
@

User Manual for the Atari ST
Bit-Block Transfer Processor (BLiTTER)

TABLE OF CONTENTS

1. INTRODUCTION ...2

1.1. Bit-Block Transfers ...3
1.2. Bit-Block Transfer ...4

2. FUNCTIONAL DESCRIPTION..5
3. PROGRAMMING MODEL...7

3.1. Register Map ..7
3.2. Bit-Block Addresses...8

3.2.1. Source Address ..8
3.2.2. Source X Increment ...8
3.2.3. Source Y Increment ...8
3.2.4. Destination Address...8
3.2.5. Destination X Increment..8
3.2.6. Destination Y Increment..8
3.2.7. X Count..9
3.2.8. Y Count..9

3.3. Bit-Block Alignments...9
3.3.1. EndMask 1, 2, 3 ...9
3.3.2. Skew ..9
3.3.3. FXSR ...9
3.3.4. NFSR ...9

3.4. Logic Operations..9
3.5. Halftone Operations ..10

3.5.1. Halftone RAM ...10
3.5.2. Line number...10
3.5.3. Smudge ..11
3.5.4. Halftone Operations...11

3.6. Bus Accesses ...11
3.6.1. Hog ..11
3.6.2. Busy ...11

4. APPENDIX A – Programming Example...12
5. APPENDIX B - References ...18

THE SCOPE OF THIS DOCUMENT is limited to a functional description of the
Atari ST BLiTTER. This document is not a data sheet for system integration, rather it
is a user manual for system programming. For more information, please refer to the
texts listed at the end of this document.

 2

1. INTRODUCTION

The Atari ST Bit-Block Transfer Processor (BLiTTER) is a hardware implementation of the bit-
block transfer (BitBlt) algorithm. BitBlt can be simply described as a procedure that moves bit-
aligned data from a source location to a destination location through a given logic operation. The
BitBlt primitive can be used to perform such operations as:

• Area seed filling
• Rotation by recursive subdivision
• Slice and smear magnification
• Brush line drawing using Bresenham DDA
• Text transformations (eg. bold, italic, outline)
• Text scrolling
• Window updating
• Pattern filling

And general memory-to-memory block copying [1].

The heart of BitBlt was first formally defined by Newman and Sproull in their description of the
function RasterOp [2]. As defined, RasterOp performed its block transfers on a bit-by-bit basis and
was limited to a small subset of possible source and destination Boolean combinations.
Enhancements to RasterOp such as processing bits in parallel or introducing a halftone pattern into
the transfer were literally left as exercises for the reader.

In an effort to improve the functionality and performance of the original algorithm, the prescribed
enhancements were incorporated into the definition of RasterOp and implemented in hardware as
the RasterOp Chip [3]. However the RasterOp Chip lacked the two-dimensionality of the original
function and suffered from a performance bottleneck caused by the loading and reloading of
source, destination, and halftone data (ie. it could not DMA).

While efforts were being made to improve the performance of RasterOp, the formal definition of
RasterOp was further refined and became the basis of the BitBlt copyLoop primitive in the
Smalltalk-80 graphics kernel [4]. Because of its comprehensive interface definition, the BitBlt
primitive was inefficient and required special-case optimizations that violated its general-purpose
nature. Clearly a hardware solution was necessary to increase the performance of the BitBlt
copyLoop without sacrificing its functionality.

The Atari ST BLiTTER is a hardware solution to the performance problems of BitBlt. The
BLiTTER is a DMA device that implements the full BitBlt copyLoop definition with the addition
of a few minor extensions. Single word or multi-word increments and decrements are provided for
transfers to destinations in Atari ST video display memory. A center mask, which would otherwise
be a constant all ones, is also provided for an additional level of texture. The remainder of this
document is directly based on the original functional description of the Atari ST BLiTTER.

