and the
current output index (COX) are also preset by the editor. The
initialization code resets the syntax stack manager (STKLVL) to zero and
loads the first stack entry with the values in CIX, COX, and CPC - the
current program counter, which holds the address of the next pseudo-
instruction in the Syntax Tables.

PUSH Values are placed on the stack by the PUSH routine ($A228). PUSH is
entered with the new current pseudo-program counter value on the CPU
stack. PUSH saves the current CIX, COX, and CPC on the syntax stack and

32Pre-Compiler

Converted 2006 by Andreas Bertelmann for ABBUC

increments STKLVL. Next, it sets a new CPC value from the data on the
CPU stack. Finally, PUSH goes to NEXT.

POP Values are removed from the stack with the POP routine ($A252). POP
is entered with the 6502 carry flag indicating pass/fail. If the carry
is clear, then pass is indicated. If the carry is set, then fail is
indicated. POP first checks STKLVL. If the current value is zero, then
the pre-compiler is done. In this case, POP returns to the editor via
RTS. The carry bit status informs the editor of the pass/fail status. If
STKLVL is not zero, POP decrements STKLVL. At this point, POP examines
the carry bit status. If the carry is clear (pass), POP goes to NEXT. If
the carry is set (fail), POP goes to FAIL.

NEXT and the Processes It Calls After initialization is finished and
after each Syntax Table instruction is processed, NEXT is entered to
process the next syntax instruction. NEXT starts by calling NXSC to
increment CPC and get the next syntax instruction into the A register.
The instruction value is then tested to determine which syntax
instruction code it is and where to go to process it. If the Syntax
Instruction is OR ($02) or RTN ($03), then exit is via POP. When POP is
called due to these two instructions, the carry bit is always clear,
indicating pass.

ERNTV. If the instruction is RNTV ("GOSUB" $80-$FF), then ERNTV ($A201)
is entered. This code calculates the new CPC value, then exits via PUSH.

GETADR. If the instruction is ANTV ($00) or the deus ex machina ESRT
($01) instruction, then GETADR is called. GETADR obtains the following
two-byte address from the Syntax Table. If the instruction was ANTV,
then GETADR exits via PUSH. If the instruction was ESRT, then GETADR
calls the external routine indicated. The external routine will report
pass/fail via the carry bit. The pass/fail condition is examined at
$A1FO. If pass is indicated, then NEXT is entered. If fail is indicated,
then FAIL is entered.

TERMTST. If the instruction is VEXP ($0E), then the code at $A1F9 will
go to TERMTST ($A2A9), which will cause the code at $A2AF to be executed
for VEXP. This code obtains the address, minus 1, of the ABML for the
<expression> in the Syntax Table and exits via PUSH.

ECHNG. If the instruction was CHNG ($0F), then ECHNG ($A2BA) is entered
via tests at $A1F9 and $A2AB. ECHNG will increment CPC and obtain the
change-to token which will then replace the last previously generated
token in OUTBUFF. ECHNG exits via RTS, which will take control back to
NEXT.

SRCONT. The Operator Token Instructions ($10-$7F) are handled by the
SRCONT routine. SRCONT is called via tests at $A1F9 and $A2AD. SRCONT
will examine the current source symbol to see if it matches the symbol
represented by the operator token. When SRCONT has made its
determination, it will return to the code at $A1FC. This code will
examine the pass/fail (carry cleariset) indicator returned by SRCONT and
take the appropriate action. (The SRCONT routine is detailed on the next
page.)

FAIL If any routine returns a fail indicator, the FAIL code at $A26C
will be entered. FAIL will sequentially examine the instructions,
starting at the Syntax Table address pointed to by CPC, looking for an
OR instruction. If an OR instruction is found, the code at $A27D will be
entered. This code first determines if the current statement symbol is
the rightmost source symbol to be examined thus far. If it is, it will
update MAXCIX. The editor will use MAXCIX to set the inverse video flag
if the statement is erroneous. Second, the code restores CIX and COX to
their before-failure values and goes to NEXT to try this new OR choice.

33 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

If, while searching for an OR instruction, FAIL finds a RTN instruction,
it will call POP with the carry set. Since the carry is set, POP will
re-enter FAIL once it has restored things to the previous calling level.
All instruction codes other than OR and RTN are skipped over by FAIL.

Pre-compiler Subroutine Descriptions SRCONT ($A2E6) The SRCONT code will
be entered when an operator token instruction is found in the Syntax
Tables by the main pre— compiler code. The purpose of the routine is to
determine if the current source symbol in the user's line matches the
terminal symbol represented by the operator token. If the symbols match,
the token is placed into the output buffer and pass is returned. If the
symbols do not match, fail is returned. SRCONT uses the value of the
operator token to access the terminal symbol name in the Operator Name
Table. The characters in the source symbol are compared to the
characters in the terminal symbol. If all the characters match, pass is
indicated.

TNVAR, TSVAR ($A32A) These deus ex machina routines are called by the
ESRT instruction. The purpose of the routines is to determine if the
current source symbol is a valid numeric (TNVAR) or string (TSVAR)
variable. If the source symbol is not a valid variable, fail is
returned. When pass is indicated, the routine will put a variable token
into the output buffer. The variable token ($80-$FF) is an index into
the Variable Name Table and the Variable Value Table, plus $80. The
Variable Name Table is searched. If the variable is already in the
table, the token value for the existing variable is used. If the
variable is not in the table, it will be inserted into both tables and a
new token value will be used. A source symbol is considered a valid
variable if it starts with an alphabetic character and it is not a
symbol in the Operator Name Table, which includes all the reserved
words. The variable is considered to be a string if it ends with $;
otherwise it is a numeric variable. If it is a string variable, $ is
stored with the variable name characters. The routine also determines if
the variable is an array by looking for (. If the variable is an array,
(is stored with the variable name characters in the Variable Name Table.
As a result, ABC, ABC$, and ABC(n) are all recognized as different
variables.

TNCON ($A400) TNCON is called by the FSRT instruction. Its purpose is to
examine the current source symbol for a numeric constant, using the
floating point package. If the symbol is not a numeric constant, the
routine returns fail. If the symbol is a numeric constant, the floating
point package has converted it to a floating point number. The resulting
six-byte constant is placed in the output buffer preceded by the $OE
numeric constant token. The routine then exits with pass indicated.

TSCON ($A428) TSCON is called by the ESRT instruction. Its purpose is to
examine the current symbol for a string constant. If the symbol is not a
string constant, the routine returns fail. If the first character of the
symbol is '', the symbol is a string constant. The routine will place
the string constant token ($0F) into the output buffer, followed by a
string length byte, followed by the string characters. The string
constant consists of all the characters that follow the starting double
quote up to the ending double quote. If the EOL character ($9B) is found
before the ending double quote, an ending double quote is assumed. The
EOL is not part of the string. The starting and ending double quotes are
not saved with the string. All 256 character codes except $9B (EOL) and
$22 (") are allowed in the string.

SEARCH ($A462) This is a general purpose table search routine used to
find a source symbol character string in a table. The table to be
searched is assumed to have entries which consist of a fixed length part
(0 to 255 bytes) followed by a variable length ATASCII part. The last
character of the ATASCII part is assumed to have the most significant

34Pre-Compiler

Converted 2006 by Andreas Bertelmann for ABBUC

bit ($80) on. The last table entry is assumed to have the first ATASCII
character as $00. Upon entry, the X register contains the length of the
fixed part of the table (0 to 255). The A, Y register pair points to the
start of the table to be searched. The source string for comparison is
pointed to by INBUFF plus the value in CIX. Upon exit, the 6502 carry
flag is clear if a match was found, and set if no match was found. The X
register points to the end of the symbol, plus 1, in the buffer. The
SRCADR ($95) two- byte cell points to the matched table entry. STENUM
($AF) contains the number, relative to zero, of the matched table entry.

SETCODE (A2C8) The SETCODE routine is used to place a token in the next
available position in the output (token) buffer. The value in COX
determines the current displacement into the token buffer. Mter the
token is placed in the buffer, COX is incremented by one. If COX exceeds
255, the LINE TOO LONG error message is generated. 48

Converted 2006 by Andreas Bertelmann for ABBUC

Execution

Part

VI

36Execution

Converted 2006 by Andreas Bertelmann for ABBUC

6 Execution
During the editing and pre-compiling phase, the user's statements were
checked for correct syntax, tokenized, and put into the Statement Table.
Then direct statements were passed to the Program Executor for immediate
processing, while program statements awaited later processing by the
Program Executor. We now enter the execution phase of Atari BASIC. The
Program Executor consists of three parts: routines which simulate the
function of individual statement types; an expression execution routine
which processes expressions (for example, A+B+3, A$(1,3), "HELP",
A(3)+7.26E-13); and the Execution Control routine, which manages the
whole process.

Execution Control Execution Control is invoked in two situations. If the
user has entered a direct statement, Execution Control does some initial
processing and then calls the appropriate statement execution routine to
simulate the requested operation. If the user has entered RUN as a
direct statement, the statement execution routine for RUN instructs
Execution Control to start processing statements from the beginning of
the statement table. When the editor has finished processing a direct
statement, it initiates the Execution Control routine EXECNL ($A95F).
Execution Control's job is to manage the process of statement
simulation. The editor has saved the address of the statement it
processed in STMCUR and has put the statement in the Statement Table.
Since this is a direct statement, the line number is $8000, and the
statement is saved as the last line in the Statement Table. The fact
that a direct statement is always the last statement in the Statement
Table gives a test for the end of a user's program. The high- order byte
of the direct statement line number ($8000) has its most significant bit
on. Loading this byte ($80) into the 6502 accumulator will set the minus
flag on. The line number of any program statement isiess than; or equal
to $7FFF. Loading the high order byte ($7F or less) of a program line
number into the accumulator will set the 6502 minus flag off. This gives
a simple test for a direct statement.

Initialization Execution Control uses several parameters to help it
manage the task of statement execution. STMCUR holds the address in the
Statement Table of the line currently being processed. LLNGTH holds the
length of the current line. NXTSTD holds the displacement in the current
line of the next statement to process. STMCUR already contains the
correct value when Execution Control begins processing. SETLNI ($B81B)
is called to store the correct values into LLNGTH and NXTSTD.

Statement Execution Since the user may have changed his or her mind
about execution, the routine checks to see if the user hit the break
key. If the user did hit BREAK, Execution Control carries out XSTOP
($B793), the same routine that is executed when the STOP statement is
encountered. At the end of its execution, the XSTOP routine gives
control to the beginning of the editor. If the user did not hit BREAK,
Execution Control checks to see whether we are at the end of the
tokenized line. Since this is the first statement in the line, we can't
be at the end of the line. So why do the test? Because this part of the
routine is executed once for each statement in the line in order to tell
us when we do reach the end of the line. (The end-of-line procedure will
be discussed later in this chapter.) The statement length byte (the
displacement to the next statement in the line) is the first byte in a
statement. (See Chapter 3.) The displacement to this byte was saved in
NXTSTD. Execution Control now loads this new statement's displacement
using the value in NXTSTD. The byte after the statement length in the
line is the statement name token. Execution Control loads the statement
name token into the A register. It saves the displacement to the next
byte, the first of the statement's tokens, in STINDEX for the use of the
statement simulation routines. The statement name token is used as an
index to find this statement's entry in the Statement Execution Table.

37 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

Each table entry consists of the address, minus 1, of the routine that
will simulate that statement. This simulation routine is called by
pushing the address from the table onto the 6502 CPU stack and doing an
RTS. Later, when a simulation routine is finished, it can do an RTS and
return to Execution Control. (The name of most of the statement
simulation routines in the BASIC listing is the statement name preceded
by an X: XFOR, XRUN, XLIST.) Most of the statement simulation routines
return to Execution Control after processing. Execution Control again
tests for BREAK and checks for the end of the line. As long as we are
not at end-of-line, it continues to execute statements. When we reach
end-of-line, it does some end-of-line processing.

End-of-line Handling in a Direct Statement When we come to the end of
the line in a direct statement, Execution Control has done its job and
jumps to SNX3. The READY message is printed and control goes back to the
Program Editor.

End-of-line Handling during Program Execution Program execution is
initiated when the user types RUN. Execution Control handles RUN like
any other direct statement. The statement simulation routine for RUN
initializes STMCUR, NXTSTD, and LLNGTH to indicate the first statement
of the first line in the Statement Table, then returns to Execution
Control. Execution Control treats this first program statement as the
next statement to be executed, picking up the statement name tokens and
calling the simulation routines. Usually, Execution Control is unaware
of whether it is processing a direct statement or a program statement.
End-of- line is the only time the routine needs to make a distinction.
At the end of every program line, Execution Control gets the length of
the current line and calls GNXTL to update the address in STMCUR to make
the next line in the Statement Table the new current line. Then it calls
TENDST ($A9E2) to test the new line number to see if it is another
program line or a direct statement. If it is a direct statement, we are
at the end of the user's program. Since the direct statement includes
the RUN command that started program execution, Execution Control does
not execute the line. Instead, Execution Control calls the same routine
that would have been calle'lif the program had contained an END
statement (XEND, at$B78D). XEND does some end-of- program processing,
causes READY to be printed, and returns to the beginning of the editor.
If we are not at the end of the user's program, processing continues
with the new current line.

