

HOW TO USE THE * ATARI ST
HARD DISK PORT

By Doug Collinge

 2

HOW TO USE THE ATARI ST HARD DISK PORT

When I set about to interface to the Hard Disk Port on my Atari 1040ST I assembled all the
documentation I could find and discovered that, though I found plenty, I still ended up without quite
enough to design the interface. I attacked the problem with the Scientific Method and now have a
working one-megabyte-per-second interface. This article was written to give others the information that
I needed in hopes that they will not be frightened of using what has turned out to be a very simple and
easy-to-use port.

Since much of the information in this article is based on experiment with only one DMA chip it is
possible that some of it will not apply to other revisions of the chip. Perhaps someone at Atari will
correct any misconceptions or outright errors. Also, the interface I built only does DMA transfers into
the ST (read operations); therefore, while it is easy to infer the appropriate protocol, I haven't tested
DMA transfers in the opposite direction.

DMA IN THE ST

The same DMA channel is used for both the floppy disks and the Hard Disk Port. The floppies are
controlled by a floppy disk controller chip which is connected to the DMA chip. The DMA chip is
capable of servicing data requests at about 1.25 MHz. If you attempt to transfer data at a rate greater
than that data will be lost. I have been able to transfer data at very close to this rate without any
problems. The DMA chips buffers 16 bytes of data before requesting the memory buss then holds the
buss until all buffered data has been transfered. Memory cycles used for DMA are taken from the
processor; since the memory buss makes 4 MByte/s available, 1 MByte/s of DMA should take 25% of
the cycles normally available to the processor, plus a fudge factor to account for the time spent in
arbitration.

THE HARD DISK PORT

The Hard Disk Port is a 19-pin D connector - apparently completely unavailable through normal
commercial channels. I made my own from a metal-shelled male DB25 connector as follows:

• remove and discard the metal shell revealing that the pins are held in place and insulated with
two loose plastic retainers

• remove the pins from the retainers (for once you can lose a couple since you will end up with
six spares)

• using a fretsaw or a fine hacksaw remove one end of both retainers leaving 19 holes
• replace the pins and glue the retainers together.

You now have the connector you need. It has no mounting ears but the retaining force of 19 pins is
quite substantial. If this is not adequate you could perhaps ingeniously salvage the metal shell
somehow.

The pins on the Hard Disk Port are connected as follows (pin one is at the upper right of the connector
facing the rear of the computer) :

1-8 DMA data buss bits 0-7 (bidirectional)
9 Hard Disk Controller Chip Select (_HDCS) (output)
10 Interrupt Request (_IRQ) (input, internal 1k pull-up)
11 Ground
12 Reset (bidirectional)
13 Ground

 3

14 Acknowledge (_ACK) (output)
15 Ground
16 A1 (output)
17 Ground
18 Read/_Write (R/_W) (output)
19 Data Request (_DRQ) (input, internal 1k pull-up)

The Hard Disk Port is connected directly to the DMA chip WITHOUT ANY BUFFERING on most pins -
be careful, a small mistake (e.g., static) could blow your DMA chip. The system reset line is also
directly connected to the port meaning that accidental shorts reset your computer - very irritating.

INSIDE THE DMA CHIP

The DMA chip is accessed through memory-mapped registers :

ff8604 R/W 16 bits

When bit 4 of the Mode register is zero a read or write access to
this word causes a read or write cycle on the DMA bus.
If bit 3 is set the Hard Disk Chip Select controls the cycle;
otherwise, the Floppy Disk Controller is selected. R/_W is set
according to the type of the CPU access and A1 is set according to
bit 1 of the Mode register.

N.B. : what is called A0 in the DMA chip is called A1 on the Hard
Disk Port. For some reason, if bit 7 is not set no DMA bus cycle will
take place.

When bit 4 of the Mode register is one the internal sector count
register is selected. This register counts down the number of 512-
byte blocks that have been transferred. When the sector count
register reaches zero the chip will cease to transfer data.

ff8606 R 16 bits

Status word:

• bit 0: 1 if error.
• bit 1: 1 if sector count is zero.
• bit 2: 1 if _DRQ is active.

