CHG CT60 HARDWARE GUIDE

Rev 5.2 – October 2000 – February 2004 (c) Rodolphe Czuba

Try to use this file on screen and not print it on paper ! Remember that paper is produced with trees !!

SUMMARY

- 1 FUNCTIONAL BLOCK DIAGRAM
- 2 ADDRESSES & REGISTERS
- 3 060 BUS SLOT
- 4 HARDWARE EMULATION
- 5 THERMAL SENSOR
- 6 DIMM EEPROM
- 7 DIMM SDRAM for CT60
- 8 BURST with SDRAM
- 9 INTERRUPTS
- 10 CHIPSET pinouts

FUNCTIONAL BLOCK DIAGRAM

(c) Rodolphe Czuba – October, 2000

ADDRESSES & REGISTERS

68030 VIEW 24-Bit MAP

\$xx000000 \$xxE00000 \$xxF00000 \$xxF10000 \$xxF10000 \$xxFA0000 \$xxFC0000 \$xxFC0000	\$xxDFFFFF \$xxEFFFFF \$xxF0FFFF \$xxF0FFFF \$xxF9FFFF \$xxFBFFFF \$xxFEFFFF \$xxFEFFFF	14 MB 1 MB 64 KB 576 KB 128 KB 192 KB 64 KB	ST-RAM TOS 4.0x ROM - BOOT CT60 FLASH – CPU SPACE #3 I/O IDE F030 BUS SLOT CARTRIDGE SLOT Unused I/O
\$xxFF0000	\$xxFFFFFF	64 KB	I/O

68060 VIEW 32-Bit MAP

\$00000000 \$00E00000 \$00F00000 \$00F10000 \$00FA0000 \$00FC0000 \$00FF0000	\$00DFFFFF \$00EFFFF \$00F0FFFF \$00F9FFFF \$00FBFFFF \$00FEFFFF	14 MB 1 MB 64 KB 576 KB 128 KB 192 KB 64 KB	ST-RAM CT60 FLASH I/O IDE F030 BUS SLOT CARTRIDGE SLOT Unused I/O	CACHE - NO BURST CACHE - NO BURST NO CACHE - NO BURST
\$0100000	\$04FFFFF	64 MB	SDRAM (TT-RAM)	CACHE - BURST
\$0100000	\$08FFFFF	128 MB	SDRAM (TT-RAM)	CACHE - BURST
\$0100000	\$10FFFFF	256 MB	SDRAM (TT-RAM)	CACHE - BURST
\$0100000	\$20FFFFF	512 MB	SDRAM (TT-RAM)	CACHE - BURST
\$2100000	\$3FFFFFFF	496 MB	Reserved	CACHE - BURST
\$4000000	\$7FFFFFF	1024 MB	060 BUS SLOT	CACHE - BURST
\$4000000	\$BFFFFFFF	1024 MB	060 BUS SLOT	NO CACHE - NO BURST
\$6000000	\$EFFFFFFF	768 MB	Reserved	NO CACHE - NO BURST
\$F0000000	\$FBFFFFFF	192 MB	CT60 I/O	NO CACHE - NO BURST
\$FC000000	\$FFFFFFF	48 MB	Reserved	NO CACHE - NO BURST
\$FF000000	\$FFFFFFF	16 MB	FALCON 24-Bit SHADOW	NO CACHE - NO BURST

From the 030, the FLASH chip is accessible (to program and read it) by the 030 CPU SPACE #3.

<u>From the 060</u>, the TOS chip is NOT accessible. The FLASH is seen at the TOS addresses when booting. When programming the Flash in 060 mode, the ALTERNATE SPACE #3 must be used.

REGISTERS SUMMARY

SDR-60

EE	EECL	\$F0000000	I2C port for EEprom DIMM.
	EEDA	\$F0800000	
TH	THCS	\$F1000000	THermal sensor of the 060.
	THCK	\$F1800000	
	THDA	\$F1000000	
SDCNF		\$F2000000	SDram CoNFiguration.
IVR		\$F3000000	Int Vector Register.