Execution Control Subroutines TENDST ($A9E2) Exit parameters: The minus
flag is set on if we are at the end of program. This routine checks for
the end of the user's program in the Statement Table. The very last
entry in the Statement Table is always a direct statement. Whenever the
statement indicated by STMCUR is the direct statement, we have finished
processing the user's program. The line number of a direct statement is
$8000. The line number of any other statement is $7FFF or less. TENDST
determines if the current statement is the direct statement by loading
the high-order byte of the line number into the A register. This byte is
at a displacement of one from the address in STMCUR. If this byte is $80
(a direct statement), loading it turns the 6502 minus flag on.
Otherwise, the minus flag is turned off.

GETSTMT ($A9A2) Entry parameters: TSLNUM contains the line number of the
statement whose address is required. Exit parameters: If the line number
is found, the STMCUR contains the address of the statement and the carry
flag is set off (clear). If the line number does not exist, STMCUR
contains the address where a statement with that line number should be,
and the carry flag is set on (set). The purpose of this routine is to
find the address of the statement whose line number is contained in
TSLNUM. The routine saves the address currently in STMCUR into SAVCUR
and then sets STMCUR to indicate the top of the Statement Table. The
line whose address is in STMCUR is called the current line or statement.

38Execution

Converted 2006 by Andreas Bertelmann for ABBUC

GETSTMT then searches the Statement Table for the statement whose line
number is in TSLNUM. The line number in TSLNUM is compared to the line
number of the current line. If they are equal, then the required
statement has been found. Its address is in STMCUR, so GETSTMT clears
the 6502 carry flag and is finished. If TSLNUM is smaller than the
current statement line number, GETSTMT gets the length of the current
statement by executing GETLL ($A9DD). GNXTL ($A9D0) is executed to make
the next line in the statement table the current statement by putting
its address into STMCUR. GETSTMT then repeats the comparison of TSLNUM
and the line number of the current line in the same manner. If TSLNUM is
greater than the current line number, then a line with this line number
does not exist. STMCUR already points to where the line should be, the
6502 carry flag is already set, and the routine is done.

GETLL ($A9DD) Entry parameters: STMCUR indicates the line whose length
is desired. Exit parameters: Register A contains the length of the
current line. GETLL gets the length of the current line (that is, the
line whose address is in STMCUR). The line length is at a displacement
of two into the line. GETLL-loads the length into the A register and is
done.

GNXTL ($A9D0) Entry parameters: STMCUR contains the address of the
current line, and register A contains the length of the current line.
Exit parameters: STMCUR contains the address of the next line. This
routine gets the next line in the statement table and makes it the
current line. GNXTL adds the length of the current line (contained in
the A register) to the address of the current line in STMCUR. This
process yields the address of the next line in the statement table,
which replaces the value in STMCUR.

SETLN1 ($B81B) Entry parameters: STMCUR contains the address of the
current line. Exit parameters: LLNGTH contains the length of the current
line. NXTSTD contains the displacement in the line to the next statement
to be executed (in this case, the first statement in the line). This
routine initializes several line parameters so that Execution Control
can process the line. The routine gets the length of the line, which is
at a displacement of two from the start of the line. SETLN1 loads a
value of three into the Y register to indicate the displacement into the
line of the first statement and stores the value into NXTSTD as the
displacement to the next statement for execution.

SETLINE ($B818) Entry parameters: TSLNUM contains the line number of a
statement. Exit parameters: STMCUR contains the address of the statement
whose line number is in TSLNUM. LLNGTH contains the length of the line.
NXTSTD contains the displacement in the line to the next statement to be
executed (in this case, the first statement in the line). Carry is set
if the line number does not exist. This routine initializes several line
parameters so that execution control can process the line. SETLINE first
calls GETSTMT ($A9A2) to find the address of the line whose number is in
TSLNUM and put that address into STMCUR. It then continues exactly like
SETLN1.

Converted 2006 by Andreas Bertelmann for ABBUC

Execute Expression

Part

VII

40Execute Expression

Converted 2006 by Andreas Bertelmann for ABBUC

7 Execute Expression
The Execute Expression routine is entered when the Program Executor
needs to evaluate a BASIC expression within a statement. It is also the
executor for the LET and implied LET statements. Expression operators
have an order of precedence; some must be simulated before others. To
properly evaluate an expression, Execute Expression rearranges it during
the evaluation.

Expression Rearrangement Concepts Operator precedence rules in algebraic
expressions are so simple and so unconscious that most people aren't
aware of following them. When you evaluate a simple expression like
Y=AX

2
+BX+C, you don't think: "Exponentiation has a higher precedence

than multiplication, which has a higher precedence than addition;
therefore, I will first square the X, then perform the multiplication."
You just do it. Computers don't develop habits or common sense - they
have to be specifically commanded. It would be nice if we could just
type Y = AX2+BX+C into our machine and have the computer understand, but
instead we must separate all our variables with operators. We also have
to learn a few new operators, such as * for multiply and ^ for
exponentiation. Given that we are willing to adjust our thinking this
much, we enter Y=A*X^2+B*X+C. The new form of expression does not quite
have the same feel as Y AX2+BX+C; we have translated normal human
patterns halfway into a form the computer can use. Even the operation
X^2 causes another problem for the computer. It would really prefer that
we give it the two values first, then tell it what to do with them.
Since the computer still needs separators between items, we should write
X^2 as X,2,^. Now we have something the computer can work with. It can
obtain the two values X,2, apply the operator ^, and get a result
without having to look ahead. If we were to transcribe X^2*A in the same
manner, we would have X,2,^,A,*. The value returned by X,2,^ is the
first value to multiply, so the value pair for multiplication is (X,2,^)
and A. Again we have two values followed by an operator, and the
computer can understand. If we continue to transcribe the expression by
pairing values and operators, we find that we don't want to add the
value X^2*A to B; we want to add the value X^2*A to B*X. Therefore, we
need to tell the computer X,2,^,A,*,B,X,*, +. The value pair for the
operator + is (X,2,^,A,*) and (B,X,*). The value pair for the final
operation, =, is (X,2,^,A,*,B,X, *,+,C,+) and Y. So the complete
translation of Y=AX2+BX+ C is X,2,^,A,*,B,X,*,+,C,+,Y,=. Very few people
other than Forth programmers put up with this form of expression
transcription. Therefore, Atari BASIC was designed to perform this
translation for us, provided we use the correct symbols, like * and ^.

The Expression Rearrangement Algorithm The algorithm for expression
rearrangement requires two LIFO stacks for temporary storage of the
rearranged terms. The Operator Stack is used for temporarily saving
operators; the Argument Stack is used for saving arguments. Arguments
are values consisting of variables, constants, and the constant-like
values resulting from previous expression operations.

Operator Precedence Table The Atari BASIC User's Manual lists the
operators by precedence. The highest-precedence operators, like <, >,
and = <, are at the top of the list; the lowest-precedence operator, OR,
is at the bottom. The operators at the top of the list get executed
before the operators at the bottom of the list. The operators in the
precedence table are arranged in the same order as the Operator Name
Table. Thus the token values can be used as direct indices to obtain an
operator precedence value. The entry for each operator in the Operator
Precedence Table contains two precedence values, the go-onto-stack
precedence and the come-off-stack precedence. When a new operator has
been plucked from an expression, its go-onto- stack precedence is tested
in relation to the top-of-stack operator's come-off-stack precedence.

41 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

Expression Rearrangement Procedure The symbols of the expression (the
arguments and the operators) are accessed sequentially from left to
right, then rearranged into their correct order of precedence by the
following procedure: 1. Initialize the Operator Stack with the Start Of
Expression (SOE) operator. 2. Get the next symbol from the expression.
3. If the symbol is an argument (variable or constant), place the
argument on the top of the Argument Stack. Go to step 2. 4. If the
symbol is an operator, save the operator in the temporary save cell,
SAVEOP. 5. Compare the go-onto-stack precedence of the operator in
SAVEOP to the come-off stack precedence of the operator on the top of
the Operator Stack. 6. If the top-of-stack operator's precedence is less
than the precedence of the SAVEOP operator, then the SAVEOP operator is
pushed onto the Operator Stack. When the push is done, go back to step
2. 7. If the top-of-stack operator's precedence is equal to or greater
than the precedence of the SAVEOP operator, then pop the top-of-stack
operator and execute it. When the execution is done, go back to step 5
and continue. The Expression Rearrangement Procedure has one apparent
problem. It seems that there is no way to stop it. There are no exits
for the "evaluation done" condition. This problem is handled by
enclosing the expression with two special operators: the Start Of
Expression (S0E) operator, and the End Of Expression (EOE) operator.
Remember that SOE was the first operator placed on the Operator Stack,
in step 1. Execution code for the SOE operator will cause the procedure
to be exited in step 7, when SOE is popped and executed. The EOE
operator is never executed. EOF's function is to force the execution of
SOF. The precedence values of SOE and EOE are set to insure that SOE is
executed only when the expression evaluation is finished The SOE come-
off-stack precedence is set so that its value is always less than all
the other operators' go-onto-stack precedence values. The EOE go-onto-
stack precedence is set so that its value is always equal to or less
than all the other operators' (including SOE's) corae-off-stack
precedence values. Because SOE and EOE precedence are set this way, no
operator other than EOE can cause SOE to be popped and executed. Second,
EOE will cause all stacked operators, including SOE, to be popped and
executed. Since SOE is always at the start of the expression and EOE is
always at the end of the expression, SOE will not be executed until the
expression is fully evaluated. In actual practice, the SOE operator is
not physically part of the expression in the Statement Table. The
Expression Rearrangement Procedure initializes the Operator Stack with
the SOE operator before it begins to examine the expression. There is no
single operator defined as the End Of Expression (EOE) operator. Every
BASIC expression is followed by a symbol like :, THEN, or the EOL
character. All of these symbols function as operators with precedence
equivalent to the precedence of our phantom EOE operator. The THEN
token, for example, serves a dual purpose. It not only indicates the
THEN action, but also acts as the EOE operator when it follows an
expression.

Expression Rearrangement Example To illustrate how the expression
evaluation procedure works, including expression rearrangement, we will
evaluate our Y = A*X^2 + B*X + C example and see how the expression is
rearranged to X,2,^,A,*,B,X,*,+,C,+,Y,= with a correct result. To work
our example, we need to establish a precedence table for the operators.
The values in Figure 7-1 are similar to the actual values of these
operators in Atari BASIC. The lowest precedence value is zero; the
highest precedence value is $0F.

Example precedence Table operator go-on-stack come-off-stack symbol
precedence precedence SOE NA $00 + $09 $09 * $0A $0A ^ s0C $0C = $0F $01
!(EOE) $00 NA 58

Chapter Seven Symbol values and notations. In the example steps, the
term PSn refers to step n in the Expression Rearrangement Procedure
(page 57). Step 5, for instance, will be called P55. In the actual

42Execute Expression

Converted 2006 by Andreas Bertelmann for ABBUC

expression, the current symbol will be underlined. If B is the current
symbol, then the actual expression will appear as Y=A*X 2+B*X+C . In the
rearranged expression, the symbols which have been evaluated up to that
point will also be underlined. The values of the variables are: A=2 C=6
B=4 X=3 The variable values are assumed to be accessed when the variable
arguments are popped for operator execution. The end-of-expression
operator is represented by!.

Example step 1. Actual Expression: Y=A*X^2 + B*X + C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Operator Stack:
SOE SAVEOP: PS1 has been executed. The Operator Stack has been
initialized with the SOE operator. We are ready to start processing the
expression symbols.

Example step 2. Actual Expression: Y= A*X^2+B*X+C! RearrangedExpression:
X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y Operator Stack: SOE
SAVEOP: The first symbol, Y, has been obtained and stacked in the
Argument Stack according to PS2 and P53.

Example step 3. Actual Expression: Y=A*X^2+B*X+C! Rearranged Expression:
X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y Operator Stack: SOE,=
SAVEOP: = Operator = has been obtained via PS2. The relative precedences
of SOE ($00) and = ($0F) dictate that the = be placed on the Operator
Stack via PS6.

Example step 4. Actual Expression: Y=A*X^2+B*X+C! Rearranged Expression:
X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,A Operator Stack: SOE, =
SAVEOP: The next symbol is A. This symbol is pushed onto the Argument
Stack via PS3.

Example step 5. Actual Expression: Y=A*X^2+B*X+C! Rearranged Expression:
X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,A Operator Stack: SOE, = ,
* SAVEOP: * The next symbol is the operator *. The relative precedence
of * and = dictates that * be pushed onto the Operator Stack.

Example step 6. Actual Expression: Y = A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,A,X Operator
Stack: SOE, = , * SAVEOP: The next symbol is the variable X. This symbol
is stacked on the Argument Stack according to PS3.