 3

1.1. Bit-Block Transfers

As previously stated, a bit-block transfer can be described as a procedure that moves bit-aligned
data from a source location to a destination location through a given logic operation. There are
sixteen logic combination rules associated with the merging of source and destination data. Note
that this set contains all possible combinations between source and destination. The following table
contains the valid BitBlt combination rules:

LOGIC OPERATIONS

MSB LSB OP COMBINATION RULE
0 0 0 0 0 All zeros
0 0 0 1 1 Source AND destination
0 0 1 0 2 Source AND NOT destination
0 0 1 1 3 Source
0 1 0 0 4 NOT source AND destination
0 1 0 1 5 Destination
0 1 1 0 6 Source XOR destination
0 1 1 1 7 Source OR destination
1 0 0 0 8 NOT source AND NOT destination
1 0 0 1 9 NOT source XOR destination
1 0 1 0 A NOT destination
1 0 1 1 B Source OR NOT destination
1 1 0 0 C NOT source
1 1 0 1 D NOT source OR destination
1 1 1 0 E NOT source OR NOT destination
1 1 1 1 F All ones

Adjustments to block extents and several other transfer parameters are determined prior to the
invocation of the actual block transfer. These adjustments and parameters include clipping, skew,
end masks, and overlap.

Clipping. The source and destination block extents are adjusted to conform with a specified
clipping rectangle. Since both source and destination blocks are of equal dimension, the destination
block extent is clipped to the extent of the source block (or vice versa). Note that the block transfer
need not be performed if the resultant extent is zero.

Skew. The source-to-destination horizontal bit skew is calculated.

End Masks. The left and right partial word masks are determined. The masks are merged if the
destination is one word in width.

Overlap. The block locations are checked for possible overlap in order to avoid the destruction of
source data before it is transferred.

In non-overlapping transfers the source block scanning direction is inconsequential and can by
default be from upper left to lower right. In overlapping transfers the source scanning direction is

 4

also from upper left to lower right if the source-to-destination transfer direction is up and/or to the
left (ie. source address is greater than or equal to destination address). However, if the overlapping
source-to-destination transfer direction is down and/or to the right (ie. source address is less than
destination address), then the source data is scanned from lower right to upper left.

After the transfer parameters are determined the bit-block transfer operation can be invoked,
transferring source to destination through the logic operation (HALFTONE and HOP will be
described in the next section):

1.2. Bit-Block Transfer

SOURCE SOURCE DESTINATION

HALFTONE HOP LOGICAL OP

ENDMASK

NEW DESTINATION

SKEW

 5

2. FUNCTIONAL DESCRIPTION

Please refer to the bit-block transfer diagram in the previous section. To understand how the
components of a block transfer work, let’s look at the simplest possible transfer. Take the case
where we wish to fill a block of memory with either all zeros or all ones (OP = 0 or OP = F). In this
case only the LOGIC OP block, which generates the ones or zeros, and the ENDMASK block are
in the data path. If the end mask contains all ones, the BLiTTER will simply write one word after
the other to the dest-ination address without ever reading the destination.

As the writes take place the destination address will be adjusted according to the values in the
DESTINATION X INCREMENT, DESTINATION Y INCREMENT, X COUNT, and Y COUNT
registers. These registers define the size and shape of the block to be transferred. The X and Y
COUNT registers define the size of the block. The X COUNT register specifies the number of
word-size writes required to update one line of the destination. The Y COUNT register specifies
the number of these lines in the block. The DESTINATION X INCREMENT register is a signed
(2’s complement) 16-bit quantity which is added to the destination address to calculate the address
of the next destination word of the line. On the last write of the line the DESTINATION Y
INCREMENT is added to calculate the address of the first word of the next line.

The end mask determines which bits of the destination word will be up-dated. Bits of the
destination which correspond to ones in the end mask will be updated. Bits of the destination which
correspond to zeros in the end mask will remain unchanged. Note that if any bits of the destination
are to be left unchanged, a read-modify-write is required. In order to improve performance a read
will only be performed if it is required. There are three ENDMASK registers numbered 1 through
3. ENDMASK 1 is used only for the first write of the line. ENDMASK 3 is used only for the last
write of the line. ENDMASK 2 is used for all other writes.

Now let’s consider a more complicated case, suppose we want to XOR a destination block with a
16 x 16 halftone pattern. First we load the HALFTONE RAM with the halftone pattern. Select
halftone only using the HOP register and select source XOR destination using the OP register. The
LINE NUMBER register is used to specify which of the 16 words of HALFTONE RAM is used for
the current line. This register will be incremented or decremented at the end of each line according
to the sign of the DES-TINATION Y INCREMENT register. Set the DESTINATION X and Y
INCREMENT and X and Y COUNT registers to the appropriate values and start the transfer. This
same procedure can be followed to do the combination using any logic operation by simply
changing the value in the OP register. Similarly the combination can be performed using a source
block instead of the HALFTONE RAM or using the logical AND of a source block and the
HALFTONE RAM by changing the value of the HOP register. A source block is the same size as
the destination block but may have different increments and address defined by the SOURCE X
and Y INCREMENT and SOURCE ADDRESS registers.