ABE-60

FWEN	\$F9000000	Flash Write ENable.
SLP	\$FA000000	Sleep = Turn OFF the ATX power supply.

ABE60 REGISTERS DETAILS

FWEN (Flash Write ENable)

Only for the PowerPC write accesses – Not needed for 030 and 060 write accesses. Write at $F9000000 \rightarrow Can write$ Write at $F9800000 \rightarrow Can't write$

SLP (SleeP)

Write at $FA800000 \rightarrow$ Turn OFF the power supply.

SDR60 REGISTERS DETAILS

SDRAM EEPROM I2C Port :

EECL (EEprom serial CLock)

Write at \$F0000000 \rightarrow WRITE 0 to EECL line. Write at \$F0400000 \rightarrow WRITE 1 to EECL line Read at \$F00000000 \rightarrow READ from the EECL line on the D1 CPU data line.

EEDA (EEprom serial DAta)

Write at $F0800000 \rightarrow WRITE 0$ to EEDA line. Write at $F0C00000 \rightarrow WRITE 1$ to EEDA line. Read at $F0000000 \rightarrow READ$ from the EEDA line on the D0 CPU data line.

060 THERMAL 3-wires Port :

THCS (THermal Chip Select)

Write at \$F1000000 \rightarrow WRITE 0 to CS line. Write at \$F1400000 \rightarrow WRITE 1 to CS line.

THCK (THermal ClocK)

Write at \$F1800000 \rightarrow WRITE 0 to CLK line. Write at \$F1C00000 \rightarrow WRITE 1 to CLK line.

THDA (THermal DAta)

Read at $F1000000 \rightarrow$ Read from the DO line on the D0 CPU data line.

INTERRUPT REGISTER :

IVR (Interrupt Vector Register) Read at \$F3000000

SDRAM CONTROLLER :

SDCNF (SDram CoNFiguration) Write a long at \$F2xx0000 with xx = [A23..A16]

Chip DensitY (EEPROM Byte #3 & #4)

A23 = cdy2A22 = cdy1

			Byte#3 Byte#4
[cdy2,cdy2]	= 0,0	> 8Mx8; 8x16	\$0C \$09
	= 0,1	> 16Mx8	\$0C \$0A
	= 1,0	> 16Mx16	\$0D \$09
	= 1,1	> 32Mx8; 32Mx16	\$0D \$0A

NumbeR of DIMM Banks (EEPROM Byte #5)

A20 = nrb

[nrb] = 0 --> 1 bank = 1 --> 2 banks

Module DensitY (EEPROM Byte #31 * EEPROM Byte #5)

A19 = mdy2 A18 = mdy1

 $[mdy2,mdy1] = 0,0 \quad --> \ 64MB \\ = 0,1 \quad --> \ 128MB \\ = 1,0 \quad --> \ 256MB \\ = 1,1 \quad --> \ 512MB$

ReFresh RaTe (EEPROM Byte #12)

A16 = rfrt

[rfrt]	= 0	> 15.360 uS
	1	> 7.680 uS

060 BUS SLOT

A 060 bus Slot is present on the CT60 for some future daughter cards like the PCI adaptor or a PPC developers system.

A minimal and usefull connector was choosen. It has only 100 pins (2 connectors of 2x25 pins) and furnishes the following signals and power lines.

Signals Groups

Address Bus
Data Bus
Transfer Start Read Write Byte Select SIZe Transfer Type & Transfer Modifier Transfer Acknowledge
Bus Request Bus Grant Bus Busy
Transfer Error Acknowledge ReSeT Interrupt 6 : Sent by the daughter card to the CT60 INTerrupt : Sent by CT60 to the daughter card for a PPC.
CLocK (CT60 clock : 64MHz or more)
Power supplies : used by some PCI cards and the fans (+12). Power supplies : used by components and processors. Each pin can drive up to 6 Amperes. GrouND pins.