Example step 7. Actual Expression: Y=A*X^2+B*X+C! Rearranged Expression:
X,2,^,A,*,B,X,*,+C,+,Y,=,! Argument Stack: Y,A,X Operator Stack: SOE, =
,~, A U;' SAVEOP: A The next symbol is ^ The relative precedence of the
and the * dictate that ^ be stacked via PS6.

Example step 8. Actual Expression: Y=A*X^2+B*X+C! Rearranged Expression
X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,A,X,2 Operator Stack:
SOE,=,*,^ SAVEOP: The next symbol is 2. This symbol is stacked on the
Argument Stack via PS3.

Example step 9. Actual Expression: Y=A*X^2+B*X+C! Rearranged Expression
X,2,^,A,*,B,X,*,+,C,+,Y,=! Argument Stack: Y,A,9 Operator Stack:
SOE,=,*, SAVEOP:+ The next symbol is the operator +. The precedence of
the operator that was at the top of the stack, ^ , is greater than the
precedence of +. PS7 dictates that the top-of-stack operator be popped
and executed. The ^ operator is popped. Its execution causes arguments X
and 2 to be popped from the Argument Stack, replacing the variable with
the value that it represents and operating on the two values yielded:
X^2=3^2=9. The resulting value, 9, is pushed onto the Argument Stack.
The + operator remains in SAVEOP. We continue at PS5. Note that in the
rearranged expression the first symbols, X,2,^, have been evaluated
according to plan.

43 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

Example step 10. Actual Expression: Y=A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,18 Operator
Stack: SOE,= SAVEOP: + This step originates at PS5. The SAVEOP operator,
+, has a precedence that is less than the operator which was at the top
of the stack, *. Therefore, according to P57, the is popped and
executed. The execution of * results in A*9=2*9=18. The resulting value
is pushed onto the Argument Stack.

Example step 11. Actual Expression: Y = A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,18 Operator
Stack: SOE, =, + SAVEOP: When step 10 finished, we went to P55. The
operator in SAVEOP was +. Since + has a higher precedence than the top-
of-stack operator, =, the + operator was pushed onto the Operator Stack
via PS6.

Example step 12. Actual Expression: Y=A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,18,B Operator
Stack: SOE, =, + SAVEOP: The next symbol is the variable B, which is
pushed onto the Argument Stack via P53.

Example step 13. Actual Expression: Y = A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,18,B Operator
Stack: SOE, =,+,* SAVEOP: * The next symbol is the operator *. Since *
has a higher precedence than the top-of-stack +, * is pushed onto the
stack via PS6.

Example step 14. Actual Expression: Y = A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,18,B,X
Operator Stack: SOE, =, + * SAVEOP: The variable X is pushed onto the
Argument Stack via PS3.

Example step 15. Actual Expression: Y=A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,+,C,+,Y, =,! Argument Stack: Y,18,12 Operator
Stack: SOE, =,+ SAVEOP: + The operator + is retneved from the
expression. Since + has a lower precedence than which is at the top of
the stack, * is popped and executed. The execution of * causes
B*X=4*3=12. The resulting value of 12 is pushed onto the Argument Stack.
We will continue at PS5 via the P57 exit rule.

Example step 16. Actual Expression: Y=A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,30 Operator
Stack: SOE,= SAVEOP: + This step starts at PS5. The SAVEOP operator, +,
has precedence that is equal to the precedence of the top-of-stack
operator, also +. Therefore, + is popped from the operator stack and
executed. The results of the execution cause 18+12, or 30, to be pushed
onto the Argument Stack. PS5 is called. Example step 17. Actual
Expression: Y=A*X^2+B*X+C! Rearranged Expression:
X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,30 Operator Stack: SOE,
=,+ SAVEOP: This step starts at PS5. The SAVEOP is +. The top-of-stack
operator, =, has a lower precedence than +; therefore, + is pushed onto
the stack via PS6. Example step 18. Actual Expression: Y=A*X^2+B*X+C!
Rearranged Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack:
Y,30,C Operator Stack: SOE, =,+ SAVEOP: The variable C is pushed onto
the Argument Stack via PS3. 63

Chapter Seven Example step 19. Actual Expression: Y=A*X^2+B*X+C!
Rearranged Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Y,36
Operator Stack: SOE, SAVFOP: The EOE operator is plucked from the
expression. The EOE has a lower precedence than the top-of-stack +
operator. Therefore, + is popped and executed. The resulting value of
30+6, 36, is pushed onto the Argument Stack. PS5 will execute next.

Example step 20. Actual Expression: Y=A*X^2+B*X+C! Rearranged

44Execute Expression

Converted 2006 by Andreas Bertelmann for ABBUC

Expression: X,2,^,A,*,B,X,*,+,C,+,Y,=,! Argument Stack: Operator Stack:
SOE SAVEOP: ! This step starts at P55. The ! operator has a lower
precedence than the top-of-stack = operator, which is popped and
executed. The execution of = causes the value 36 to be assigned to Y.
This leaves the Argument Stack empty. PS5 will be executed next.

Example step 21. Actual Expression: Y=A*X^2+B*X+C! Rearranged
Expression: X,2,^,A,*,B,X,*,+,C+,Y,=,! Argument Stack: Operator Stack:
SAVEOP: ! The operator in SAVEOP causes the SOE operator to be popped
and executed. The execution of SOF terminates the expression evaluation.
Note that the rearranged expression was executed exactly as predicted.

Mainline Code The Execute Expression code implements the Expression
Rearrangement Procedure. The mainline code starts at the EXEXPR label at
$AAE0. The input to EXEXPR starts at the current token in the current
statement. STMCUR points to the current statement. STINDEX contains the
displacement to the current token in the STMCUR statement. The output of
EXEXPR is whatever values remain on the top of the argument stack when
the expression evaluation is finished. In the following discussion, PSn
refers to the procedure step n in the Expression Rearrangement
Procedure. PS1, initialization, occurs when EXEXPR is entered. EXPINT is
called to initialize the operator and argument stacks. EXPINT places the
SOF operator on the operator stack. PS2, which obtains the next token,
directly follows initialization at EXNXT ($AAE3). The code calls EGTOKEN
to get the next expression symbol and classify it. If the token is an
argument, the carry will be set. If the token is an operator, the carry
will be clear. If the token is an argument, P53 is implemented via a
call to ARGPUSH. After the argument is pushed onto the argument stack,
EXNXT (PS2) will receive control. If the token was an operator, then the
code at EXOT ($AAEE) will be executed This code implements P54 by saving
the token in EXSVOP. PS5, which compares the precedents of the EXSVOP
token and the top-of-stack token, follows EXOT at EXPTST ($AAFA). This
code also executes the SOE operator If SOE is popped, then Execute
Expression finishes via RTS. If the top-of-stack operator precedence is
less than the EXSVOP operator precedence1 PS6 is implemented at EOPUSH
($AB15). EOPUSH pushes EXSVOP onto the operator stack and then goes to
EXNXT (PS2). If the top-of-stack operator precedence is greater than or
equal to the EXSVOP operator precedence, then PS7 is implemented at
EXOPOP ($AB0B). EXOPOP will pop the top- of-stack operator and execute
it by calling EXOP. When EXOP is done, control passes to EXPTST (PS5).

Expression Evaluation Stacks The two expression evaluation stacks, the
Argument Stack and the Operator Stack, share a single 256-byte memory
area. The Argument Stack grows upward from the lower end of the 256-
byte area. The Operator Stack grows downward from the upper end of the
256-byte area. The 256-byte stack area is the multipurpose buffer at the
start of the RAM tables. The buffer is pointed to by the ARGSTK (also
ARGOPS) zero-page pointer at $80. The current index into the Argument
Stack is maintained by ARSLVL ($AA). When the Argument Stack is empty,
ARSLVL is zero. The OPSTKX cell maintains the current index into the
Operator Stack. When the Operator Stack is initialized with the SOE
operator, OPSTKX is inihalized to $FF. As operators are added to the
Operator Stack, OPSTKX is decremented. As arguments are added to the
Argument Stack, ARSLVL is incremented. Since the two stacks share a
single 256-byte memory area, there is a possibility that the stacks will
run into each other. The code at $ABC1 is used to detect a stack
collision. It does this by comparing the values in ARSLVL and OPSTKX. If
ARSLVL is greater than or equal to OPSTKX, then a stack collision
occurs, sending the STACK OVERFLOW error to the user.

Operator Stack Each entry on the Operator Stack is a single-byte
operator-type token. Operators are pushed onto the stack at EXOPUSH
(SAB15) and are popped from the stack at EXOPOP ($ABOB).

45 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

Argument Stack Each entry on the Argument Stack is eight bytes long. The
format of these entries is described in Figures 7-2, 7-3, and 7-4, and
are the same as the formats for entries in the Variable Value Table.
Unlike the Variable Value Table, the Argument Stack must deal with both
variables and constants. In Figure 7-2, we see that VNUM is used to
distinguish variable entries from constant entries. The SADR and AADR
fields in the entries for strings and arrays are of special interest.
(See Figures 7-3 and 7-4.) When a string or array variable is
dimensioned, space for the variable is created in the string/array
space. The displacement to the start of the variable's area within the
string/array space is placed in the SADR/AADR fields at that time. A
displacement is used rather than an absolute address because the
absolute address can change if any program changes are made after the
DIM statement is executed. Execute Expression needs these values to be
absolute address values within the 6502 address space. When a
string/array variable is retrieved from the Variable Value Table, the
displacement is transformed to an absolute address. When (and if) the
variable is put back into the Variable Value Table, the absolute address
is converted back to a displacement. The entries for string constants
also deserve some special attention. String constants are the quoted
strings within the user program. These strings become part of the
tokenized statements in the Statement Table. When Execute Expression
gets a string token, it will create a string constant Argument Stack
entry. This entry's SADR is an absolute address pointer to the string in
the Statement Table. SLEN and SDIM are set to the actual length of the
quoted string.

Argument Work Area An argument which is currently being examined by
Execute Expression is kept in a special zero-page Argument Work Area
(AWA). The AWA starts at the label VTYPE at $D2.

Figure 7-2. Argument Stack Entry
 0 1 2 8
 +-------+------+----------+
 | VTYPE | VNUM | DATA |
 +-------+------+----------+
 | | |
 | | |
 | | Data Field. Format depends on VTYPE.
 | |
 | +---- If VNUM =0, the entry is a constant.
 | If VNUM >0, the entry is a variable. In this case,
 | the VNUM value is the entry number in the Variable
 | Value Table. The token representing this variable is
 | VNUM+$80.
 |
 +---- $00=Data is a six-byte floating point constant.

$80=Data represents an undimensioned string.
$81=Data represents a dimensioned string with

 a relative address pointer.
$83=Data represents a dimensioned string with

 an absolute address pointer.
$40=Data represents an undimensioned array.
$41=Data represents a dimensioned array with

 a relative address pointer.
$43=Data represents a dimensioned array with

 an absolute address pointer.

Figure 7-3. Argument Stack String Entry

 0 1 2 4 6 8
 +-------+------+------+------+------+
 | VTYPE | VNUM | SADR | SLEN | SDIM |

46Execute Expression

Converted 2006 by Andreas Bertelmann for ABBUC

 +-------+------+------+------+------+
 | | |
 +---------------------+ | |
 | +--------------------------+ |
 | | +-------------------------------+
 | | | Dimensioned length of the string. Valid only if
 | | +- VTYPE=$81 or $83.
 | |
 | +--- Current length of the string. Valid only if VTYPE
 | =$81 or $83.
 |
 +----| String address. Valid only if VTYPE=$81 or $83.
 | If VTYPE=$81, then SADR is the displacement
 | of the start of the string from the start of the
 | string/array space.
 |
 | If VTYPE=$83, then SADR is the absolute address
 | of the start of the string.

Figure 7-4. Argument Stack Array Entry

 0 1 2 4 6 8
 +-------+------+------+------+------+
 | VTYPE | VNUM | SADR | DIM1 | DIM2 |
 +-------+------+------+------+------+
 | | |
 +---------------------+ | |
 | +--------------------------+ |
 | | +-------------------------------+
 | | | When an array has been dimensioned as A(DI,D2),
 | | +- this field contains the D2 value. If an array
 | | was dimensioned as A(DI), then this field is
 | | zero. The field is valid only if VTYPE=$41 or
 | | $43.
 | |
 | | When an array has been dimensioned, as A(D1,D2)
 | |--- or as A(D1), this field contains the D1 value.
 | The field is valid only if VTYPE=$41 or $43.
 |
 | | Array Address. Valid only if VTYPE=$41 or $43.
 +----|
 | If VTYPE=$41, the AADR is the displacement to
 | the start of the array in the string/array space.
 |
 | If VTYPE=$43, the AADR is the absolute address
 | of the start of the string.