Finally, let’s look at the case when the source and destination blocks are not bit-aligned. In this
case we may need to read the first two source words into the 32-bit source buffer and use the 16
bits that line up with the appropriate bits of the destination, as specified by the SKEW reg-ister.
When the next source word is read, the lower 16 bits of the source buffer is transferred to the upper
16 bits and the lower is replaced by the new data. This process is reversed when the source is being
read from the right to the left (SOURCE X INCREMENT negative). Since there are cases when it
may be necessary for an extra source read to be performed at the beginning of each line to
« prime » the source buffer and cases when it may not be necessary due to the choice of end mask,
a bit has been provided which forces the extra read. The FXSR (aka. pre-fetch) bit in the SKEW

 6

register indicates, when set, that an extra source read should be performed at the beginning of each
line to « prime » the source buffer. Similarly the NFSR (aka post-flush) bit, when set, will prevent
the last source read of the line. This read may not be necessary with certain combinations of end
masks and skews. If the read is suppressed, the lower to upper half buffer transfer still occurs. Also
in this case, a read-modify-write cycle is performed on the destination for the last write of each line
regardless of the value of the corresponding ENDMASK register.

 7

3. PROGRAMMING MODEL

The BLiTTER contains a set of registers that specify bit-block addresses, bit-block alignments,
logic and halftone operations, and bus accesses.

The register set-up time remains practically constant and is large relative to small block transfers,
whereas large bit-blocks are dominated by the execution time of the transfer itself.

3.1. Register Map

The following is a map of the BLiTTER programmable registers (note that all unused bits read
back as zeros):

 FF 8A00 |oooooooo||oooooooo| HALFTONE RAM
 FF 8A02 |oooooooo||oooooooo|
 FF 8A04 |oooooooo||oooooooo|
 : :: :
 FF 8A1E |oooooooo||oooooooo|
 FF 8A20 |oooooooo||ooooooo-| SOURCE X INCREMENT
 FF 8A22 |oooooooo||ooooooo-| SOURCE Y INCREMENT
 FF 8A24 |--------||oooooooo| SOURCE ADDRESS
 FF 8A26 |oooooooo||ooooooo-|
 FF 8A28 |oooooooo||oooooooo| ENDMASK 1
 FF 8A2A |oooooooo||oooooooo| ENDMASK 2
 FF 8A2C |oooooooo||oooooooo| ENDMASK 3
 FF 8A2E |oooooooo||ooooooo-| DESTINATION X INCREMENT
 FF 8A30 |oooooooo||ooooooo-| DESTINATION Y INCREMENT
 FF 8A32 |--------||oooooooo| DESTINATION ADDRESS
 FF 8A34 |oooooooo||ooooooo-|
 FF 8A36 |oooooooo||oooooooo| X COUNT
 FF 8A38 |oooooooo||oooooooo| Y COUNT

 FF 8A3A |------oo| HOP
 FF 8A3B |----oooo| OP

 FF 8A3C |ooo-oooo|
 ||| |__|_____________ LINE NUMBER
 |||__________________ SMUDGE
 ||__________________ HOG
 |___________________ BUSY

 FF 8A3D |oo--oooo|
 || |__|_____________ SKEW
 ||___________________ NFSR
 |____________________ FXSR

 8

3.2. Bit-Block Addresses

This subsection describes registers that specify bit-block origins, address increments, and extents.

3.2.1. Source Address

This 23-bit register contains the current address of the source field (only word addresses may be
specified). It may be accessed using either word or longword instructions. The value read back is
always the address of the next word to be used in a source operation. It will be updated by the
amounts specified in the SOURCE X INCREMENT and the SOURCE Y INCREMENT registers
as the transfer progresses.

3.2.2. Source X Increment

This is a signed 15-bit register, the least significant bit is ignored, specifying the offset in bytes to
the address of the next source word in the current line. This value will be sign-extended and added
to the SOURCE ADDRESS register at the end of a source word fetch, whenever the X COUNT
register does not contain a value of one. If the X COUNT register is loaded with a value of one this
register is not used. Byte instructions can not be used to read or write this register.