Pinout

Add Connector		Data (<u>Connector</u>
#A1	#A2	#D1	#D2
GND	GND	GND	GND
+5V	/BR	TM0	+12V
/TS	/BG	TM1	-12V
R/W	/BB	TM2	+3.3V
SIZ0	SIZ1	TT0	TT1
/TA	/TEA	/BS0	/BS1
	CLK	/BS2	/BS3
/RST	GND	/I6	/INT
A30	A31	D0	D1
A0	A1	D30	D31
GND	GND	GND	GND
#A49	#A50	#D49	#D50

HARDWARE EMULATION

The CT60 allows a Falcon hardware emulation.

With this Hardware Emulation Window, it is easy to implement a new chip replacing the old one of the Falcon motherboard and this at the same address(es) !

Examples :

- SUPER-VIDEL chip.
- SDRAM replacement of a part of the ST-RAM at the same addresses.
- ACIA for new PS/2 ports with a CPLD/FPGA.
- ACIA MIDI with a CPLD/FPGA.
- DSP56301 replacing 56001 at same addresses ! -
- FPGA emulating serial & parallel port of the Falcon (Zilog 85C30 and Yamaha).
- new SDMA for Audio. _

There is a time window from the start of the 060 access to the Falcon addresses (\$00xxxxx and \$FFxxxxx) up to the start (rising edge) of the 7th cycle of the CLK (bus and 060 clock).

When the 060 inserts the address and TS to validate, a counter into ABE start if the address is somewhere in the Falcon address space.

Until the counter reaches the end of the 6 th cycle, a card on the 060 slot bus of the CT60 can answer to terminate the access instead of a chip of the Falcon mb (with TA/ or TEA/ or both TA/ & TEA/ for a RETRY).

This termination of the access terminates the counter and invalidates the Falcon access that was started.

At the begining of the 7th cycle the Falcon READ access continues and cannot be stopped. ABE drives data on the CT60 bus.

The time limit for the termination signal sampling is the end of 6 th cycle.

If you want to use SDRAM on a daughter card :

For 66 MHz SDRAM BURST READ you need 5-1-1-1 cycles. The TA arrives the 5th cycle (first data) up to 8th (fourth data). This TA arrives before the end of the 6th cycle and the F30 access start is cancelled.

For 66MHz SDRAM BURST WRITE you need 3-1-1-1 cycles.

The TA arrives the 3rd cycle (first data) up to 6th (fourth data). This TA arrives before the end of the 6th cycle and the F30 access start is cancelled.

For registers accesses on a daughter card, you need 2 or 3 cycles.

If you want to write both to F030 mb AND your daughter card (an adress that is present on the two boards), don't send TA from the daughter card and the TA from mb will terminate the write access for you.

By example, this technic allows to write all VIDEL and SUPER VIDEL registers in the same time. The emulation is total! The only thing there is to do is to implement a bit in the daughter board to switch ON/OFF the emulation.

If the switch is ON :

- the daughter card address registers are at the same addresses than the F030 mb and :

- the TA must not be sent when writting these registers that are common to F030 and the daughter card.

- the TA must be sent before the 7th cycle when reading from register that is a common to F030 & daughter card.

If the switch is OFF :

- the daughter card address registers must be present at some specific addresses (not the same than the F030) and the TA is sent as usual byt the daughter card for all read & write accesses.

Example with \$FFFF820E :

Switch is ON --> Write at \$FFFF820E write to daughter card and F030 mb and this access is terminated by the TA from Falcon mb (ABE). The card don't send TA.

Switch is OFF --> Write at \$FFFF82OE write only to Falcon mb. You need to write to a 'new' address on the card to access the same register.

THERMAL SENSOR

The 68060 contains a Die Temperature Sensor with two external pins THERM0 & THERM1. The sensor is done with a temperature sensitive resistor which has a 780 ohms value at 25°C and increases/decreases by steps of 2.8 ohms per °C unit. By example, a 060 core at 80°C gives a resistance of 934 ohms between the two THERMx pins. Equations : $R60 = 780 + 2.8 \times (TEMP - 25)$ or TEMP = (R60 - 710) / 2.8

The CT60 uses a small slow Analog/Digital converter (TI TLV0831) to obtain a 8-Bit value of the voltage between the THERMs pins.