Array Address. Valid only if VTYPE=$41 or $43. +----| | If VTYPE=$41,
the AADR is the displacement to | the start of the array in the
string/array space. | | If VTYPE=$43, the AADR is the absolute address |
of the start of the string. 68

Operator Executions An operaror is executed when it is popped from the
Operator Stack. Execute Expression calls EXOP at $AB20 to start this
execution. The EXOP routine uses the operator token value as an index
into the Operator Execution Table ($AA70). The operator execution
address from this table, minus 1, is placed on the 6502 CPU stack. An
RTS is then executed to begin executing the operator's code. The names
of the operator execution routines all begin with the characters XP. All
the Atari BASIC functions, such as PEEK, RND, and ABS, are executed as
operators. Most routines for the execution of the operators are very
simple and straightforward. For example, the * operator routine, XPMUL
($AC96), pops two arguments, multiplies them via the floating point

47 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

package, pushes the result onto the argument stack, and returns.

String, Array, DIM, and Function Operations Any array reference in an
expression may be found in one of two forms: A(x) or A(x,y). The indices
x andy may be any valid expression. The intent of the indices is to
reference a specific array element. Before the specific element
reference can take place, the x and/or y index expressions must be fully
evaluated. To do this, the characters '(' ',' and ')' are made
operators. The precedence of these operators forces things to happen in
the correct sequence. Figure 7-5 shows the relative precedence of these
operators for an array.

Figure 7-5. Array Operator Precedence

operator go-on-stack come-off-stack
 symbol precedence precedence

 ($0F $02
 ,(comma) $04 $03
) $04 $0E

As a result of these precedence values, (has a high enough precedence
to go onto the stack, no matter what other operator is on the top of the
stack.

The comma's go-on-stack precedence will force all operators except (to
be popped and executed. As a result, the x index sub-expression in the
expression A(x,y), will be fully evaluated and the final x index value
will be pushed onto the Argument Stack.

The comma will then be placed onto the Operator Stack. Its come-off-
stack precedence is such that no other operator, except), will pop it
off.

The) operator precedence will force any y index expression to be fully
evaluated and the y index result value to be placed onto the Argument
Stack.

It will then force the comma operator to be popped and executed. This
action results in a comma counter being incremented.

The) will then force the (to be popped and executed. The execution of
(results in the proper array element being referenced. The (operator
will pop the indices from the Argument Stack. The number of indices
(either zero or one) to be popped is governed by the comma counter,
which was incremented by one for each comma that was popped and
executed.

Atari BASIC has numerous (tokens, and each causes a different (routine
to be executed. These (operators are array (CALPRN), string (CSLPRN)
array DIM (CDLPRN) string DIM (CDSLPR), function (CFLPRN), and the
expression grouping CLPRN operator. The Syntax Table pseudo-instruction
CHNG is used to change the CLPRN token to the other (tokens in
accordance with the context of the grammar.

The expression operations for each of these various (operators in
relation to commas and (is exactly the same. When (is executed, the
comma count will show how many arguments the operator's code must pop
from the argument stack. Each of these arguments will have been
evaluated down to a single value in the form of a constant.

Converted 2006 by Andreas Bertelmann for ABBUC

Execution Boundary
Conditions

Part

VIII

49 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

8 Execution Boundary Conditions
BASIC Language statements can be divided into groups with related
functions. The execution boundary statements, RUN, STOP, CONT and END,
cause a BASIC program to start or stop executing. The routines which
simulate these statements are XRUN, XSTOP, XCONT, and XEND.

Program Termination Routines Any BASIC statement can be used as either a
direct statement or a program statement, but some only make sense in one
mode. The STOP statement has no real meaning when entered as a direct
statement. When the statement simulation routine for STOP is asked to
execute in direct mode, it does as little processing as possible and
exits. Useful processing occurs only when STOP is a program statement.

STOP ($B7A7). The XSTOP and XEND routines are similar and perform some
of the same tasks. The tasks common to both are handled by the STOP
routine. If this statement is not a direct statement, the STOP routine
saves the line number of the current line in STOPLN. This line number is
used later for printing the STOPed message. It is also used by the CONT
simulation routine (XCONT) to determine where to restart program
execution. (Since XEND also uses this routine, it is possible to
CONTinue after an END statement in the middle of a program.) The STOP
routine also resets the LIST and ENTER devices to the screen and the
keyboard.

XSTOP ($B793). XSTOP does the common STOP processing and then calls
:LPRTOKEN($B535) to print the STOPed message. It then calls one of the
error printing routines, :ERRM2 ($B974), to output the AT LINE nnn
portion. The :ERRM2 routine will not print anything if this was a direct
statement. When :ERRM2 is finished, it jumps back to the start of the
editor.

XEND ($B7SD). XEND calls the STOP routine to save the current line
number. It then transfers to the start of the editor via the SNX1 entry
point. This turns off the sound, closes any open IOCBs, and prints the
READY message. XEND also leaves values on the 6502 CPU stack. These
values are thrown away when the editor resets the stack.

END OF PROGRAM. A user may have neglected to include an END statement in
his program. In this case, when Execution Control comes to the end of
the Statement Table it calls XEND, and the program is terminated exactly
as if the last statement in the program were an END.

Program Initiation Routines The statements that cause a user's program
to begin execution are RUN and CONT. These statements are simulated by
XRUN and XCONT

XCONT ($B7BE). The CONT statement has no meaning when encountered as a
program statement, so its execution has no effect. When the user enters
CONT as a direct statement, XCONT uses the line number that was saved in
STOPLN to set Execution Control's line parameters (STMCUR, NXTSTD, and
LLNGTH). This results in the current line being the line following the
one whose line number is in STOPLN. This means that any statement
following STOP or END on a line will not be executed; therefore, STOP
and END should always be the last statement in the line. If we are at
the end of the Statement Table, XCONT terminates as if an END statement
had been encountered in the program. If there are more lines to process,
XCONT returns to Execution Control, which resumes processing at the line
whose address was just put into STMCUR.

XRUN ($B74D). The RUN statement comes in two formats, RUN and RUN
<filespec>. In the case of RUN <filespec>, XRUN executes XLOAD to load a
saved program, which replaces the current one in memory. The process

50Execution Boundary Conditions

Converted 2006 by Andreas Bertelmann for ABBUC

then proceeds like RUN. XRUN sets up Execution Control's line pointers
to indicate the first line in the Statement Table. It clears some flags
used to control various other BASIC statements; for example, it resets
STOPLN to O. It closes all IOCBs and executes XCLR to reset all the
variables to zero and get rid of any entries in the String/Array Table
or the Runtime Stack. If there is no program, so the only thing in the
Statement Table is the direct statement, then XRUN does some clean-up,
prints READY, and returns to the start of the editor, which resets the
6502 CPU stack. If there is a program, XRUN returns to Execution
Control, which starts processing the first statement in the table as the
current statement. When RUN <filespec> is used as a program statement,
it performs the useful function of chaining to a new program, but if RUN
alone is used as a program statement, an infinite loop will probably
result.

Error Handling Routine There are other conditions besides the execution
boundary statements that terminate a program's execution. The most
familiar are errors. There are two kinds of errors that can occur during
execution: Input/Output errors and BASIC language errors. Any BASIC
routine that does I/O calls the IOTEST routine ($BCB3) to check the
outcome of the operation. If an error that needs to be reported to the
user is indicated, IOTEST gets the error number that was returned by the
Operating System and joins the Error Handling Routine, ERROR ($B940),
which finishes processing the error. When a BASIC language error occurs,
the error number is generated by the Error Handling Routine. This
routine calculates the error by having an entry point for every BASIC
language error. At each entry point, there is a 6502 instruction that
increments the error number. By the time the main routine, ERROR, is
reached, the error number has been generated. The Error Handling Routine
calls STOP ($B7A7) to save the line number of the line causing the error
in STOPLN. It tests TRAPLN to see if errors are being TRAPed. The TRAP
option is on if TRAPLN contains a valid line number. In this case, the
Error Handler does some clean-up and joins XGOTO, which transfers
processing to the desired line. If the high-order byte of the line
number is $80 (not a valid line number), then we are not TRAPing errors.
In this case, the Error Handler prints the four-part error message,
which consists of ERROR, the error number, AT LINE, and finally the line
number. If the line in error was a direct statement, the AT LINE part is
not printed. The error handler resets ERRNUM to zero and is finished.
The Error Handling Routine does not do an orderly return, but jumps back
to the start of the editor at the SYNTAX entry point where the 6502
stack is reset, clearing it of the now- unwanted return addresses.

Converted 2006 by Andreas Bertelmann for ABBUC

Program Flow Control
Statements

Part

IX

52Program Flow Control Statements

Converted 2006 by Andreas Bertelmann for ABBUC

9 Program Flow Control Statements
Execution Control always processes the statement in the Statement Table
that follows the one it thinks it has just finished. This means that
statements in a BASIC program are usually processed in sequential order.
Several statements, however, can change that order: GOTO, IF, TRAP, FOR,
NEXT, GOSUB, RETURN, POP, and ON. They trick Execution Control by
changing the parameters that it maintains.

Simple Flow Control Statements XGOTO ($BGA3) The simplest form of flow
control transfer is the GOTO statement, simulated by the XGOTO routine.
Following the GOTO token in the tokenized line is an expression
representing the line number of the statement that the user wishes to
execute next. The first thing the XGOTO routine does is ask Execute
Expression to evaluate the expression and convert it to a positive
integer. XGOTO then calls the GETSTMT routine to find this line number
in the Statement Table and change Execution Control's line parameters to
indicate this line. If the line number does not exist, XGOTO restores
the line parameters to indicate the line containing the original GOTO,
and transfers to the Error Handling Routine via the ERNOLN entry point.
The Error Handling Routine processes the error and jumps to the start of
the editor. If the line number was found, XGOTO jumps to the beginning
of Execution Control (EXECNL) rather than returning to the point in the
routine from which it was called. This leaves garbage on the 6502 CPU
stack, so XGOTO first pulls the return address off the stack.

XIF($8778) The IF statement changes the statement flow based on a
condition. The simulatiQn routine, xw, begins by calling a subroutine of
Execute Expressionto evaluate the condition. Since this is a logical
(rather than an arithmetic) operation, we are only interested in whether
the value is zero or non-zero. If the expression was false (non-zero),
XIF modifies Execution Control's line parameters to indicate the end of
this line and then returns. Execution Control moves to the next line,
skipping any remaining statements on the original IF statement line. If
the expression is true (zero), things get a little more complicated.
Back during syntaxing, when a statement of the form IF <expression> THEN
<statement> was encountered, the pre-compiler generated an end-of-
statement token after THEN. XIF now tests for this token. If we are at
the end of the statement, XIF returns to Execution Control, which
processes what it thinks is the next statement in the current line, but
which is actually the THEN <statement> part of the IF statement. If XIF
does not find the end-of-statement token, then the statement must have
had the form IF <expression> THEN <line number>. XIF jumps to XGOTO,
which finishes processing by changing Execution Control's line
parameters to indicate the new line.

XTRAP ($B7E1) The TRAP statement does not actually change the program
flow when it is executed. Instead, the XTRAP simulation routine calls a
subroutine of Execute Expression to evaluate the line number and then
saves the result in TRAPLN ($BC). The program flow is changed only if
there is an error. The Error Handling Routine checks TRAPLN. If it
contains a valid line number, the error routine does some initial set-up
and joins the XGOTO routine to transfer to the new line.

Runtime Stack Routines The rest of the Program Flow Control Statements
use the Runtime Stack. They put items on the stack, inspect them, and/or
remove them from the stack. Every item on the Runtime Stack contains a
four-byte header. This header consists of a one-byte type indication, a
two-byte line number, and a one-byte displacement to the Statement Name
Token. (See pages 18-19.) The type byte is the last byte placed on the
stack for each entry. This means that the pointer to the top of the
Runtime Stack (RUNSTK) points to the type byte of the most recent entry
on the stack. A zero type byte indicates a GOSUB-type entry. Any non-
zero type byte represents a FOR-type entry A GOSUB entry consists solely

53 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

of the four-byte header. A FOR entry contains twelve additional bytes: a
six-byte limit value and a six-byte step value. Several routines are
used by more than one of the statement simulation routines.

PSHRSTK ($B683) This routine expands the Runtime Stack by calling EXPLOW
and then storing the type byte, line number, and displacement of the
Statement Name Token on the stack.

POPRSTK ($B841) This routine makes sure there really is an entry on the
Runtime Stack. POPRSTK saves the displacement to the statement name
token in SVI)ISP, saves the line number in TSLNUM, and puts the
type/variable number in the 6502 accumulator. It then removes the entry
by calling the CONTLOW routine.

:GETTOK ($B737) This routine first sets up Execution Control's line
parameters to point to the line whose number is in the entry just pulled
from the Runtime Stack. If the line was found, : GETTOK updates the line
parameters to indicate that the statement causing this entry is now the
current statement. Finally, it loads the 6502 accumulator with the
statement name token from the statement that created this entry and
returns to its caller. If the line number does not exist, : GETTOK
restores the current statement address and exits via the ERGFDEL entry
point in the Error Handling Routine. Now let's look at the simulation
routines for the statements that utilize the Runtime Stack.