3.2.3. Source Y Increment

This is a signed 15-bit register, the least significant bit is ignored, specifying the offset in bytes to
the address of the first source word in the next line. This value will be sign-extended and added to
the SOURCE ADDRESS register at the end of the last source word fetch of each line (when the X
COUNT register contains a value of one). If the X COUNT register is loaded with a value of one
this register is used exclusively. Byte instructions can not be used to read or write this register.

3.2.4. Destination Address
This 23-bit register contains the current address of the destination field (only word addresses may
be specified). It may be accessed using either word or long-word instructions. The value read back
is always the address of the next word to be modified in the destination field. It will be updated by
the amounts specified in the DESTINATION X INCREMENT and the DESTINATION Y
INCREMENT registers as the transfer progresses.

3.2.5. Destination X Increment
This is a signed 15-bit register, the least significant bit is ignored, specifying the offset in bytes to
the address of the next destination word in the current line. This value will be sign-extended and
added to the DESTINATION ADDRESS register at the end of a destination word write, whenever
the X COUNT register does not contain a value of one. If the X COUNT register is loaded with a
value of one this register is not used. Byte instructions can not be used to read or write this register.

3.2.6. Destination Y Increment
This is a signed 15-bit register, the least significant bit is ignored, specifying the offset in bytes to
the address of the first destination word in the next line. This value will be sign-extended and added
to the DESTINATION ADDRESS register at the end of the last destination word write of each line
(when the X COUNT register contains a value of one). If the X COUNT register is loaded with a
value of one this register is used exclusively. Byte instructions cannot be used on this register.

 9

3.2.7. X Count
This 16-bit register specifies the number of words contained in one destination line. The minimum
number is one and the maximum is 65536 designated by zero. Byte instructions can not be used to
read or write this register. Reading this register returns the number of destination words yet to be
written in the current line, NOT necessarily the value initially written to the register. Each time a
destination word is written the value will be decremented until it reaches zero, at which time it will
be returned to its initial value.

3.2.8. Y Count
This 16-bit register specifies the number of lines in the destination field. The minimum number is
one and the maximum is 65536 designated by zero. Byte instructions can not be used to read or
write this register. Reading this register returns the number of destination lines yet to be written,
NOT necessarily the value initially written to the register. Each time a destination line is completed
the value will be decremented until it reaches zero, at which time the tranfer is complete.

3.3. Bit-Block Alignments
This subsection describes registers that specify bit-block end masks, source-to-destination skew,
and source data fetching.

3.3.1. EndMask 1, 2, 3
These 16-bit registers are used to mask destination writes. Bits of the destination word which
correspond to ones in the current ENDMASK register will be modified. Bits of the destination
word which correspond to zeros in the current ENDMASK register will remain unchanged. The
current ENDMASK register is determined by position in the line. ENDMASK 1 is used only for
the first write of a line. ENDMASK 3 is used only for the last write of a line. ENDMASK 2 is used
in all other cases. In the case of a one word line ENDMASK 1 is used. Byte instructions can not be
used to read or write these registers.

3.3.2. Skew
The least significant four bits of the byte-wide register at FF 8A3D specify the source skew. This
is the amount the data in the source data latch is shifted right before being combined with the
halftone mask and destination data.

3.3.3. FXSR
FXSR stands for Force eXtra Source Read. When this bit is set one extra source read is performed
at the start of each line to initialize the remainder portion source data latch.

3.3.4. NFSR
NFSR stands for No Final Source Read. When this bit is set the last source read of each line is not
performed. Note that use of this and/or the FXSR bit the requires an adjustment to the SOURCE Y
INCREMENT and SOURCE ADDRESS registers.

3.4. Logic Operations
This subsection describes registers that specify the logic combinations of source and destination
bit-block data.

 10

The least significant four bits of the byte-wide register at FF8A3B specify the source/destination
combination rule according to the following table:

OP COMBINATION RULE
0 All zeros

1 Source AND destination

2 Source AND NOT destination

3 Source

4 NOT source AND destination

5 Destination

6 Source XOR destination

7 Source OR destination

8 NOT source AND NOT destination

9 NOT source XOR destination

A NOT destination

B Source OR NOT destination

C NOT source

D NOT source OR destination

E NOT source OR NOT destination

F All ones

3.5. Halftone Operations
This subsection describes registers that specify the halftone pattern memory, halftone word index,
and combinations of source and halftone data.