The equation is : $U60 = (3.34 \times R60) / (1000 + R60)$ where R60 is the value of the core sensor resistor; 3.34 is the power supply and 1000 is the value of the resistor connected between the 3.34V and the positive THERM0/IN+ line. TOLERANCES :

- Power supply : $3.3V + 4\% \rightarrow$ From 3.168V to 3.432V. <u>Curently, it is 3.30 to 3.34</u>.
- Resistor : 1K +/-1% → From 990 to 1010 Ohms. <u>Curently, it is from 995 to 1005 ohms</u>.

The AD converter uses a **REF voltage of 1.800 V**. With 0 to 0.007 V between the two pins of the AD converter, the digital result is 0. With 1.794 to 1.800 V, the result is 255. The value increases/decreases by **steps of 0.007 V**. **The equation is : Data = INT [U60/0.007].**

At	0°C :	Vin+ = 1.387 V	Data = 197	R60=710
At	25°C :	Vin+ = 1.464 V	Data = 208	R60=780
At	50°C :	Vin+ = 1.535 V	Data = 218	R60=850
At	100°C :	Vin+ = 1.662 V	Data = 236	R60=990

ATTENTION : The varation of the data is not linear !!

The CPU must access the TLV831 by a basic bit-by-bit protocol. It is the software responsibility to respect the protocol & timings of the following chronogram, and assemble the bits.

f : Clock frequency tsu : Setup time, CS LOW before CLK goes HIGH tpd : Propagation delay time :output data after CLK goes HIGH twh : Pulse duration, CS HIGH tconv : Conversion Time (at 250kHz) 10 to 600 kHz (typical = 250) 350 ns MIN 500 ns MAX (typical = 200) 220 ns MIN 32 us

Three registers are present in the SDR60 chip. The 060 CPU must drive THCS & THCK and read THDA by these registers. The address \$F1000000, \$F1800000 & \$F1000000 are used respectively for THCS, THCK & THDA.

THCS (Chip Select)

THDA (Data Output)		
THCK (Clock) LONG WRITE at \$F1800000 LONG WRITE at \$F1C00000	WRITE 0 to CLK WRITE 1 to CLK	Falling edge of CLK Rising edge of CLK
LONG WRITE at \$F1000000 LONG WRITE at \$F1400000	WRITE 0 to CS WRITE 1 to CS	Rising edge of CS (removed) Falling edge of CS (active)

LONG READ at \$F1000000

READ from DO – Value is available on D0 of the CPU data bus.

For an example, see the example in the DIMM EEPROM chapter.

DIMM EEPROM

EEPROM DATA

The DIMM standard allows the loading of the manufacturer informations from a small 128 or 256 bytes EEPROM on the DIMM. Some of these informations are needed to configure the SDRAM controller of the CT60.

The following bytes are uses by the CT60 :

- **Bold** are used by the boot software to configure the SDRAM controller.
- Others are used only as user information in a SET UP menu.

Byte #2 Byte #3 Byte #4 Byte #5 Byte #6 & 7 Byte #8 Byte #9 Byte #10	Memory Type Number of Row Addresses Number of Column Addresses Number of DIMM Banks Module Data Width Voltage Interface Level of this assembly SDRAM Cycle Time (tCYC) SDRAM Access from Clock (tAC)	FPM; EDO; NIBBLE; SDRAM=\$04 12= \$0C; 13=\$0D 8= \$08; 9=\$09; 10=0A ; 11=\$0B 1= \$01; 2=\$02 64= \$4000; 72; 80 TTL; LVTTL= \$01; HSTL; SSTL3; SSTL2
Byte #11 Byte #12 Byte #17 Byte #27 Byte #28 Byte #29	SDRAM Configuration Type Refresh Rate Number of Banks on SDRAM Device Minimum ROW Precharge Time (tRP) Minimum ROW Active to Active Delay (tRRD) Minimum RAS to CAS Delay (tRCD)	None=\$00; Parity; ECC 15.625uS=\$80; 7.81uS=\$82 2; 4=\$04
Byte #31 Byte 64-71 Byte 73-90 Byte 93-94 Byte 95-98	Module Bank Density Module Manufacturer's JEDEC ID Code Module Part Number Module Manufacturing Date Module Serial Number	32=\$08; 64=\$10; 128=\$20; 256=\$40; 512=\$80 EX : \$A4000000 = IBM

Some features are initialized by the logic chip into the DIMM module when booting :

- BURST Length 1, 2, 4, 8, Page 4 is for 060, PPC, X86 processors

- CAS Latency 2, 3, 4, ... 2 is possible with PC100 at 66 up to 80 MHz !