XFOR ($B64B) XFOR is the name of the simulation routine which executes a
FOR statement. In the statement FOR 1=1 TO 10 STEP 2: I is the loop
control variable 1 is its initial value 10 is the limit value 2 is the
step value XFOR calls Execute Expression, which evaluates the initial
value and puts it in the loop control variable's entry in the Variable
Value Table. Then it calls a routine to remove any currently unwanted
stack entries for example, a previous FOR statement that used the same
loop control variable as this one. XFOR calls a subroutine of Execute
Expression to evaluate the limit and step values. If no step value was
given, a value of 1 is assigned. It expands the Runtime Stack using
EXPLOW and puts the values on the stack. XFOR uses PSHRSTK to put the
header entry on the stack. It uses the variable number ofthe loop
control variable (machine-language ORed with $80) as the type byte. XFOR
now returns to Execution Control, which processes the statement
following the FOR statement. The FOR statement does not change program
flow. It just sets up an entry on the Runtime Stack so that the NEXT
statement can change the flow.

XNEXT ($B6CF) The XNEXT routine decides whether to alter the program
flow, depending on the top Runtime Stack entry. XNEXT calls the POPRSTK
routine repeatedly to remove four-byte header entries from the top of
the stack until an entry is found whose variable number (type) matches
the NEXT statement's variable token. If the top-of-stack or GOSUB-type
entry is encountered, XNEXT transfers control to an Error Handling
Routine via the ERNOFOR entry point. To compute the new value of the
loop variable, XNEXT calls a subroutine of Execute Expression to
retrieve the loop control variable's current value from the Variable
Value Table, then gets the step value from the Runtime Stack, and
finally adds the step value to the variable value. XNEXT again calls an
Execute Expression subroutine to update the variable's value in the
Variable Value Table. XNEXT gets the limit value from the stack to
determine if the variable's value is at or past the limit. If so, XNEXT
returns to Execution Control without changing the program flow, and the
next sequential statement is processed. If the variable's value has not
reached the limit, XNEXT returns the entry to the Runtime Stack and
changes the program flow. POPRSTK already saved the line number of the
FOR statement in TSLNUM and the displacement to the statement name token
in SVDISP. XNEXT calls the GETTOK routine to indicate the FOR statement
as the current statement. If the token at the saved displacement is not

54Program Flow Control Statements

Converted 2006 by Andreas Bertelmann for ABBUC

a FOR statement name token, then the Error Handling Routine is given
control at the ERGFDEL entry point. Otherwise, XNEXT returns to
Execution Control, which starts processing with the statement following
the FOR statement.

XGOSUB ($BGA0) The GOSUB statement causes an entry to be made on the
Runtime Stack and also changes program flow. The XGOSUB routine puts the
GOSUB type indicator (zero) into the 6502 accumulator and calls PSHRSTK
to put a four-byte header entry on the Runtime Stack for later use by
the simulation routine for RETURN. XGOSUB then processes exactly like
XGOTO.

XRTN ($B719) The RETURN statement causes an entry to be removed from the
Runtime Stack. The XRTN routine uses the information in this entry to
determine what statement should be processed next. The XRTN first calls
POPRSTK to remove a GOSUB-type entry from the Runtime Stack. If there
are no GOSUB entries on the stack, then the Error Handling Routine is
called at ERBRTN. Otherwise, XRTN calls GETTOK to indicate that the
statement which created the Runtime Stack entry is now the current
statement. If the statement name token at the saved displacement is not
the correct type, then XRTN exits via the Error Handling Routine's
ERGFDEL entry point. Otherwise, control is returned to the caller. When
Execution Control was the caller, then GOSUB must have created the stack
entry, and processing will start at the statement following the GOSUB.
Several other statements put a GOSUB-type entry on the stack when they
need to mark their place in the program. They do not affect program flow
and will be discussed in later chapters.

XPOP ($B841) The XPOP routine uses POPRSTK to remove an entry from the
Runtime Stack. A user might want to do this il he decided not to RETURN
from a GOSUB.

XON ($B7ED) The ON statement comes in two versions: ON-GOTO and ON-
GOSUB. Only ON-GOSUB uses the Runtime Stack. The XON routine evaluates
the variable and converts it to an integer (MOD 256). If the value is
zero, XON returns to Execution Control without changing the program
flow. If the value is non-zero and this is an ON-GOSUB statement, XON
puts a GOSUB-type entry on the Runtime Stack for RETURN to use later.
From this point, ON-GOSUB and ON-GOTO perform in exactly the same
manner. XON uses the integer value calculated earlier to index into the
tokenized statement line to the correct GOTO or GOSUB line number. If
there is no line number corresponding to the index, XON returns to
Execution Control without changing program flow. Otherwise, XON joins
XGOTO to finish processing.

Converted 2006 by Andreas Bertelmann for ABBUC

Tokenized Program Save
and Load

Part

X

56Tokenized Program Save and Load

Converted 2006 by Andreas Bertelmann for ABBUC

10 Tokenized Program Save and Load
The tokenized program can be saved to and reloaded from a peripheral
device, such as a disk or a cassette. The primary statement for saving
the tokenized program is SAVE. The saved program is reloaded into RAM
with the LOAD statement. The CSAVE and the CLOAD statements are special
versions of SAVE and LOAD for use with a cassette.

Saved File Format The tokenized program is completely contained within
the Variable Name Table, the Variable Value Table, and the Statement
Table. However, since these tables vary in size, we must also save some
information about the size of the tables. The SAVE file format is shown
in Figure 10-1. The first part consists of seven fields, each of them
two bytes long, which tell where each table starts or ends. Part two
contains the saved program's Variable Name Table (VNT), Variable Value
Table (VVT), and Statement Table (ST). The displacement value in all the
part-one fields is actually the displacement p?us 256. We must subtract
256 from each displacement value to obtain the true displacement. The
VNT starts at relative byte zero in the file's second part. The second
field in part one holds that value plus 256. The DVVT field in part one
contains the displacement, minus 256, of the VVT from the start of part
two. The DST value, minus 256, gives the displacement of the Statement
Table from the start of part two. The DEND value, minus 256, gives the
end-of-file displacement from the start of part two.

Figure 10-1. SAVE File Format

 PART 1 0 +----------+
 | 0 |
2 +----------+
 | 256 | <--> The displacement of the VNT from
4 +----------+ the beginning of part two, plus 256.
 | Not Used |
6 +----------+
 | DVVT | <--> The displacement of VNT from the
8 +----------+ beginning of part two, plus 256.
 | DST | <--> The displacement of ST from the
10+----------+ beginning of part two, plus 256.
 | Not Used |
12+----------+
 | DEND | <--> The displacement of the end of the

 ======14+==========+ file from the beginning of part two.
 PART 2 0| VNT | <--> Variable Name Table
 DVVT-256+----------+
 | VVT | <--> Variable Value Table
 DSNT-256+----------+
 | ST | <--> Statement Table
 DEND-256+----------+

XSAVE($BB5D) The code that implements the SAVE statement starts at the
XSAVE ($BB5D) label. Its first task is to open the specified output
file, which it does by calling ELADVC. The next operation is to move the
first seven RAM table pointers from $80 to a temporary area at $500.
While these pointers are being moved, the value contained in the first
pointer is subtracted from the value in each of the seven pointers,
including the first. Since the first pointer held the absolute address
of the first RAM table, this results in a list of displacements from the
first RAM table to each of the other tables. These seven two-byte
displacements are then written from the temporary area to the file via
103. These are the first fourteen bytes of the SAVE file. (See Figure
10-1.) The first RAM table is the 256-byte buffer, which will not be
SAVEd. This is why the seven two-byte fields at the beginning of the
SAVEd file hold values exactly 256 more than the true displacement of
the tables they point to. (The LOAD procedure will resolve the 256-byte

57 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

discrepancy.) The next operation is to write the three needed RAM
tables. The total length of these tables is determined from the value in
the seventh entry in the displacement list, minus 256. To write the
three entries, we point to the start of the Variable Name Table and call
104, with the length of the three tables. This saves the second part of
the file format. The file is then closed and XSAVE returns to Execution
Control.

XLOAD ($BAFB) The LOAD statement is implemented at the XLOAD label
located at $BAFB. XLOAD first opens the specified load file for input by
calling ELADVC. BASIC reads the first fourteen bytes from the file into
a temporary area starting at $500. These fourteen bytes are the seven
RAM table displacements created by SAVE. The first two bytes will always
be zero, according to the SAVE file format. (See Figure 10-1.) BASIC
tests these two bytes for zero values. If these bytes are not zero,
BASIC assumes the file is not a valid SAVE file and exits via the
ERRNSF, which generates error code 21 (Load File Error). If this is a
valid SAVE file, the value in the pointer at $80 (Low Memory Address) is
added to each of the seven displacements in the temporary area. These
values will be the memory addresses of the three RAM tables, if and when
they are read into memory. The seventh pointer in the temporary area
contains the address where the end of the Statement Table will be. If
this address exceeds the current system high memory value, the routine
exits via ERRPTL, which generates error code 19 (Load Program Too Big).
If the program will fit, the seven addresses are moved from the
temporary area to the RAM table pointers at $80. The second part of the
file is then loaded into the area now pointed to by the Variable Name
Table pointer $82. The file is closed, CLR is executed, and a test for
RUN is made. If RUN called XLOAD, then a value of $FF was pushed onto
the CPU stack. If RUN did not call XLOAD, then $00 was pushed onto the
CPU stack. If RUN was the caller, then an RTS is done. If XLOAD was
entered as a result of a LOAD or CLOAD statement, then XLOAD exits
directly to the Program Editor, not to Execution Control.

CSAVE and CLOAD The CSAVE and CLOAD statements are special forms of SAVE
and LOAD. These two statements assume that the SAVE/LOAD device is the
cassette device; CSAVE is not quite the same as SAVE "C:". Using SAVE
with the "C:" device name will cause the program to be saved using long
cassette inter-record gaps. This is a time waster, and CSAVE uses short
inter-record gaps. CSAVE starts at XCSAVE ($BBAC). CLOAD starts at
XCLOAD ($BBA4).

Converted 2006 by Andreas Bertelmann for ABBUC

The LIST and ENTER
Statements

Part

XI

59 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

11 The LIST and ENTER Statements
LIST can be used to store a program on an external device and ENTER can
retrieve it. The difference between LOAD-SAVE and LIST-ENTER is that
LOAD-SAVE deals with the tokenized program, while LIST-ENTER deals with
the program in its source (ATASCII) form.

The ENTER Statement BASIC is in ENTER mode whenever a program is not
RUNning. By default the Program Editor looks for lines to be ENTERed
from the keyboard, but the editor handles all ENTERed lines alike,
whether they come from the keyboard or not.

The Enter Device To accomplish transparency of all input data (not just
ENTERed lines), BASIC maintains an enter device indicator, ENTDTD ($B4).
When a BASIC routine (for example, the INPUT simulation routine) needs
data, an I/O operation is done to the IOCB specified in ENTDTD. When the
value in ENTDTD is zero, indicating IOCB 0, input will come from the
keyboard. When data is to come from some other device, ENTDTD contains a
number indicating the corresponding IOCB. During coldstart
initialization, the enter device is set to IOCB 0. It is also reset to 0
at various other times.

XENTER ($BACB) The XENTER routine is called by Execution Control to
simulate the ENTER statement. XENTER opens IOCB 7 for input using the
specified <filespec>, stores a 7 in the enter device ENTDTD, and then
jumps to the start of the editor.

Entering from a Device When the Program Editor asks GLGO, the get line
routine ($BA92), for the next line, GLGO tells CIO to get a line from
the device spedified in ENTDTD - in this case, fr9m IOCB 7. The editor
continues to process lines from IOCB 7 until an end-of- file error
occurs. The IOTEST routine detects the EOF condition, sees thatwe are
using IOCB 7 for ENTER, closes device 7, and jumps to SNX2 to reset the
enter device (ENTDTD) to 0 and print the READY message before restarting
at the beginning of the editor.

The LIST Statement The routine which simulates the LIST statement,
XLIST, is actually another example of a language translator, complete
with symbols and symbol-combining rules. XLIST translates the tokens
generated by Atari BASIC back into the semi- English BASIC statements in
ATASCII. This translation is a much simpler task than the one done by
the pre-compiler, since XLIST can assume that the statement to be
translated is syntactically correct. All that is required is to
translate the tokens and insert blanks in the appropriate places.

The List Device BASIC maintains a list device indicator, LISTDTD ($B5),
similar to the enter device indicator discussed earlier. When a BASIC
routine wants to output some data (an error message, for example), the
I/O operation is done to the device (IOCB) specified in LISTDTD. During
coldstart initialization and at various other times, LISTDTD is set to
zero, representing IOCB 0, the editor, which will place the output on
the screen. Routines such as XPRINT or XLIST can change the LIST device
to indicate some other IOCB. Thus the majority of the BASIC routines
need not be concerned about the output's destination. Remember that IOCB
0 is always open to the editor, which gets input from the keyboard and
outputs to the screen. IOCB 6 is the S: device, the direct access to
graphics screen, which is used in GRAPHICS statements. Atari BASIC uses
IOCB 7 for I/O commands that allow different devices, like SAVE, LOAD,
ENTER, and LIST.