3.5.1. Halftone RAM
This RAM holds a 16x16 halftone pattern mask. Each word is valid for one line of the destination
field and is repeated every 16 lines. The current word is pointed to by the value in the LINE
NUMBER register. These registers may be read, but can not be accessed using byte-wide
instructions.

3.5.2. Line number
The least significant four bits of the byte-wide register at FF 8A3C specify the current halftone
mask. The current value times two plus FF 8A00 gives the address of the current halftone mask.
This value is incremented or decremented at the end of each line and will wrap through zero. The
sign of the DESTINATION Y INCREMENT determines if the line number is incremented or
decremented (increment if positive, decrement if negative).

 11

3.5.3. Smudge
The SMUDGE bit, when set, causes the least significant four bits of the skewed source data to be
used as the address of the current halftone pattern. Note that the halftone operation is still valid
when SMUDGE is set.

3.5.4. Halftone Operations
The least significant two bits of the byte-wide register at FF 8A3A specify the source/halftone
combination rule according to the following table:

HOP COMBINATION RULE

0 All ones

1 Halftones

2 Source

3 Source AND halftone

3.6. Bus Accesses
This subsection describes registers that specify bus access control and BLiTTER start/status.

3.6.1. Hog
The HOG bit, when cleared, causes the processor and the blitter to share the bus equally. In this
mode each will get 64 bus cycles while the other is halted. When set, the bit will cause the
processor to be halted until the transfer is complete. In either case the BLiTTER will yield to other
DMA devices. Bus arbitration may allow the processor to execute one or more instructions even in
hog mode. Therefore, don’t assume that the instruction following the one which sets the BUSY bit
will be executed only after the transfer is complete. The BUSY bit may be polled to achieve this
kind of synchronization.

3.6.2. Busy
The BUSY bit is set after all the other registers have been initialized to begin the transfer operation.
It will remain set until the transfer is complete. The interrupt line is a duplicate of this bit. See the
Programming Example for more details on how to use the BUSY bit.

 12

4. APPENDIX A – Programming Example
In order to maintain software compatibility with new or upgraded Atari STs equipped with the
BLiTTER, software developers need only follow guidelines set forth by theVDI and « LINE A »
documents.Revised TOS ROMs will work in concert with the BLiTTER, enhancing the
performance of many VDI and « LINE A » operations. This occurs in a manner transparent to an
executing program. Thus no special actions need be taken to utilize the performance advantages of
the BLiTTER.

As a rule of thumb, never make a VDI or « LINE A » call from within an interrupt context since
unpredictable and potentially catastrophic results will occur should one BLiTTER operation
interrupts another BLiTTER operation.

 * (c) 1987 Atari Corporation
 * All Rights Reserved.

 * BLiTTER BASE ADDRESS

 BLiTTER equ $FF8A00

 * BLiTTER REGISTER OFFSETS

 Halftone equ 0
 Src_Xinc equ 32
 Src_Yinc equ 34
 Src_Addr equ 36
 Endmask1 equ 40
 Endmask2 equ 42
 Endmask3 equ 44
 Dst_Xinc equ 46
 Dst_Yinc equ 48
 Dst_Addr equ 50
 X_Count equ 54
 Y_Count equ 56
 HOP equ 58
 OP equ 59
 Line_Num equ 60
 Skew equ 61

 * BLiTTER REGISTER FLAGS

 fHOP_Source equ 1
 fHOP_Halftone equ 0

 fSkewFXSR equ 7
 fSkewNFSR equ 6

 fLineBusy equ 7
 fLineHog equ 6
 fLineSmudge equ 5

 * BLiTTER REGISTER MASKS

 mHOP_Source equ $02
 mHOP_Halftone equ $01

 13

 mSkewFXSR equ $80
 mSkewNFSR equ $40

 mLineBusy equ $80
 mLineHog equ $40
 mLineSmudge equ $20

 * E n D m A s K d A t A
 *
 * These tables are referenced by PC relative instructions. Thus,
 * the labels on these tables must remain within 128 bytes of the
 * referencing instructions forever. Amen.
 *
 * 0: Destination 1: Source <<< Invert right end mask data >>>

 lf_endmask:
 dc.w $FFFF

 rt_endmask:
 dc.w $7FFF
 dc.w $3FFF
 dc.w $1FFF
 dc.w $0FFF
 dc.w $07FF
 dc.w $03FF
 dc.w $01FF
 dc.w $00FF
 dc.w $007F
 dc.w $003F
 dc.w $001F
 dc.w $000F
 dc.w $0007
 dc.w $0003
 dc.w $0001
 dc.w $0000

