,-•‰™ÌPERMUTATIONÓSÂSEÔSUBSEÔÔPSEÔPSUÂPTRÁPÍNUÍÃÇÀ FACTORIALS› AP ( Factorials(( (1. Permutations( 2. Subsets&("(Please select (1 or 2)&€€"@ @€ Subsets›'6‚-‚%@‚!@' @P$$(}Subsets are numbers of sets ##(that can be made from a set"##(containing a greater number#$$(of elements. For example, a%$$(poker hand is made up of a 5'&&(element subset of 52 elements.((or....)$$( 52!/(5!47!) or 2.5 million2 ( Enter Set, then subset.4 set,subsetƒ„6(ƒ!/(„!ƒ&„!)76†-@8…-ƒ@6@9 6†-…$† …:6‡-@;…-„@6@< 6‡-…$‡ …A6ˆ-@C…-ƒ&„@6@E 6ˆ-…$ˆ …HU1 †'+‡$ˆ, of „ subsets from ƒ sets=6†-I6‡-U6ˆ-J @PPERMUTATIONS›Q'6‰-‰%@‰!@' @–R((( }A factorial is a function whichT$$(will find number of possibleV""(permutations of a set. ForX%%(example: How many ways can 13Z&&(people be seated in 13 chairs?\$$(13! ways or ...6,227,020,800^ (ways.`numberŠ6‹-@bŒ-Š@6@c 6‹-‹$Œd Œn Š!=‹x @–/l"@%(Numeric Overflow./ @ €D:FACTOR