XLIST ($B483) The XLIST routine considers the output's destination in
its initialization process and then forgets about it. It looks at the
first expression in the tokenized line. If it is the <filespec> string,
XLIST calls a routine to open the specified device using IOCB 7 and to

60The LIST and ENTER Statements

Converted 2006 by Andreas Bertelmann for ABBUC

store a 7 in LISTDTD. All of XLIST's other processing is exactly the
same, regardless of the LISTed data's final destination. XLIST marks its
place in the Statement Table by calling a subroutine of XGOSUB to put a
GOSUB type entry on the Runtime Stack. Then XLIST steps through the
Statement Table in the same way that Execution Control does, using
Execution Control's line parameters and subroutines. When XLIST is
finished, Execution Control takes the entry off the Runtime Stack and
continues. The XLIST routine, assuming it is to LIST all program
statements, sets default starting and ending line numbers of 0 (in
TSLNUM) and $7FFF (in LELNUM). XLIST then determines whether line
numbers were specified in the tokenized line that contained the LIST
statement. XLIST compares the current index into the line (STINDEX) to
the displacement to the next statement (NXTSTD). If STINDEX is not
pointing to the next statement, at least one line number is specified.
In this case, XLIST calls a subroutine of Execute Expression to evaluate
the line number and convert it to a positive integer, which XLIST stores
in TSLNUM as the starting line number. If a second line number is
specified, XLIST calls Execute Expression again and stores the value in
LELNUM as the final line to LIST. If there is no second line number,
then XLIST makes the ending line number equal to the starting line
number, and only one line will be LISTed. If no line numbers were
present, then TSLNUM and LELNUM still contain their default values, and
all the program lines will be LISTed. XLIST gets the first line to be
LISTed by calling the Execution Control subroutine GETSTMT to initialize
the line parameters to correspond to the line number in TSLNUM. If we
are not at the end of the Statement Table, and if the current line's
number is less than or equal to the final line number to be LISTed,
XLIST calls a subroutine :LLINE to list the line. After LISTing the
line, XLIST calls Execution Control's subroutines to point to the next
line. LISTing continues in this manner until the end of the Statement
Table is reached or until the final line specified has been printed.
When XLIST is finished, it exits via XRTN at $B719, which makes the LIST
statement the current statement again and then returns to Execution
Control.

LIST Subroutines
:LLINE ($BS5C) The LLINF routine LISTs the current line (the line whose
address is in STMCUR). :LLINE gets the line number from the beginning of
the tokenized line. The floating point package is called to convert the
integer to floating point and then to printable ATASCII. The result is
stored in the buffer indicated by INBUFF. :LLINE calls a subroutine to
print the line number and then a blank. For every statement in the line,
:LLINE sets STINDEX to point to the statement name token and calls the
:LSTMT routine ($B590) to LIST the statement. When all statements have
been LISTed, :LLINE returns to its caller, XLIST.

:LSTMT ($B590) The :LSTMT routine LISTs the statement which starts at
the current displacement (in INDEX) into the current line. This routine
does the actual language translation from tokens to BASIC statements.
:LSTMT uses two subroutines, :LGCT and :LGNT, to get the current and
next token, respectively. If the end of the statement has been reached,
these routines both pull the return address of their caller off the 6502
CPU stack and return to :LSTMT's caller, :LLINE. Otherwise, they return
the requested token from the tokenized statement line. The first token
in a statement is the statement name token. :LSTMT calls a routine which
prints the corresponding statement name by calling :LSCAN to find the
entry and :LPRTOKEN to print it. In the discussion of the Program Editor
we saw that an erroneous statement was given a statement name of ERROR
and saved in the Statement Table. If the current statement is this ERROR
statement or is REM or DATA, :LSTMT picks up each remaining character in
the statement and calls PRCHAR ($BA9F) to print the character. Each type
of token is handled differently. :LSTMT determines the type (variable,
numeric constant, string constant, or operator) and goes to the proper
code to translate it.

61 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

Variable Token. A variable token has a value greater than or equal to
$80. When :LSTMT encounters a variable token, it turns off the most
significant bit to get an index into the Variable Name Table. :LSTMT
asks the :LSCAN routine to get the address of this entry. :LSTMT then
calls :LPRTOKEN ($B535) to print the variable name. If the last
character of the name is (, the next token is an array left parenthesis
operator, and :LSTMT skips it.

Numeric Constant Token. A numeric constant is indicated by a token of
$0E. The next six bytes are a floating point number. :LSTMT moves the
numeric constant from the tokenized line to FRO ($D4) and asks the
floating point package to convert it to ATASCII. The result is in a
buffer pointed to by INBUFF. :LSTMT moves the address of the ATASCII
number to SRCADR and tells :LPRTOKEN to print it.

String Constant Token. A string constant is indicated by a token of $0F.
The next byte is the length of the string followed by the actual string
data. Since the double quotes are not stored with a string constant,
:LSTMT calls PRCHAR ($BA9F) to print the leading double quote. The
string length tells :LSTMT how many following characters to print
without translation. :LSTMT repeatedly gets a character and calls PRCHAR
to print it until the whole string constant has been processed. It then
asks PRCHAR to print the ending double quote.

Operator Token. An operator token is any token greater than or equal to
$10 and less than $80. By subtracting $10 from the token value, :LSTMT
creates an index into the Operator Name Table. :LSTMT calls :LSCAN to
find the address of this entry. If the operator is a function (token
value greater than or equal to $3D), :LPROTOKEN is called to print it.
If this operator is not a function but its name is alphabetic (such as
AND), the name is printed with a preceding and following blank.
Otherwise, :LPRTOKEN is called to print just the operator name.

:LSCAN ($B50C) This routine scans a table until it finds the translation
of a token into an ATASCII name. A token's value is based on its table
entry number; therefore, the entry number can be derived by modifying
the token. For example, a variable token is created by machine-language
ORing the table entry number of the variable name with $80. The entry
number can be produced by ANDing out the high-order bit of the token. It
is this entry number, stored in SCANT, that the :LSCAN routine uses. The
tables scanned by :LSCAN have a definite structure. Each entry consists
of a fixed length portion followed by a variable length ATASCII portion.
The last character in the ATASCII portion has the high-order bit on.
Using these facts, :LSCAN in 5 he entry corresponding to the entry
number in SCANT and puts the address of the ATASCII portion in SCRADR.

:LPRTOKEN ($B535) This routine's task is to print the string of ATASCII
characters whose address is in SCRADR. :LPRTOKEN makes sure the most
significant bit is off (except for a carriage return) and prints the
characters one at a time until it has printed the last character in the
string (the one with its most significant bit on).

Converted 2006 by Andreas Bertelmann for ABBUC

Atari Hardware Control
Statements

Part

XII

63 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

12 Atari Hardware Control Statements
The Atari Hardware Control Statements allow easy access to some of the
computer's graphics and audio capabilities. The statements in this group
are COLOR, GRAPHICS, PLOT, POSITION, DRAWTO, SETCOLOR, LOCATE, and
SOUND.

XGR ($BA50) The GRAPHICS statement determines the current graphics mode.
The XGR simulation routine executes the GRAPHICS statement. The XGR
routine first closes IOCB 6. It then calls an Execute Expression
subroutine to evaluate the graphics mode value and convert it to an
integer. XGR sets up to open the screen by putting the address of a
string "S." into INBUFF. It creates an AUX1 and AUX2 byte from the
graphics mode integer. XGR calls a BASIC I/O routine which sets up IOCB
6 and calls CIO to open the screen for the specified graphics mode. Like
all BASIC routines that do I/O, XGR jumps to the IOTEST routine, which
determines what to do next based on the outcome of the I/O.

XCOLOR ($BA29) The COLOR statement is simulated by the XCOLOR routine.
XCOLOR calls a subroutine of Execute Expression to evaluate the color
value and convert it to an integer. XCOLOR saves this value (MOD 256) in
BASIC memory location COLOR ($C8). This value is later retrieved by
XPLOT and XDRAWTO.

XSETCOLOR ($89B7) The routine that simulates the SETCOLOR statement,
XSETCOLOR, calls a subroutine of Execute Expression to evaluate the
color register specified in the tokenized line. The Execute Expression
routine produces a one-byte integer. If the value is not less than 5
(the number of color registers), XSETCOLOR exits via the Error Handling
Routine at entry point ERVAL. Otherwise, it calls Execute Expression to
get two more integers from the tokenized line. To calculate the color
value, XSETCOLOR multiplies the tirst integer (MOD 256) byl6 and adds
the second (MOD 256). Since the operating system's five color registers
are in consecutive locations starting at $2C4 XSETCOLOR uses the
register value specified as an index to the proper register location and
stores the color value there.

XPOS ($BA16) The POSITION statement, which specifies the X and Y
coordinates of the graphics cursor, is simulated by the XPOS routine.
XPOS uses a subroutine of Execute Expression to evaluate the X
coordinate of the graphics window cursor and convert it to an integer
value. The two-byte result is stored in the operating system's X screen
coordinate location (SCRX at $55). This is the column number or
horizontal position of the cursor. XPOS then calls another Execute
Expression subroutine to evaluate the Y coordinate and convert it to a
one-byte integer. The result is stored in the Y screen coordinate
location (SCRY at $54). This is the row number, or vertical position.

XLOCATE ($BC95) XLOCATE, which simulates the LOCATE statement, first
calls XPOS to set up the X and Y screen coordinates. Next it initializes
IOCB 6 and joins a subroutine of XGET to do the actual I/O required to
get the screen data into the variable specified.

XPLOT ($5A76) XPLOT, which simulates the PLOT statement, first calls
XPOS to set the X and Y coordinates of the graphics cursor. XPLOT gets
the value that was saved in COLOR ($C8) and joins a PUT subroutine (PRCX
at $BAA1) to do the I/O to IOCB 6 (the screen).

XDRAWTO ($BA31) The XDRAWTO routine draws a line from the current X,Y
screen coordinates to the X,Y coordinates specified in the statement.
The routine calls XPOS to set the new X,Y coordinates. It places the
value from BASIC's memory location COLOR into OS location SVCOLOR
($2FB). XDRAWTO does some initialization of IOCB 6 specifying the draw
command ($11). It then calls a BASIC I/O routine which finishes the

64Atari Hardware Control Statements

Converted 2006 by Andreas Bertelmann for ABBUC

initialization of IOCB 6 and calls CIO to draw the line. Finally,
XDRAWTO jumps to the IOTEST routine, which will determine what to do
next based on the outcome of the I/O.

XSOUND ($K9DD) The Atari computer hardware uses a set of memory
locations to control sound capabilities. The SOUND statement gives the
user access to some of these capabilities. The XSOUND routine, which
simulates the SOUND statement, places fixed values in some of the sound
locations and user specified values in others. The XSOUND routine uses
Execute Expression to get four integer values from the tokenized
statement line. If the first integer (voice) is greater than or equal to
4, the Error Handling Routine is invoked at ERVAL. The OS audio control
bits are all turned off by storing a 0 into $D208. Any bits left on from
previous serial port usage are cleared by storing 3 in $D20F. The Atari
has four sound registers (one for each voice) starting at $D200. The
first byte of each two-byte register determines the pitch (frequency).
In the second byte, the four most significant bits are the distortion,
and the four least significant bits are the volume. The voice value
mentioned earlier is multiplied by 2 and used as an index into the sound
registers. The second value from the tokenized line is stored as the
pitch in the first byte of one of the registers ($D200, $D202, $D204, or
$D206), depending on the voice index. The third value from the tokenized
line is multiplied by 16 and the fourth value is added to it to create
the value to be stored as distortion/volume. The voice, times 2, is
again used as an index to store this value in the second byte of a sound
register ($D201, $D203, $D205, or $D207). The XSOUND routine then
returns to Execution Control.

Converted 2006 by Andreas Bertelmann for ABBUC

External Data I/O
Statements

Part

XIII

66External Data I/O Statements

Converted 2006 by Andreas Bertelmann for ABBUC

13 External Data I/O Statements
The external data I/O statements allow data which is not part of the
BASIC source program to flow into and out of BASIC. External data can
come from the keyboard, a disk, or a cassette. BASIC can also create
external information by sending data to external devices such as the
screen, a printer, or a disk. The INPUT and GET statements are the
primary statements used for obtaining information from external devices.
The PRINT and PUT statements are the primary statements for sending data
to external devices. XIO, LPRINT, OPEN, CLOSE, NOTE, POINT and STATUS
are specialized I/O statements. LPRINT is used to print a single line to
the "P:" device. The other statements assist in the I/O process.

XINPUT ($B316) The execution of the INPUT statement starts at)(INPUT
($B316).

Getting the Input Line. The first action of XINPUT is to read a line of
data from the indicated device. A line is any combination of up to 255
characters terminated by the EOL character ($9B). This line will be read
into the buffer located at $580. If the INPUT statement contained was
followed by #<expression>, the data will be read from the IOCB whose
number was specified by <expression>. If there was no #<expression>,
IOCB 0 will be used. IOCB 0 is the screen editor and keyboard device
(E:). If IOCB 0 is indicated, the prompt character (?) will be displayed
before the input line request is made; otherwise, no prompt is
displayed.