 * TiTLE: BLiT_iT
 *
 * PuRPoSE:
 * Transfer a rectangular block of pixels located at an
 * arbitrary X,Y position in the source memory form to
 * another arbitrary X,Y position in the destination memory
 * form using replace mode (boolean operator 3).
 * The source and destination rectangles should not overlap.
 *
 * iN:
 * a4 pointer to 34 byte input parameter block
 *
 * Note: This routine must be executed in supervisor mode as
 * access is made to hardware registers in the protected region
 * of the memory map.
 *
 * I n p u t p a r a m e t e r b l o c k o f f s e t s

 SRC_FORM equ 0 ; Base address of source memory form .l
 SRC_NXWD equ 4 ; Offset between words in source plane .w
 SRC_NXLN equ 6 ; Source form width .w
 SRC_NXPL equ 8 ; Offset between source planes .w
 SRC_XMIN equ 10 ; Source blt rectangle minimum X .w
 SRC_YMIN equ 12 ; Source blt rectangle minimum Y .w

 14

 DST_FORM equ 14 ; Base address of destination memory form .l
 DST_NXWD equ 18 ; Offset between words in destination plane.w
 DST_NXLN equ 20 ; Destination form width .w
 DST_NXPL equ 22 ; Offset between destination planes .w
 DST_XMIN equ 24 ; Destination blt rectangle minimum X .w
 DST_YMIN equ 26 ; Destination blt rectangle minimum Y .w

 WIDTH equ 28 ; Width of blt rectangle .w
 HEIGHT equ 30 ; Height of blt rectangle .w
 PLANES equ 32 ; Number of planes to blt .w

 BLiT_iT:

 lea BLiTTER,a5 ; a5-> BLiTTER register block

 *
 * Calculate Xmax coordinates from Xmin coordinates and width
 *
 move.w WIDTH(a4),d6
 subq.w #1,d6 ; d6<- width-1

 move.w SRC_XMIN(a4),d0 ; d0<- src Xmin
 move.w d0,d1
 add.w d6,d1 ; d1<- src Xmax=src Xmin+width-1

 move.w DST_XMIN(a4),d2 ; d2<- dst Xmin
 move.w d2,d3
 add.w d6,d3 ; d3<- dst Xmax=dstXmin+width-1

 *
 * Endmasks are derived from source Xmin mod 16 and source Xmax
 * mod 16
 *
 moveq.l #$0F,d6 ; d6<- mod 16 mask

 move.w d2,d4 ; d4<- DST_XMIN
 and.w d6,d4 ; d4<- DST_XMIN mod 16
 add.w d4,d4 ; d4<- offset into left end mask tbl

 move.w lf_endmask(pc,d4.w),d4 ; d4<- left endmask

 move.w d3,d5 ; d5<- DST_XMAX
 and.w d6,d5 ; d5<- DST_XMAX mod 16
 add.w d5,d5 ; d5<- offset into right end mask tbl

 move.w rt_endmask(pc,d5.w),d5 ; d5<-inverted right end mask
 not.w d5 ; d5<- right end mask

 *
 * Skew value is (destination Xmin mod 16 - source Xmin mod 16)
 * && 0x000F. Three discriminators are used to determine the
 * states of FXSR and NFSR flags:
 *
 * bit 0 0: Source Xmin mod 16 =< Destination Xmin mod 16
 * 1: Source Xmin mod 16 > Destination Xmin mod 16
 *
 * bit 1 0: SrcXmax/16-SrcXmin/16 <> DstXmax/16-DstXmin/16
 * Source span Destination span
 * 1: SrcXmax/16-SrcXmin/16 == DstXmax/16-DstXmin/16
 *
 * bit 2 0: multiple word Destination span