Remarks :

- Don't confuse SDRAM banks (2 or 4) with DIMM banks (1 or 2) !

- Bytes 128-255 are open for Customer Use and can be written - Not used with CT60.

- DIMM Density = Module Bank Density * Number of DIMM Banks (1 or 2).

I2C 2-wire PROTOCOL

The EEPROM device conforms to the I2C 2-wire protocol. CT60 only uses the **random read operations** with the EEPROM.

During data input, the EEPROM samples the SDA signal on the rising edge of the clock (SCL). For correct device operation, the SDA signal must be stable during the clock low to high transition and data must change only when the clock (SCL) line is low.

RANDOM READ PROTOCOL & SOFTWARE

The slave address is 1010000. The eight bit is the R/W bit.

Random read operations allow the master to access any memory location in a random manner. Before issuing the slave address with the R/W bit set to one (Read), the master must first perform a dummy write operation. The master issues the start condition, slave address and then the word address it is to read. After the word address ACK, the master immediately re-issues the start condition and the slave address with the R/W bit set to one. This will be followed by an ACK from the slave and then by the eight bit word. The master will not ACK the transfer but will issue a stop and the slave stops transmission and goes into standby.

The device that controls the transfer is referred to as the master (SDR60 chip) and the device that receives the data (EEPROM) is referred to as the slave device. The master will always start a data transfer (SDA line) and will provide the serial clock (SCL line) for synchronization.

The 060 CPU must drive the SCL and SDA lines. These lines are connected to 2 pins of the logic chip. The address \$F00xxxxx is used for SCL and \$F08xxxxx is used for SDA signal.

SCL (Clock)

LONG WRITE at \$F0000000 LONG WRITE at \$F0400000	WRITE 0 to SCL WRITE 1 to SCL	Falling edge of SCL Rising edge of SCL	
SDA (Data)			
LONG WRITE at \$F0800000	WRITE 0 to SDA		
LONG WRITE at \$F0C00000	WRITE 1 to SDA		
LONG READ at \$F0800000	READ from SDA – \	alue is available on D0 of the	CPU data bus.

EXAMPLE

If you want to read the Byte #3 from the EEPROM :

START condition

LONG WRITE at \$F0800000 LONG WRITE at \$F0000000	WRITE 0 to SDA WRITE 0 to SCL	Falling edge of SCL
SLAVE ADDRESS (Write at 1010) Write '1'	000)	
LONG WRITE at \$F0C00000	WRITE 1 to SDA	
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
Write '0'		5 5
LONG WRITE at \$F0800000	WRITE 0 to SDA	
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
Repeat for the values 10000 (the	last 0 is for 'write')	

eat for the values 10000 (the last 0 is for "write")

ACK condition

LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG READ at \$F0800000	READ from SDA	If =0, it's an ACK
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL

WORD ADDRESS DATA (# 3 in this	example)	
Write '0' LONG WRITE at \$F0800000 LONG WRITE at \$F0400000	WRITE 0 to SDA	Rising edge of SCI
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
Repeat 5 times		
Write '1'		
LONG WRITE at \$F0C00000 LONG WRITE at \$F0400000	WRITE 1 to SDA WRITE 1 to SCL	Rising edge of SCL
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
 Repeat 1 time		
ACK condition		
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG READ at \$F0800000 LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
START condition immediately afte	r ACK	
LONG WRITE at \$F0C00000	WRITE 1 to SDA	
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
SLAVE ADDRESS (Read at 101000	0)	
LONG WRITE at \$F0C00000	WRITE 1 to SDA	
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG WRITE at \$F0000000 Write '0'	WRITE 0 to SCL	Falling edge of SCL
LONG WRITE at \$F0800000	WRITE 0 to SDA	
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
	WRITE U to SCL	Failing edge of SCL
Repeat same procedure for the va	lues 10001 (the last 1 is	for 'read')
ACK condition		
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG READ at \$F0800000	READ from SDA	DATĂ Bit#7
LONG WRITE at \$F0000000 Bit#6	WRITE 0 to SCL	Falling edge of SCL
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG READ at \$F0800000	READ from SDA	DATA Bit#6 Falling edge of SCI
Repeat 6 times		
		Dising odge of SCI
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
STOP condition		
LONG WRITE at \$F0800000	WRITE 0 to SDA	Dising odge of 001
LONG WRITE at \$F0400000 LONG WRITE at \$F0C00000	WRITE 1 to SCL WRITE 1 to SDA	Kising edge of SCL