Line Processing. Once the line has been read into the buffer, processing
of the data in that line starts at XINA ($B335). The input line data is
processed according to the tokens in the INPUT (or READ) statements.
These tokens are numeric or string variables separated by commas.

Processing a Numeric Variable. If the new token is a numeric variable,
the CVAFP routine is called to convert the next characters in the input
line to a floating point number. If this conversion does not report an
error1 and if the next input line character is a comma or an EOL, the
floatixig point value is processed. The processing of a valid numeric
input value consists of calling RTNVAR to return the variable and its
new value to the Variable Value Table. If there is an error, INPUT
processing is aborted via the ERRINP routine. If there is no error, but
the user has hit BREAK, the process is aborted via XSTOP. If there is no
abort, XINX ($B389) is called to continue with INPUT's next task.

Processing a String Variable. If the next statement token is a string
variable, it is processed at XISTR ($B35E). This routine is also used by
the READ statement. If the calling statement is INPUT, then all input
line characters from the current character up to but not including the
EOL character are considered to be part of the input string data. If the
routine was called by READ, all characters up to but not including the
next comma or EOL are considered to be part of the input string. The
process of assigning the data to the string variable is handled by
calling RISASN ($B386). If RISASN does not abort the process because of
an error like DIMENSION TOO SMALL, XINX is called to continue with
INPUT's next task.

XINX. The XINX ($B389) routine is entered after each variable token in
an INPUT or a READ statement is processed. If the next token in the
statement is an EOL, the INPUT/READ statement processing terminates at
XIRTS ($B3A1). XIRTS restores the line buffer pointer ($80) to the RAM
table buffer. It then restores the enter device to IOCB 0 (in case it
had been changed to some other input device). Finally, XIRTS executes an
RTS instruction. If the next INPUT/READ statement token is a comma, more
input data is needed. If the next input line character is an EOL,
another input line is obtained. If the statement was INPUT, the new line

67 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

is obtained by entering XINO ($B326). If the statement was READ, the new
lineis obtained by entering XRD3 ($B2D0). The processing of the next
INPUT/READ statement variable token continues at XINA.

XGET ($BC7F) The GET statement obtains one character from some specified
device and assigns that character to a scalar (non-array) numeric
variable. The execution of GET starts at XGET ($BC7F) with a call to
GIODVC. GIODVC will set the I/O device to whatever number is specified
in the #< expression> or to IOCB zero if no #<expression> was specified.
(If the device is IOCB 0 (E:), the user must type RETURN to force E: to
terminate the input.) The single character is obtained by calling 103.
The character is assigned to the numeric variable by calling ISVAR1
($BD2D). ISVAR1 also terminates the GET statement processing.

PRINT The PRINT statement is used to transmit text data to an external
device. The arguments in the PRINT statement are a list of numeric
and/or string expressions separated by commas or semicolons. If the
argument is numeric, the floating point value is converted to text form.
If the argument is a string, the string value is transmitted as is, If
an argument separator is a comma, the arguments are output in tabular
fashion: each new argument starts at the next tab stop in the output
line, with blanks separating the arguments. If the argument separator is
a semicolon, the transmitted arguments are appended to each other
without separation. The transmitted line is terminated with an EOL,
unless a semicolon or comma directly precedes the statement's EOL or
statement separator (:).

XPRINT ($B3B6). The PRINT routine begins at XPRINT ($B3B6). The tab
value is maintained in the PTABW ($C9) cell. The cell is initialized
with a value of ten during BASIC's cold start, so that commas in the
PRINT line cause each argument to be displaced ten positions after the
beginning of the last argument. The user may POKE PTABW to set a
different tab value. XPRINT copies PTABW to SCANT ($AF). SCANT will be
used to contain the next multiple-of-PTABW output line displacement -
the column number of the next tab stop. COX is initialized to zero and
is used to maintain the current output column or displacement. 97

XPRO. XPRINT examines the next statement token at XPRO ($B3BE),
classifies it, and executes the proper routine.

Token. If the next token is #, XPRIOD ($B437) is entered. This routine
modifles the list device to the device specified in the # <expression>.
XPRO is then entered to process the next token.

, Token. The XPTAB ($B419) routine is called to process the , token. Its
job is to tab to the next tab column. If COX (the current column) is
greater than SCANT, we must skip to the next available tab position.
This is done by continuously adding PTABW to SCANT until COX is less
than or equal to SCANT. When COX is less than SCANT, blanks ($20) are
transmitted to the output device until COX is equal to SCANT. The next
token is then examined at XPRO.

EOL and: Tokens. The XPEOS ($B446) routine is entered for EOL and
tokens. If the previous token was a; or, token, PRINT exits at XPRTN
($B458). If the previous token was not a; or, token, an EOL character is
transmitted before exiting via XPRTN.

; Token. No special action is taken for the; token except to go to XPRO
to examine the next token.

Numbers and Strings. If the next token is not one of the above tokens,
Execute Expression is called to evaluate the expression. The resultant
value is popped from the argument stack and its type is tested for a
number or a string. If the argument popped was numeric, it will be

68External Data I/O Statements

Converted 2006 by Andreas Bertelmann for ABBUC

converted to text form by calling CVFASC. The resulting text is
transmitted to the output device from the buffer pointed to by INBUFF
($F3). XPRO is then entered to process the next token. If the argument
popped was a string, it will be transmitted to the output device by the
code starting at :XPSTh ($B3F8). This code examines the argument
parameters to determine the current length of the string. When the
string has been transmitted, XPRO is entered to process the next token.

XLPRINT ($8464) LPRINT, a special form of the PRINT statement, is used
to print a line to the printer device (P:). The XLPRINT routine starts
at $B464 by opening IOCB 7 for output to the P: device. XPRINT is then
called to do the printing. When the XPRINT is done, IOCB 7 is closed via
CLSYS1 and LPRINT is terminated.

XPUT ($BC72) The PUT statement sends a single byte from the expression
in the PUT statement to a specified external device. Processing starts
at XPUT ($BC72) with a call to GIODVC. GIODVC sets the I/O device to the
IOCB specified in #<expression>. If a #< expression> does not exist, the
device will be set to IOCB zero (E:). The routine then calls GETINT to
execute PUT's expression and convert the resulting value to a two-byte
integer. The least significant byte of this integer is then sent to the
PUT device via PRCX. PRCX also terminates the PUT processing.

XXIO ($BBE5) The XIO statement, a general purpose I/O statement, is
intended to be used when no other BASIC I/O statement will serve the
requirements. The XIO parameters are an IOCB I/O command, an IOCB
specifying expression, an AUXi value, an AUX2 value, and finally a
string expression to be used as a filespec parameter. XIO starts at XXIO
($BBE5) with a call to GIOCMD. CIOCMD gets the IOCB command parameter.
XIO then continues at XOP1 in the OPEN statement code.

XOPEN ($BBEB) The OPEN statement is used to open an external device for
input and/or output. OPEN has a # <expression>, the open type parameter
(AUX1), an AUX2 parameter, and a string expression to be used as a
filespec. OPEN starts at XOPFN at $BBEB. It loads the open command code
into the A register and continues at XOP1.

XOP1. XOP1 continues the OPEN and XIO statement processing. It starts at
$BBED by storing the A register into the IOCMD cell. Next it obtains the
AUX1(open type) and AUX2 values from the statement. The next parameter
is the filespec string. In order to insure that the filespec has a
proper terminator, SETSEOL is called to place a temporary EOL at the end
of the string. The XIO or OPEN command is then executed via a call to
IO1. When IO1 returns, the temporary EOL at the end of the string is
replaced with its previous value by calling RSTSEOL. OPEN and XIO
terminate by calling TOTEST to insure that the command was executed
without error.

XCLOSE ($BC1B) The CLOSE statement, which closes the specified device,
starts at XCLOSE ($BCIB). It loads the IOCB close command code into the
A register and continues at GDVCIO.

GDVCEO. GDVCIO ($BC1D) is used for general purpose device I/O. It stores
the A register into the IOCMD cell, calls GIODVC to get the device from
<expression>, then calls IO7 to execute the IO0. When IO7 returns,
IOTEST is called to test the results of the I/O and terminate the
routine.

XSTATUS ($BC28) The STATUS statement executes the IOCB status command.
Processing starts at XSTATUS ($BC28) by calling GIODVC to get the device
number from # <expression>. It then calls IO8 with the status command in
the A register. When IO8 returns, the status returned in the IOCB status
cell is assigned to the variable specified in the STATUS statement by
calling ISVARI. ISVAR1 also terminates the STATUS statement processing.

69 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

XNOTE ($BC3G) The NOTE statement is used specifically for disk random
access. NOTE executes the Disk Device Dependent Note Command, $26, which
returns two values representing the current position within the file for
which the IOCB is open. NOTE begins at XNOTE at $BC36. The code loads
the command value, $26, into the A register and calls GDVCIO to do the
I/O operation. When GDVCIO returns, the values are moved from AUX3 and
AUX4 to the first variable in the NOTE statement. The next variable is
assigned the value from AUX5.

XPOINT ($8C4D) The POINT statement is used to position a disk file to a
previously NOTEd location. Processing starts at XPOINT ($BC4D). This
routine conyerts the first POINT parameter to an integer and stores the
value in AUX3 and AUX4. The second parameter is then converted to an
integer and its value stored in AUX5. The POINT command, $25, is
executed by calling GDIO1, which is part of GDVCIO.

Miscellaneous I/O Subroutines IOTEST. IOTEST($BCB3) is a general purpose
routine that examines the results of an I/O operarion. If the I/O
processing has returned an error, IOTEST processes that error. IOTEST
starts by calling LDIOSTA to get the status byte from the IOCB that
performed the last I/O operation. If the byte value is positive (less
than 128), IOTEST returns to the caller. If the status byte is negative,
the I/O operation was abnormal and processing continues at SICKIO. If
the I/O aborted due to a BREAK key depression, BRKBYT ($11) is set to
zero to indicate BREAK. If a LOAD was in progress when BREAK was hit,
exit is via COLDSTART; otherwise IOTEST returns to its caller. If the
error was not from IOCB 7 (the device BASIC uses), the error status
value is stored in ERRNUM and ERROR is called to print the error message
and abort program execution. If the error was from IOCB 7, then IOCB 7
is closed and ERROR is called with the error status value in ERRNUM -
unless ENTER was being executed, and the error was an end- of-file
error. In this case, IOCB 7 is closed, the enter device is reset to IOCB
0, and SNX2 is called to return control to the Program Editor.

I/O Call Routine. All I/O is initiated from the routine starting at IO1
($BD0A). This routine has eight entry points, IO1 through IO8, each of
which stores predetermined values in an IOCB. All IOn entry points
assume that the X register contains the IOCB value, times 16. IO1 sets
the buffer length to 255. IO2 sets the buffer length to zero. IO3 sets
the buffer length to the value in the Y register plus a most-significant
length byte of zero. IO4 sets the buffer length from the values in the
Y,A register pair, with the A register being the most-significant value.
IO5 sets the buffer address from the value in the INBUFF cell (sF3). IO6
sets the buffer address from the Y,A register pair. The A register
contains the most significant byte. IO7 sets the 1/0 command value from
the value in the IOCMD cell. IO8 sets the I/O command from the value in
the A register. All of this is followed by a call to the operating
system CIO entry point. This call executes the I/O. When CIO returns,
the general I/O routine returns to its caller. 102

Converted 2006 by Andreas Bertelmann for ABBUC

Internal I/O Statements

Part

XIV

71 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

14 Internal I/O Statements
The READ, DATA, and RESTORE statements work together to allow the BASIC
user to pass predetermined information to his or her program. This is,
in a sense, internal I/O.

XDATA ($A9E7) The information to be passed to the BASIC program is
stored in one or more DATA statements. A DATA statement can occur any
place in the program, but execution of a DATA statement has no effect.
When Execution Control encounters a DATA statement, it expects to
process this statement just like any other. Therefore an XDATA routine
is called, but XDATA simply returns to Execution Control.

XREAD ($B283) The XREAD routine must search the Statement Table to find
DATA. It uses Execution Control's subroutines and line parameters to do
this. When XREAD is done, it must restore the line parameters to point
to the READ statement. In order to mark its place in the Statement
Table, XREAD calls a subroutine of XGOSUB to put a GOSUB-type entry on
the Runtime Stack. The BASIC program may need to READ some DATA, do some
other processing, and then READ more DATA. Therefore, XREAD needs to
keep track of just where it is in which DATA statement. There are two
parameters that provide for this. DATALN ($B7) contains the line number
at which to start the search for the next DATA statement. DATAD ($B6)
contains the displacement of the next DATA element in the DATALN line.
Both values are set to zero as part of RUN and CLR statement processing.
XREAD calls Execution Control's subroutine GETSTMT to get the line whose
number is stored in DATALN. If this is the first READ in the program and
a RESTORE has not set a different line number, DATALN contains zero, and
GETSTMT will get the first line in the program. On subsequent READs,
GETSTMT gets the last DATA statement that was processed by the previous
READ. After getting its first line, XREAD calls the XRTN routine to
restore Execufion Control's line parameters. The current line number is
stored in DATALN. XREAD steps through the line, statement by statement,
looking for a DATA statement. If the line contains no DATA statement,
then subsequent lines and statements are examined until a DATA statement
is found. When a DATA statement has been found, XREAD inspects the
elements of the DATA statement until it finds the element whose
displacement is in DATAD. If no DATA is found, XREAD exits via the
ERROOD entry point in the Error Handling Routine. Otherwise, a flag is
set to indicate that a READ is being done, and XREAD joins XINPUT at
:XINA. XINPUT handles the assignment of the DATA values to the
variables. (See Chapter 13.)