If this word is polled during a DMA operation the transfer will be
disrupted. End of transfer must be signalled with the _IRQ signal.
The status is cleared by toggling bit 8 in the Mode register.

ff8606 W 16 bits

Mode register:

• bit 0: not used

• bit 1: A0; state of Hard Disk Port line A1 (sic) during a

DMA buss cycle

• bit 2: A1; used for Floppy Controller only.

• bit 3: HDC/_FDC chip select; if this bit is 1 the _HDCS chip
select will be generated; otherwise the Floppy Controller
select

 4

• bit 4: If one, select the the internal sector count register for
access at ff8604

• bit 5: Reserved; set to zero

• bit 6: Disable DMA when set; this is not used by Atari

• bit 7: FDC/_HDC transfer select; if set DRQ from the

Floppy Controller is acknowledged; otherwise, DRQ from
the Hard Disk Port. This bit must also be set to get a DMA
bus cycle for some reason.

• bit 8: Write/_Read; if set, data will be transferred out of

memory; otherwise, into. Toggling this bit also clears the
DMA chip status.

ff8609 R/W 8 bits

DMA Address Counter High byte

ff860b R/W 8 bits

DMA Address Counter Mid byte

ff860d R/W 8 bits

DMA Address Counter Low byte.

The DMA Address Counter must be loaded in Low, Mid, High
order.

There are two eight-word FIFOs in the chip; one for buffering read operations and one for writes. The
FIFOs are not flushed automatically so you can only transfer data in multiples of 16 bytes. Actually,
use 512-byte units like the sector count register does.

The DMA chip has no interrupt capability; This is ickky, but cheap. End-of-transfer interrupts must be
generated by the external controller and are masked and vectored by the 68901 MFP chip on the
General Purpose I/O Port, bit 5, interrupt level 7. The MFP chip interrupts are controlled with the
XBIOS calls 'mfpinit', 'jdisint', and 'jenabint'. 'jenabint(7)' and 'jdisint(7)' will enable and disable the
DMA interrupt. 'mfpint(7,dmahandler)' will initialize the vector to 'dmahandler', wiping out any earlier
one. If you want instead to simply test the state of the interrupt request line, without taking any
interrupts you can test the MFP GPIP data register. Read a byte from fffa01 and mask with $20; if the
result is zero there is no interrupt.

Because the floppy controller shares the DMA chip you have to be very careful about two things:

1) do not leave DMA interrupts enabled accidentally or floppy operations will call your DMA interrupt
handler;

2) turn off the floppy check routine while using DMA by jamming a 1 into FLOCK=$43e to prevent this
periodic operation from screwing up your transfers by altering the DMA chip registers.

TIMING

These timing contraints are my interpretation of sketchy, preliminary-looking Atari documents dated
"27 September 1985". If someone at Atari can give better figures, please inform me.

 5

There are two separate types of transfer on the DMA bus: processor cycles, which are initiated by the
processor, and DMA cycles, which are initiated by the external controller. The processor initiates a
DMA transfer by waking up the controller with a few command bytes then gives it control of the DMA
buss. The controller then uses the DMA bus as long as it needs it and returns control by interrupting
the processor.

Processor cycles are controlled by the _HDCS, R/_W, and A1 lines in the usual fashion. On a write
cycle, the DMA chip gives you 60 ns of setup on A1, data, and R/_W before asserting _HDCS for
about 250 ns, then holds for no more than 20 ns. On a read cycle, you get the same setup for A1 and
R/_W, and you must give the DMA chip 100 ns setup oe data before _HDCS is retracted. Hold time
should be less than 80 ns.

Data cycles are initiated by the external controller by asserting _DRQ. _ACK will be asserted by the
DMA chip no more than 240 ns later. _DRQ may then be retracted. _ACK is asserted for about 250
ns. In a read operation (data from controller to memory) data should be setup 60(?) ns before _ACK is
retracted and held for 50(?) ns. In a write operation (data from memory to controller) data is valid 60 ns
before _ACK is asserted until 60 ns after _ACK is retracted. _DRQ for the next cycle may not be
asserted earlier than 240 ns after _ACK has been retracted.