DIMM SDRAM for CT60

The CT60 supports the PC100/133 standard SDRAM DIMMs, but some obsolet/uneeded are not accepted.

GOOD SDRAM DIMMs for CT60

- PC-100 & PC-133.

- Must be UNBUFFURED type.

- Must be 64-bits (no parity or ECC = 72 / 80 bits).

Module Config.	CHIPS / Side	SIDES (1=single) (2=double)	CHIPS Archit.	RAS Addr.	CAS Addr.	PAGE Lentgh (4 banks)	Refresh Rate (uS)	
64 MB	8	1	8Mx8b	12	9	8 KB	15.625	
64 MB	4	1	8Mx16b	12	9	8 KB	15.625	
128 MB	8	2	8Mx8b	12	9	8 KB	15.625	
128 MB	4	2	8Mx16b	12	9	8 KB	15.625	
128 MB	8	1	16Mx8b	12	10	16 KB	15.625	
128 MB	4	1	16Mx16b	13	9	8 KB	7.8125	
256 MB	8	2	16Mx8b	12	10	16 KB	15.625	
256 MB	4	2	16Mx16b	13	9	8 KB	7.8125	
256 MB	8	1	32Mx8b	13	10	16 KB	7.8125	
512 MB	8	2	32Mx8b	13	10	16 KB	7.8125	
512 MB	4	2	32Mx16b	13	10	16 KB	7.8125	

NOT SUPPORTED SDRAM DIMMs

- All DIMM with chips density < 64Mbits :

- 8MB, 16MB & 32MB DIMMs.

- 64MB DIMMs with 16 CHIPS and / or with chips on the 2 sides.

- All DIMMs with **2 logical banks chips** = obsolet (CT60 needs 4 logical banks chips).

- REGISTERED / BUFFURED DIMMs (generally for Work Stations & Servers, not PC).

- 512 MB DIMM with one physical bank (only 1 side populated).

REMARKS:

- Don't confuse logical banks (2 or 4) with physical banks (1=Single Size or 2=Double Size) !

PERFORMANCES:

The better system performances is obtained with 16 KB page lentgh DIMMs.

060 BURST with SDRAM

The CT60 bus clock = the 060 clock (060 in 'Full Bus mode').

The 060 uses **LINE BURST** to & from the system memory. SDRAM is well adapted for a such processor ! A BURST LINE is a length of **4 LONG-WORDs (16 Bytes)** that are transferred with only :

PAGE HIT (access to a logical SDRAM page already open) :

3,1,1,1 = 6 cycles for Burst Writes. Rate is 16 Bytes / 6 cycles = 178 MBytes/s (Each access in the same page). 5,1,1,1 = 8 cycles for Burst Reads. Rate is 16 Bytes / 8 cycles = 132 MBytes/s (Each access in the same page).

PAGE MISS (access to a new logical SDRAM page (must be precharged and open) :

7,1,1,1 = 10 cycles for Burst Writes. Rate is 16 Bytes / 10cycles = 107 MBytes/s (Each access in a new page). 9,1,1,1 = 12 cycles for Burst Reads. Rate is 16 Bytes / 12cycles = 89 MBytes/s (Each access in a new page).

The CT60 uses the 060 at the top of the possible performances with the mighty **COPYBACK** mode ! Instead of the WRITETROUGH mode like other TOS machines !

Copyback mode is active for all SDRAM memory area.