 15

 * 1: single word Destination span
 *
 * These flags form an offset into a skew flag table yielding
 * correct FXSR and NFSR flag states for the given source and
 * destination alignments
 *

 move.w d2,d7 ; d7<- Dst Xmin
 and.w d6,d7 ; d7<- Dst Xmin mod16
 and.w d0,d6 ; d6<- Src Xmin mod16
 sub.w d6,d7 ; d7<- Dst Xmin mod16-Src Xmin mod16
 * ; if Sx&F > Dx&F then cy:1 else cy:0
 clr.w d6 ; d6<- initial skew flag table index
 addx.w d6,d6 ; d6[bit0]<- intraword alignment flag

 lsr.w #4,d0 ; d0<- word offset to src Xmin
 lsr.w #4,d1 ; d1<- word offset to src Xmax
 sub.w d0,d1 ; d1<- Src span - 1

 lsr.w #4,d2 ; d2<- word offset to dst Xmin
 lsr.w #4,d3 ; d3<- word offset to dst Xmax
 sub.w d2,d3 ; d3<- Dst span - 1
 bne set_endmasks ; 2nd discriminator is one word dst

 * When destination spans a single word, both end masks are merged
 * into Endmask1. The other end masks will be ignored by the BLiTTER

 and.w d5,d4 ; d4<- single word end mask
 addq.w #4,d6 ; d6[bit2]:1 => single word dst

 set_endmasks:

 move.w d4,Endmask1(a5) ; left end mask
 move.w #$FFFF,Endmask2(a5) ; center end mask
 move.w d5,Endmask3(a5) ; right end mask

 cmp.w d1,d3 ; the last discriminator is the
 bne set_count ; equality of src and dst spans

 addq.w #2,d6 ; d6[bit1]:1 => equal spans

 set_count:
 move.w d3,d4
 addq.w #1,d4 ; d4<- number of words in dst line
 move.w d4,X_Count(a5) ; set value in BLiTTER

 * Calculate Source starting address:
 *
 * Source Form address +
 * (Source Ymin * Source Form Width) +
 * ((Source Xmin/16) * Source Xinc)

 move.l SRC_FORM(a4),a0 ; a0-> start of Src form
 move.w SRC_YMIN(a4),d4 ; d4<- offset in lines to Src Ymin
 move.w SRC_NXLN(a4),d5 ; d5<- length of Src form line
 mulu d5,d4 ; d4<- byte offset to (0, Ymin)
 add.l d4,a0 ; a0-> (0, Ymin)

 move.w SRC_NXWD(a4),d4; d4<- offset between consecutive
 move.w d4,Src_Xinc(a5) ; words in Src plane

 16

 mulu d4,d0 ; d0<- offset to word containing Xmin
 add.l d0,a0 ; a0-> 1st src word (Xmin, Ymin)

 * Src_Yinc is the offset in bytes from the last word of one Source
 * line to the first word of the next Source line

 mulu d4,d1 ; d1<- width of src line in bytes
 sub.w d1,d5 ; d5<- value added to ptr at end
 move.w d5,Src_Yinc(a5) ; of line to reach start of next

 * Calculate Destination starting address

 move.l DST_FORM(a4),a1 ; a1-> start of dst form
 move.w DST_YMIN(a4),d4 ; d4<- offset in lines to dst Ymin
 move.w DST_NXLN(a4),d5 ; d5<- width of dst form

 mulu d5,d4 ; d4<- byte offset to (0, Ymin)
 add.l d4,a1 ; a1-> dst (0, Ymin)

 move.w DST_NXWD(a4),d4 ; d4<- offset between consecutive
 move.w d4,Dst_Xinc(a5) ; words in dst plane

 mulu d4,d2 ; d2<- DST_NXWD * (DST_XMIN/16)
 add.l d2,a1 ; a1-> 1st dst word (Xmin, Ymin)

 * Calculate Destination Yinc

 mulu d4,d3 ; d3<- width of dst line - DST_NXWD
 sub.w d3,d5 ; d5<- value added to dst ptr at
 move.w d5,Dst_Yinc(a5) ; end of line to reach next line

 * The low nibble of the difference in Source and Destination alignment
 * is the skew value. Use the skew flag index to reference FXSR and
 * NFSR states in skew flag table.

 and.b #$0F,d7 ; d7<- isolated skew count
 or.b skew_flags(pc,d6.w),d7 ; d7<- necessary flags and skew
 move.b d7,Skew(a5) ; load Skew register

 move.b #mHOP_Source,HOP(a5) ; set HOP to source only
 move.b #3,OP(a5) ; set OP to "replace" mode

 lea Line_Num(a5),a2 ; fast refer to Line_Num register
 move.b #fLineBusy,d2 ; fast refer to LineBusy flag
 move.w PLANES(a4),d7 ; d7 <- plane counter
 bra begin