XREST ($B268) The RESTORE statement allows the BASIC user to re-READ a
DATA statement or change the order in which the DATA statements are
processed. The XREST routine simulates RESTORE. XREST sets DATALN to the
line number given, or to zero if no line number is specified. It sets
DATAD to zero, so that the next READ after a RESTORE will start at the
first element in the DATA line specified in DATALN.

Converted 2006 by Andreas Bertelmann for ABBUC

Miscellaneous
Statements

Part

XV

73 Atari BASIC Source book

Converted 2006 by Andreas Bertelmann for ABBUC

15 Miscellaneous Statements
XDEG ($B261) and XRAD ($B266) The transcendental functions such as SIN
or COS will work with either degrees or radians depending on the setting
of RADFLG ($FB). The DEG and'RAD statements cause RADFLG to be set.
These statements are simulated by the XDEG and XRAD routines,
respectiveW. The XDEG routine stores a six in RADI'LG. XRAD sets it to
zero. These particular values were chosen because they aid the
transcendental functions in their calculations. RADFLG is set to zero
during BASIC's initialization process and also during simulation of the
RUN statement.

XPOKE ($B24C) The POKE statement is simulated by the XPOKE routine.
XPOKE calls a subroutine of Execute Expression to get the address and
data integers from the tokenized line. XPOKE then stores the data at the
specified address.

XBYE ($A9E8) The XBYE routine simulates the BYE statement. XBYE closes
all IOCBs (devices and files) and then jumps to location $E471 in the
Operating System. This ends BASIC and causes the memo pad to be
displayed.

XDOS ($A9EE) The DOS statement is simulated by the XDOS routine. The
XDOS routine closes all IOCBs and jumps to whatever address is stored in
location $0A. This will be the address of DOS if DOS has been loaded. If
DOS has not been loaded, $0A will point to the memo pad.

XLET ($AAE0) The LET and implied LET statements assign values to
variables. They both invoke the XLET routine, which consists of the
Execute Expression routines. (See Chapter 7.)

XREM ($A9E7) The REM statement is for documentation purposes only and
has no effect on the running program. The routine which simulates REM,
XREM, simply executes an RTS instruction to return to Execution Control.

XERR ($B91E) When a line containing a syntax error is entered, it is
given a special statement name token to indicate the error. The entire
line is flagged as erroneous no matter how many previously good
statements are in the line. The line is then stored in the Statement
Table. The error statement is processed just like any other. Execution
Control calls a routine, XERR, which is one of the entry points to the
Error Handling Routine. It causes error 17 (EXECUTION OF GARBAGE).

XDIM ($B1D9) The DIMension statement, simulated by the XDIM routine,
reserves space in the String/Array Table for the DIMensioned variable.
The XDIM routine calls Execute Expression to get the variable to be
DIMensioned from the Variable Value Table. The variable entry is put
into a work area. In the process, Execute Expression gets the first and
second DIMension values and sets a default of zero if only one value is
specified. XDIM checks to see if the variable has already been
DIMensioned. If the variable was already DIMensioned, XDIM exits via the
ERRDIM entry point in the Error Handling Routine. If not, a bit is set
in the variable type byte in the work area entry to mark this variable
as DIMensioned. Next, XDIM calculates the amount of space required. This
calculation is handled differently for strings and arrays.

DIMensioning an Array. XDIM first increments both dimension values by
one and then multiplies them together to get the number of elements in
the array. XDIM multiplies the result by 6 (the length of a floating
point number) to get the number of bytes required. EXPAND is called to
expand the String/Array Table by that amount. XDIM must finish building
the variable entry in the work area. It stores the first and second
dimension values in the entry. It also stores the array's displacement

74Miscellaneous Statements

Converted 2006 by Andreas Bertelmann for ABBUC

into the String/Array Table. It then calls an Execute Expression
subroutine to return the variable to the Variable Value Table. (See
Chapter 3.)

DIMensioning a String. Reserving space for a string in the String/Array
Table is much simpler. XDIM merely calls the EXPAND routine to expand by
the user-specified size. XDIM must also build the Variable Value Table
entry in the work area. It sets the current length to 0 and the maximum
length to the DIMensioned value. The displacement of the string into the
String/Array Table is also stored in the variable. XDIM then calls a
subroutine of Execute Expression to return the variable entry to the
Variable Value Table. (See Chapter 3.)

Converted 2006 by Andreas Bertelmann for ABBUC

Initialization

Part

XVI

76Initialization

Converted 2006 by Andreas Bertelmann for ABBUC

16 Initialization
When the Atari computer is powered up with the BASIC cartridge in place,
the operating system does some processing and then jumps to a BASIC
routine. Between the time that BASIC first gets control and the time it
prints the READY message, initialization takes place. This
initialization is called a cold start. No data or tables are preserved
during a cold start. Initialization is repeated if things go terribly
awry. For example, if there is an I/O error while executing a LOAD
statement, BASIC is totally confused. It gives up and begins all over
again with the COLDSTART routine. Sometimes a less drastic partial
initialization is necessary. This process is handled by the WARMSTART
routine, in which some tables are preserved. Entering the NEW statement,
simulated by the XNEW routine, has almost the same effect as a cold
start.

COLDSTART ($A000) Two flags, LOADFLG and WARMFLG, are used to determine
if a cold or warm start is required. The load flag, LOADFLG ($CA), is
zero except during the execution of a LOAD statement. The XLOAD routine
sets the flag to non-zero when it starts processing and resets it to
zero when it finishes. If an I/O error occurs during that interval,
IOTEST notes that LOADFLG is non-zero and jumps to COLDSTART. The warm-
start flag, WARMFLG ($08), is never set by BASIC. It is set by some
other routine, such as the operating system or DOS. If WARMFLG is zero,
a cold start is done. If it is non-zero, a warm start is done. During
its power-up processing, before BASIC is given control, OS sets WARMFLG
to zero to request a cold start. During System Reset processing, OS sets
the flag to non-zero, indicating a warm start is desired. If DOS has
loaded any data into BASIC's program area during its processing, it will
request a cold start. The COLDSTART routine checks both WARMFLG and
LOADFLG to determine whether to do a cold or warm start. If a cold start
is required, COLDSTART initializes the 6502 CPU stack and clears the
decimal flag. The rest of its processing is exactly the same as if the
NEW statement had been entered.

XNEW ($A00C) The NEW statement is simulated by the XNEW routine. XNEW
resets the load flag, LOADFLG, to zero. It initializes the zero- page
pointers to BASIC's RAM tables. It reserves 256 bytes at the loW memory
address for the multipurpose buffer and stores its address in the zero-
page pointer located at $80. Since none of the RAM tables are to retain
any data, their zero- page pointers ($82 through $90) are all set to lOW
memory plus 256. The Variable Name Table is expanded by one byte, which
is set to zero. This creates a dummy end-of-table entry. The Statement
Table is expanded by three bytes. The line number of the direct
statement ($8000) is stored there along with the length (three). This
marks the end of the Statement Table. A default tab value of 10 is set
for the PRINT statement.

WARMSTART ($A04D) A warm start is the least drastic of the three types
of initialization. Everything the WARMSTART routine does is also done by
COLDSTART and XNEW. The stop line number (STOPLN), the error number
(ERRNUM), and the DATA parameters (DATALN and DATAD) are all set to
zero. The RADFLG flag is set to zero, indicating that transcendental
functions are working in radians. The break byte (BRKBYT) is set off and
$FF is stored in TRAPLN to indicate that errors are not being trapped.
All IOCBs (devices and files) are closed. The enter and list devices
(ENTDTD and LISTDTD) are set to zero to indicate the keyboard and the
screen, respectively. Finally, the READY message is printed and control
passes to the Program Editor.

Index

- 6 -
6502 3

- A -
Absolute Non-Terminal Vector 26

Application high memory 13

Argument Stack 40

Array 40

Array Address 40

Array Entry 13

Assembler 3

Atari BASIC 3

Atari keyboard 21

- B -
BASIC 49, 76

BYE 73

- C -
Cartridge 76

Change Last Token 26

CIX 21

CLOAD 56

CLOSE 66

COLDSTART 76

COLOR 63

Constants 26

CONT 49

COS 73

COX 21

CSAVE 56

- D -
DATA 71

Deleting lines 21

DIM 40, 73

DIMensioning a String 73

DIMensioning an Array 73

DIRFLG 21

DOS 73

DRAWTO 63

- E -
ECHNG 26

End-of-line 36

ENTER 59

ERNTV 26

Error Handling Routine 49

Execute Expression 8

Execution Control 36, 52

Expression Non-Terminal Vector 26

Expression Rearrangement 40

External Subroutine Call 26

- F -
Faster Programming or Faster Programs? 3

Flags 21

FOR 52

- G -
GDVCEO 66

GET 66

GETADR 26

GETLL 36

GETSTMT 36

GETTOK 52

GNXTL 36

GOSUB 52

GRAPHICS 63

- H -
Hardware Control Statements 63

High Level Languages 3

High memory address 13

- I -
I/O Call Routine 66

IF 52

Indices 21

Initialization 76

Initialization Execution 36

Initializing 21

INPUT 66

Atari BASIC Source book77

Converted 2006 by Andreas Bertelmann for ABBUC

- L -
Language statements 49

Language Translation Methods 3

Language Translators 3

LET 73

LIFO Stacks 8

Line Processing 21

LIST 59

LOAD 56

LOADFLG 76

LOCATE 63

Low memory address 13

LPRINT 66

LPRTOKEN 59

LSCAN 59

LSTMT 59

- M -
MAXCIX 21

Memory Management Routines 13

Memory usage 13

Multipurpose Buffer 13

- N -
NEW 76

NEXT 26, 52

NOTE 66

Numeric Constant 59

numerical grouping 8

- O -
ON 52

OPEN 66

Operator 59

Operator Executions 40

Operator Precedence Table 40

Operator Stack 40

Operator Token 26

Operators 26

- P -
PLOT 63

POINT 66

POKE 73

POP 26

POPRSTK 52

POSITION 63

powered up 76

Pre-compiler 8, 26

Pre-compiling Interpreter 3

PRINT 66

Problems with the Compiler Method 3

Program Constructor 8

Program Editor 8

Program Executor 8

Program Termination 49

PSHRSTK 52

PUSH 26

PUT 66

- R -
RAM Tables 8

READ 66, 71

Relative Non-Terminal Vectors 26

REM 73

RESTORE 71

RETURN 52

ROM Tables 8

Runtime Stack 13

- S -
SAVE 56

SAVE File Format 56

SEARCH 26

SETCODE 26

SETCOLOR 63

SETLINE 36

SETLN1 36

Simple Flow Control 52

SIN 73

SOUND 63

SRCONT 26

Stack 40

Statement Execution 36

Statement Table 13

STATUS 66

STMCUR 36

STOP 49

String 40

String Constant 59

Index 78

Converted 2006 by Andreas Bertelmann for ABBUC

String Entry 13

String/Array Table 13

SVVNTP 21

SVVYTE 21

- T -
Tables 8

TERMTST 26

TNCON 26

TNVAR 26

Token 59

Tokens 8

TRAP 52

TSCON 26

TSLNUM 36

TSVAR 26

- V -
Variable 59

Variable Name Table 13

Variable Value Table 13

Variables 26

- W -
WARMFLG 76

WARMSTART 76

- X -
XBYE 73

XCLOSE 66

XCOLOR 63

XCONT 49

XDATA 71

XDEG 73

XDIM 73

XDOS 73

XDRAWTO 63

XEND 49

XENTER 59

XERR 73

XFOR 52

XGET 66

XGOSUB 52

XGR 63

XIF 52

XINPUT 66

XINX 66

XIO 66

XLET 73

XLIST 59

XLOAD 56

XLOCATE 63

XLPRINT 66

XNEW 76

XNEXT 52

XNOTE 66

XON 52

XOP1 66

XOPEN 66

XPLOT 63

XPOINT 66

XPOKE 73

XPOP 52

XPOS 63

XPRINT 66

XPRO 66

XPUT 66

XRAD 73

XREAD 71

XREM 73

XREST 71

XRTN 52

XRUN 49

XSAVE 56

XSETCOLOR 63

XSOUND 63

XSTATUS 66

XSTOP 49

XTRAP 52

XXIO 66

- Z -
Zero Page Table Pointers 13

Atari BASIC Source book79

Converted 2006 by Andreas Bertelmann for ABBUC