Copyback mode allows the 060 to write into the cache without writting into the SDRAM, what is so more performant ! The cache lines are pushed into SDRAM only when needed (060 needs place by example). With **two 8Kbytes caches**, it gives to coders the possibility to do some incredibly speedy routs residing at 100% into the caches !

The 060 uses BURST transfers with SDRAM in 99% of the cases. Here are the cases when the 060 don't burst, this means, transfers Bytes, Words & Long-Words :

Byte, Word, and Long-Word READ Transfer Cycles from SDRAM

Accesses that are implicitly NONCACHABLE :

- Locked Read-Modify-Write accesses.
- Table Searches.

Accesses that are not allocate in the data cache on a read miss :

- Exception Vector Fetches.
- Exception stack Deallocation for an RTE Instruction.

Byte, Word, and Long-Word WRITE Transfer Cycles to SDRAM

Accesses that are implicitly NONCACHABLE :

- Locked Read-Modify-Write accesses.
- Table Searches.
- Accesses that are not allocate in the data cache on a write miss : - Exception stacking.
 - Exception stacking.

Cache Line pushes for lines containing a single dirty Long-word.

Write to WRITETHROUGH pages (ST-RAM !).

Remark :

For those of you who are a bit familiar with 64-bit processors like PPC or X86, don't forget that the syntax for data size is not the same :

With 32-Bit processors :

- A **WORD** designates a **16-Bit entity**.
- LONG-WORD designates a 32-Bit entity.

With 64-Bit processors :

- A HALF-WORD designates a 16-Bit entity.
- A WORD designates a 32-Bit entity.
- A DOUBLE-WORD designates a 64-Bit entity.

INTERRUPTS

CT60 adds some new interrupts for the 060 Bus Slot, re-routing of the Falcon INT Set to the second CPU (CPU#2 on the Bus Slot).

The /I6 , and /INT were added on CT60.

/I6 is the interrupt from the 060 BUS SLOT and is merged with the others from the Falcon. See table below for the priority position.

/INT is sent by SDR-60 to the CPU#2 to interrupt it. INT is synthetized from the /IPL2, /IPL1 & /IPL0 signals and the I6. It is necessary when the CPU#2 has to respond the interrupts instead of the primary 060...

060 INTERRUPTS PRIORITY TABLE

NAME	LEVEL	ACTIVE	TYPE	SOURCE	IVR	PRIORITY
16	6	Low	Software	CT60 Bus Slot	1, 1, 1	Highest
INT6	6	Low	Software	F030 Bus Slot	1, 1, 0	
MFPINT	6	Low	Software	F030 MFP	1, 1, 0	T
DSPREQ	6	Low	Software	F030 DSP	1, 1, 0	
INT5	5	Low	Software	F030 SCC	1, 0, 1	
VBL	4	Low	Auto	F030 VIDEL VSy	nc 1, 0, 0	
INT3	3	High	Software	F030 Bus Slot	NOT USED	
HBL	2	Low	Auto	F030 VIDEL HSy	nc 0, 1, 0	. ↓
INT1	1	High	Software	F030 Bus Slot	NOT USED	Lowest

INT1 & INT3 are NO MORE SUPPORTED with CT60 !

INT6 is also named MFPINT on atari documents because it is daisy chained with the MFP.

To allow the PPC to read the level of the falcon re-routed interrupts, the CT60 furnishes a register called **IVR** (Interrupt Vector Register). The IVR column gives you the binary values encoded by the SDR60 chip... Note that the INT6, MFPINT and DSPREQ Interrupts are chained on the 'level 6' line...(it's a stock Falcon feature !).

It is planned that the PPC board will contain a mechanism register to generate a '68K like' INT ACK cycle and receive the software Vector from the Falcon data bus. On CT60, the IVR contains only the level of the pending INT...

CPU#2 INTERRUPT

NAME	LEVEL	ACTIVE	TYPE	SOURCE
INT	None	Low	Auto	F030 IPLx and CT60 I6

This interrupt is compatible with the PowerPC INT...