 * T h e s e t t i n g o f s k e w f l a g s
 *
 *
 * QUALIFIERS ACTIONS BITBLT DIRECTION: LEFT -> RIGHT
 *
 * equal Sx&F>
 * spans Dx&F FXSR NFSR
 *
 * 0 0 0 1 |..ssssssssssssss|ssssssssssssss..|
 * |......dddddddddd|dddddddddddddddd|dd..............|
 *
 * 0 1 1 0 |..dddddddddddddd|dddddddddddddd..|
 * |......ssssssssss|ssssssssssssssss|ss..............|
 *

 17

 * 1 0 0 0 |..ssssssssssssss|ssssssssssssss..|
 * |...ddddddddddddd|ddddddddddddddd.|
 *
 * 1 1 1 1 |...sssssssssssss|sssssssssssssss.|
 * |..dddddddddddddd|dddddddddddddd..|

 skew_flags:

 dc.b mSkewNFSR ; Source span < Destination span
 dc.b mSkewFXSR ; Source span > Destination span
 dc.b 0 ; Spans equal Shift Source right
 dc.b mSkewNFSR+mSkewFXSR ; Spans equal Shift Source left

 * When Destination span is but a single word ...

 dc.b 0 ; Implies a Source span of no words
 dc.b mSkewFXSR ; Source span of two words
 dc.b 0 ; Skew flags aren't set if Source and
 dc.b 0 ; Destination spans are both one word

 next_plane:
 move.l a0,Src_Addr(a5) ; load Source pointer to this plane

 move.l a1,Dst_Addr(a5) ; load Dest ptr to this plane
 move.w HEIGHT(a4),Y_Count(a5) ; load the line count

 move.b #mLineBusy,(a2) ; <<< start the BLiTTER >>>

 add.w SRC_NXPL(a4),a0 ; a0-> start of next src plane
 add.w DST_NXPL(a4),a1 ; a1-> start of next dst plane

 * The BLiTTER is usually operated with the HOG flag cleared.
 * In this mode the BLiTTER and the ST's cpu share the bus equally,
 * each taking 64 bus cycles while the other is halted. This mode
 * allows interrupts to be fielded by the cpu while an extensive
 * BitBlt is being processed by the BLiTTER. There is a drawback in
 * that BitBlts in this shared mode may take twice as long as BitBlts
 * executed in hog mode. Ninety percent of hog mode performance is
 * achieved while retaining robust interrupt handling via a method
 * of prematurely restarting the BLiTTER. When control is returned
 * to the cpu by the BLiTTER, the cpu immediately resets the BUSY
 * flag, restarting the BLiTTER after just 7 bus cycles rather than
 * after the usual 64 cycles. Interrupts pending will be serviced
 * before the restart code regains control. If the BUSY flag is
 * reset when the Y_Count is zero, the flag will remain clear
 * indicating BLiTTER completion and the BLiTTER won't be restarted.
 *
 * (Interrupt service routines may explicitly halt the BLiTTER
 * during execution time critical sections by clearing the BUSY flag.
 * The original BUSY flag state must be restored however, before
 * termination of the interrupt service routine.)

 restart:
 bset.b d2,(a2) ; Restart BLiTTER and test the BUSY
 nop ; flag state. The "nop" is executed
 bne restart ; prior to the BLiTTER restarting.
 * ; Quit if the BUSY flag was clear.

 begin:
 dbra d7,next_plane
 rts

 18

5. APPENDIX B - References

[1] Rob Pike, Leo Guibas, and Dan Ingalls, ‘SIGGRAPH’84 Course Notes: Bitmap Graphics’,
AT&T Bell Laboratories 1984.

[2] William Newman and Robert Sproull, ‘Principles of Interactive Computer Graphics’, McGraw-
Hill 1979, Chapter 18.

[3] John Atwood, ‘16160 RasterOp Chip Data Sheet’, Silicon Compilers 1984. See also ‘VL16160
RasterOp Graphics/Boolean Operation ALU’, VLSI Technology 1986.

[4] Adele Goldberg and David Robson, ‘Smalltalk-80: The Language and its Implementation’,
Addison-Wesley 1983, Chapter 18.