INTERFACING IT

This interface transfers a byte into the the DMA chip whenever a rising edge is seen on the data
strobe input. This interface cannot coexist with a hard disk because it will respond to commands
intended for the hard disk. Bear with me, we'll tackle that later.

Rather than attempt to render several schematics in ASCII I will describe the circuits and let you draw
the schematics. If the instructions don't make any sense you probably should not attempt to make the
interface. It's all very simple if you know exactly what you are doing; if you don't - you're dead.

A SIMPLE, READ/WRITE INTERFACE

If all you want to do is read and write bytes it is very simple: you simply use the Chip Select, R/_W,
and A1 lines to select two write registers and two read registers. If you need more than that all you
have to do is use A1=0 to select an address register which selects the register you get on a cycle with
A1=1. One thing that you have to consider is that the ST writes to the Hard Disk Port several times
during its booting procedure, presumably to determine if there are any hard disks connected.
Apparently, if no interrupt is received in response to these writes the ROM assumes that no controller
is connected.

In my interface there is a mode register which is accessed when A1=0. It has two control bits and two
bits connected to a decoder which determines which of three other registers are selected when A1=1.

ADDING AN INTERRUPT

If an interrupt is needed (probably why you want to use this port) you need a flipflop to store the
interrupt state and some way to reset it. I used a 74LS74 for the flipflop with a diode on the output to
get the open-collector action. This diode is not needed if there is no other device on the Hard Disk
Port. (But don't scrimp on a diode...) I reset the interrupt with any access to the mode register but
other methods would work as well. Make sure that the circuit will always leave reset with the interrupt
cleared. I arranged this by having a circuit enable bit in the Mode register, which is cleared by system
reset. If you screw up on this your floppy will not work because the same interrupt is used for both
floppy and hard disk controllers. I learned a little about the file system the hard way while debugging
this interface - I recommend getting the interrupt reset system right the first time.

 6

ADDING DMA

Once you can write to your mode register adding DMA transfers (at least for read operations) is very
simple. All you need is another flipflop to do the Data Request synchronization and a 3-state octal
latch (74LS374) to hold the data. Connect the output to the DRQ line with a diode as with the interrupt
flipflop.

When data is available clock it into the data register and clock a zero into the flipflop. This generates a
data request for the DMA chip. When it gets around to it the DMA chip will assert _ACK, which means
it is ready to accept the data. Since you have the _ACK signal connected to the three-state enable pin
on the data register the data is driven onto the buss. You also use the _ACK signal to set the flipflop.
When the DMA chip no longer needs the data it will retract _ACK and you can begin another transfer.
Spurious data requests are not as nasty as spurious interrupts because the DMA chip does not listen
to hard disk data requests if it is listening to the floppy disk controller. Naturally, if there is a real hard
disk out there, there had better not be any spurious data requests.

CO-EXISTING WITH A HARD DISK

I do not own a hard disk; therefore, the suggestions in this section are totally untested.

The Atari-defined protocol allows seven different controllers on the DMA buss. In order to make an
interface which will not interfere with other controllers you must understand the protocol. Each
command is initiated with a processor write cycle which sends out a Command Byte (A1=0) on the
DMA buss. The most-significant three bits contain the controller number and the remaining bits contain
an operation code. The controller whose number matches the controller number in the Command Byte
responds to the operation code. Some operations require parameters, which are sent as Data Bytes
(A1=1) following the Command Byte. The controller generates an interrupt after coping with each byte.
After the last Data Byte is sent the controller takes over the buss for the DMA transfer. When the
transfer is finished the controller generates an interrupt.

In order to keep out of the way of other controllers on the buss it should only be necessary to select
your interface with a Command Byte with the proper format. After that use data bytes as you wish,
since all other controllers will not be selected.

GOOD LUCK!

Using this information anyone with any experience in interfacing can produce a working DMA
interface. Best of luck and drop me a line if you find this useful.

 Doug Collinge
 School of Music, University of Victoria,

 PO Box 1700, Victoria, B.C., Canada, V8W 2Y2
 collinge@uvunix.BITNET

 decvax!uw-beaver!uvicctr!collinge
 ubc-vision!uvicctr!collinge