CHIPSET PIN-OUT

SDR-60

1 VCC 2 rstf 3 PGND 4 ta 5 PGND 6 PGND 7 PGND 8 VCC 9 PGND 10 a10 11 a11 12 a12 13 a13 14 a14 15 a15 16 a2 17 a3 18 GND 19 a4 20 a5 21 a6 22 a7 23 a8 24 a9 25 dm3 26 dm1 27 dm2 28 dm0 29 GND 30 clk500 31 cs3 32 clk 33 PGND 34 PGND 35 cs2 36 GND 37 VCC 38 PGND 39 ideled 40 d2 41 d1 42 VCC 43 d0 44 PGND 45 PGND 46 ma12 47 GND 48 ma11 49 ba1 50 ba0 51 ma10 52 ma9 53 ma8 54 ma7 55 VCC 56 ma6 57 ma5 58 ma4 59 ma3 60 ma2 61 ma1 62 GND 63 TDI 64 ma0 65 TMS 66 PGND 67 TCK 68 PGND 69 PGND 70 PGND 71 ras 72 GND

73 VCC
74 cs1
75 cs0
70 cas 77 we
78 a31
79 a30
80 a29
82 a27
83 a26
84 VCC
85 a25
87 a23
88 a22
89 GND
90 GND 91 a21
92 a20
93 a19
94 a18
95 a17 96 a16
97 tbi
98 rst60
99 GND
100 TEST SDR
102 tci
103 PGND
104 PGND
105 PGND
107 PGND
108 GND
109 VCC 110 PGND
111 ipl2f
112 ipl1
113 i6
115 ipl2
116 bs1
117 ts
118 tt1 119 PGND
120 PGND
121 ipl0
122 TDO
123 GND 124 siz1
125 rsto
126 eeda
127 VCC
120 mcs 129 rw
130 siz0
131 Reserved
132 PGND 133 PGND
134 eecl
135 bs0
136 bs2
138 thck
139 ipl0f
140 ipl1f
141 VCC 142 thdi
143 rst
144 GND

ABE-60

4.1/00	70.1/00
	73 VCC
2 avec	74 d28
3 a13	75 d27
4 ct60	76 d26
5 a14	77 d25
6 015	70 404
0 8 15	76 UZ4
7 ta	79 d23
8 VCC	80 d22
9 bs0	81 d21
10 flhoe	82 d20
11 flbwe	83 d19
12 dtkcmb	84 VCC
	00 010
14 a2	86 d17
15 a3	87 d16
16 tt0	88 d15
17 tm0	89 GND
18 GND	90 GND
19 ha1	91 d14
20 tm1	02 d12
20 1111	92 UI3
21 bgz	93 012
22 ts	94 d11
23 bg0	95 d10
24 tt1	96 d9
25 exp/ - TEST ABE	97 d8
26 exp2/ - TEST ABE	98 d7
27 tm2	
227 1112	100 de
	100 00
29 GND	101 05
30 clk500	102 d4
31 bs1	103 d3
32 clk	104 d2
33 bs2	105 d1
34 i6	106 br2
35 dtk	107 d0
	107 00
36 GND	108 GND
37 VCC	109 VCC
38 clkf	110 fd15
39 a2f	111 fd14
40 fc2	112 fd13
41 slp	113 fd12
42 VCC	114 GND
42 V00	115 fd11
43 035	110 1011
44 a3f	116 1010
45 DD	117 109
46 fc1	118 fd8
47 GND	119 fd7
48 a16	120 fd6
49 a17	121 fd5
50 a18	122 TDO
51 a19	123 GND
52 020	120 OND
52 a20	124 104
53 821	125 103
54 a22	126 fd2
55 VCC	127 VCC
56 a23	128 fd1
57 a24	129 fd0
58 a25	130 ba30
59 226	131 uds
60 227	132 Ide
00 a27	102 105
61 a28	133 a1f
62 GND	134 berr
63 TDI	135 br0
64 a29	136 rw
65 TMS	137 fc0
66 a30	138 br1
67 TCK	139 abdir
68 231	1/0 hole
60 d21	140 DGK
09 US I	141 VCC
70 d30	142 tea
/1 d29	143 rst
72 GND	144 GND