INTRODUCTION Problem 1. MOVEBYTE V,84 MOVEWORD H,85 Problem 2. MOVEBYTE 84,V MOVEWORD 85,H And yet another concept before we leave assembly language. One of the most powerful features of an assembler is its ability to handle equated symbols. The real beauty of this, aside from producing more readable code, is that you can change all references to a location or value or whatever by simply changing a single equate in your source code. Thus, if somewhere near the beginning of our source program we had coded the following two lines: ROWCRS = 84 ; address of ROW CuRSor COLCRS = 85 ; address of COLumn CuRSor then we could have "solved" the problems thus: Problem 1. MOVEBYTE V,ROWCRS MOVEWORD H,COLCRS Problem 2. MOVEBYTE ROWCRS,V MOVEWORD COLCRS,H And I believe that this looks as elegant and readable as any of the higher level languages! In fact, it looks more readable than most of the examples given above. To be fair, though, we should note that all of the examples could have been made more readable by substituting variable names instead of the absolute numbers "84" and "85," but the overhead of declaring and assigning variables is sometimes not worth it for languages such as BASIC and PILOT. Luckily, the remaining languages (Forth, C, and Pascal) all have a means of declaring constants (akin to the assembly language equate) which has little or no consequential overhead. So go ahead--be the oddball on your block and make your code readable and maintainable. It may lose you friends, but it might help you land a job. Happy Mapping Well, we made it. I hope you now at least have an idea of what to do to modify and examine various memory locations in all of the languages shown. Virtually all of the many locations mapped in this book will fall into one of the two categories examined: they will involve changing or examining either a single byte or a double byte (word, integer, address, etc.). Follow the models shown here, and you should have little trouble effecting your desires. For those few locations which do not follow the above patterns