@L|}6CD l0C)HCC WhL/h `CmCDiD`  R@W1  Y0@R !L` D  C D     )16CS S)  C)D1 p p 0 C9DI pCDL~CiCDiD`QyABCDEANS%&& &L%&rt@vA +'0@@ }@A0@@ @'@@'@@9 &&;@8,;@8,;@8,&&;@},;@,;@," ""( (((" ""#( (((;-@@ #-@'}(3-@77(; - ( (2.-@@.(GENERAL CATEGORIES :7F-@@"7-@@%}$@B(. F <.-@@.(ENTER YOUR CHOICE ?>0@@ @A-@0@ }B 6-@:,C?"@H) @I+-@1@5( ? @eF@N:@R&, ,-@1@6( } @ @eHAR@K//&@HAAAAP AU ( Ad (}n } Ax @% D:MENU.STT (}% D:MENU.MTH, (}% D:MENU.MSC| ( A (} A } A% D:MENU.FINT-@@5(INSERT DISKETTE 1 AND PRESSG-@@T('RETURN'&6-F: }Ad,&"@A0 AAdAU$QQ,}QQΠàӠ,99,,MATHEMATICS,}STATISTICS,BUSINESS,MISCELLANEOUSD2:MENUrt@vA +'0@@ 7  C ADL&&"&L"&@@# (}#0@@ @AR}@ &&;@8,;@8,;@8," #A-@@C-@@(&}} MATHEMATICS ROUTINES C(#-@@($ 6. "$B:,"@@-$67@"@@A# } @u-@0@#F A0K P3-@@"3(PRESS 'ESC' FOR MAIN MENUU AZ A0},&6-F:Ad,&"AUA62"@(!AdAU'(}2%D:MENU;# A -@0@#}>$@ @ J''A@APA`ApT??ABACADAEAFAGAHV}% D:PAGE116W%D:PAGE49X%D:PAGE51Y%D:PAGE52Z%D:PAGE54[%D:PAGE58\%D:PAGE60^??AR}ASATAUAVAWAX`%D:PAGE61a%D:PAGE63b%D:PAGE65c%D:PAGE67d%D:PAGE}72e%D:PAGE77f% D:PAGE101h??AbAcAdAeAfAgAhj%D:PAGE86k%D:P}AGE88l%D:PAGE90m%D:PAGE92n%D:PAGE93o%D:PAGE95p%D:PAGE97r??ArAsAtAu}AvAwAxs @ t%D:PAGE99u% D:PAGE103v%D:PAGE81w%D:PAGE83x% D:PAGE108y%} D:PAGE111z% D:PAGE114((. . . . . . . . . . . .VVPERMUTATIONS-COMBINATIONS,GREATEST COMMON DENOMINATO}R ,PRIME FACTORS OF INTEGERS]]AREA OF A POLYGON,PARTS OF A TRIANGLE,ANALYSIS OF TWO VECTORS,OPERATIONS ON TWO VECTORSh}hANGLE CONVERSION: RAD -> DEG,ANGLE CONVERSION: DEG -> RAD,COORDINATE CONVERSION ,COORDINATE PLOT ,EEPLOT OF POLAR EQUAT}ION,PLOT OF FUNCTIONS,SIMULTANEOUS EQUATIONSaaINTEGRATION: SIMPSON'S RULE ,INTEGRATION: TRAPEZOIDAL RULE,INTEGRATION: GAU }SSIAN QUADRATUREKKDERIVATIVE,ROOTS OF QUADRATIC EQUATIONS,REAL POLYNOMIAL ROOTS: NEWTON$))POLYNOMIAL ROOTS: INTERVAL S!}EARCH ,.YYTRIG POLYNOMIAL ,LINEAR PROGRAMMING ,LINEAR INTERPOLATION,CURVILINEAR INTERPOLATION8??MATRIX ARITHMETIC,MATRI"}X MULTIPLICATION ,MATRIX INVERSION D2:MENU.MTH@# (}#0@@ @AR6  :ADL &&"&L"&@AU# (}#0@@ @AR@$} &&;@8,;@8,;@8,"?-@?(% MISCELLANEOUS ROUTINES  ( (%}-@@$ 6. "$B:,"@0#67@ METRIC CONVERSION ,ALPHABETIZER , D2:MENU.MSC@AR@b%(' +'0@@ @ ;-@@; ! ,};-@@; !ԠΠҠ;-@@; ! -}(5-@@5 ENTER TWO NUMBERS (A,B) 2 7"AY>>CALCULATE G.C.D. A .}CCORDING TO EUCLIDEAN ALGORITHM; PRINTZ 6-O:,d 6-O:,n6-&$P:',x"A` 6- 6- /} A;-@@; GREATEST COMMON DENOMINATOR IS RESTART OR END PROGRAM?:-@@:  EN 0}TER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU.-@@"AA 1}A% +% D:MENU.MTH D2:PAGE49@ @ ;-@@; ! H.O`' +'0@@ @ 9-@@9 3}9-@@9 ŠӠƠӠ9-@@9 4}(3-@@3 NUMBER TO BE FACTORED 2E//THE SIGN OF THE NUMBER IS ALWAYS A FACTOR5}F1-@@ 1 PRIME FACTORS --> N:,O))USE ABSOLUTE VALUE FOR CALCULATIONSP 6-O:,T77COUNT THE NUMBER O6}F ANSWERS FOR SCREEN FORMATTINGU6-@X>>LOOP TO TEST ALL INTEGERS (2 THROUGH Z) AS PRIME FACTORSY55INTEGERS Z/7}2 THROUGH Z WILL HAVE NO NEW FACTORSZ-@'@d6-n'P:',APx 6-'6-%@8} A"Ap""PRINT FACTORS WITH EXPONENTS!-@!@ %! ^6-%@9} RESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / OR 3 TO:} DISPLAY MENU.-@@"AAA% +% D:MENU.MTH D;}2:PAGE51O`' +'0@@ @ 9-@@9    BTeXY@@' +'0@@ @ 1-=}@ @1 1-@ @1 ƠΠ1-@ @1 >}MMCOORDINATE ARRAYS SHOULD BE SET TO ONE MORE THAN THE NUMBER OF VERTICES9@%,9@%,(0-?}@@0 NUMBER OF VERTICES 2E>>LOOP TO ENTER COORDINATES IN ORDER OF SUCCESSIVE VETICESF-@@}P%-@%@ %  Z2-@@ 2 VERTEX  (X,Y) x } 68,-68,-A} ''FIRST VETEX SERVES AS LAST VERTEX68%@,-8@,68%@,-8@,6-CALCUB}LATE AREA; PRINT-@116-%+8,%8%@,,$+8,&8%@,, .-@@. AREA = O:C},'@RESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / ORD} 3 TO DISPLAY MENU.-@@"A`ApA% +% D:MENU.MTH"E} D2:PAGE52XY@@' +'0@@ @ 1-"3ASARCSINARCCOSC@@@ @ G} ' +'0@@ @! A9@,9@,SET VALUE OF H}PI(6-@p,BBSET CONVERSION FACTOR FOR CONVERTING FROM RADIANS TO DEGREES-6-?tS)'0;;ENTER NUMBER OF PROBLI}EM TYPE ACCORDING TO KNOWN PARTS1A=ANGLE S=LENGTH OF SIDE2'-@@'  PROBLEM TYPES4.-@ @.J} 1) ANGLE SIDE ANGLE6--@ @- 2) SIDE ANGLE SIDE8.-@ @. 3) ANGLE ANGLE SIDE:--@ K}@- 4) SIDE SIDE ANGLE<,-@ @, 5) SIDE SIDE SIDEA.-@@!. ENTER YOUR CHOICE L}FO++DIRECT PROGRAM TO PROPER CALCULATIONSP77A0AA`AAA` (} AM} A4-@@4 ENTER ANGLE,SIDE,ANGLE  68@,-$68@,-68@N},-$((68@,-&8@,&8@,7768@,-8@,$G:8@,,'G:8@,,7768@,-8O}@,$G:8@,,'G:8@,, A@ (} A A3-@@3 ENTER SIDE,ANGLEP},SIDE  68@,-68@,-$68@,-ee68@,-M:8@,#@%8@,#Q}@&@$8@,$8@,$E:8@,,,4468@,-G:8@,,'8@,$8@,%%ARCSIN(X) IS A R}DERIVED FUNCTION@@68@,-D:8@,'M:68@,$8@,%@,,((68@,-&8@,&8@, S} A@ (}  A  A 4-@@4 ENTER ANGLE,ANGLE,SIDE  68@,-$T}68@,-$68@,-((68@,-&8@,&8@," A`, (}1 A2 AU}43-@@3 ENTER SIDE,SIDE,ANGLE 6 868@,-:68@,-<68@,-$JV}8@, A T0068@,-M:8@,#@&#@,^8@,Ah''6-M:8@,#@&W}#@,r68@,-8@,%| A  (} A2-@@2 ENTER SIDE,SIDE,SIDE X} 068@,-!68@,-068@,-ii68@,-+8@,#@%8@,#@&8@,#Y}@,'@'8@,'8@,068@,-!68@,-068@,-%%ARCCOS(X) IS A DERIVED FUNCTIONZ}II68@,-6D:8@,'M:68@,$8@,%@,,%@W3 A PRINT REULTS-@@[}66THE ANGLE OF A TRIANGLE CANNOT BE LESS THAN ZERO8, A  55 SIDE  = P:8,$A%?P\},'AGG OPPOSITE ANGLE = P:8,'$A%?P,'A DEGREES. RESTART OR END PROGRAM?:]}-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU.-@@"^}AAA% +% D:MENU.MTH&-@@&  NO SOLUTION. AX_}0-@@- (ANGLES IN DEGREES)0$((THIS SUBROUTINE PRINTS THE HEADING3-@@3 `}3-@@3 ӠƠŠ3-@@3 $a} D2:PAGE54ARCSINARCCOSC@@@ @ sl } XYZMANAAA$A6@@@W)W @Ew' c}' +'0@@ @ 7-@7 7-@@7 d}ӠƠϠӠ7-@@7 119@,9@,9@,9@e},'44STATEMENTS 40 TO 70 REQUEST VECTOR COORDINATES(1-@@1 VECTOR 1 (X,Y,Z) 2 706f}8@,-!68@,-068@,-<1-@@1 VECTOR 2 (X,Y,Z) F K068@,-!68g}@,-068@,-Y""LOOP TO ANALYZE BOTH VECTORSZ-@@c CALCULATE MAGNITUDE; PRINTdOO68,-Ph}:M:8,#@%8,#@%8,#@,$A%?P,'Am88IS VECTOR A POINT? IF YES, CANNOT COMPUTE AN ANGLEni}8,"A }  ) MAGNITUDE = 8,6-@W)W++CALCULATE ANGLE BETWEEN X AXIS; PRINT6-j}8,'8, AP>>  ANGLE WITH X AXIS = P:$$A%?P,'A++CALCULATE ANGLE BETWEEN Y AXIS; PRIk}NT6-8,'8, AP>>  Y AXIS = P:$$A%?P,'A++CALCULATE ANGLE BETWEEN Zl} AXIS; PRINT6-8,'8, AP>>  Z AXIS = P:$$A%?P,'A 6-m}77IF EITHER VECTOR IS A POINT, CANNOT COMPUTE ANGLE 8@,"A 8@,"A%%n}CALCULATE ANGLE BETWEEN VECTORSaa6-+8@,$8@,%8@,$8@,%8@,$8@,,'8@,'8@o}, $$ARE THE VECTORS PERPENDICULAR?A6-@" A+''CALCULATE ANGLE IN DEGREES; p}PRINT,))6-+6D:'M:6$%@,,%@W3,$6@ @ ANGLE BETWEEN VECTORS = P:$A%?P,'AIRESTART Oq}R END PROGRAM?J:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,O/-@ @ / OR 3 TO DISPLAY MENU.T-r}@@"VADAFAHX%Z +\% D:MENU.MTH^"@6-$c+(s}6-6D:'M:O:6$%@,,,%@W3+$h D2:PAGE58@@@W)W @Ew' > F$XYZXYZ' +'0@@ @ u}9-@@9 9-@@9 ӠΠϠӠ9-@ v}@9 /-@@/ VECTOR 1 (X,Y,Z) ( 2/-@@/ w}VECTOR 2 (X,Y,Z) < O ADD VECTORS; PRINT RESULTSPD-@@D ADDITION: (%,% x},%)Y%%SUBTRACT VECTORS; PRINT RESULTSZD-@@D SUBTRACTION: (&,&,&)c""CALCU y}LATE DOT PRODUCT; PRINTd7-@@7 DOT PRODUCT: $%$%$m$$CALCULATE CROSS PRODUCT; PRINTnP-@ z}@P CROSS PRODUCT: ($&$,$&$,$&$)RESTART OR END PROGRAM?;-@@; !E {}NTER 1 TO RUN AGAIN, 2 TO EXIT, /-@ @ / OR 3 TO DISPLAY MENU.-@@"ADAF |}AH% +% D:MENU.MTH D2:PAGE60' +'0@@ @ J8\mD' +'0@@ @ 3-@@$~}3  3-@@3 Šκ3-@@3 ӠϠ$}Ӡ3-@@3 2--@@- ANGLE IN RADIANS <O CONVE$}RT RADIANS TO SECONDSP!!6-A6$A$'@pY''CALCULATE NUMBER OF WHOLE DEGREESZ6-P:'A6,c''CALCUL$}ATE NUMBER OF WHE CIRCLESd6-P:'A`,m//CALCULATE ANGLE WITHIN 360 -GREES; PRINTn0-@@0  DEGRE$}ES = &A`$wCALCULATE MINUTES; PRINTx=-@@=  MINUTESOR P:+&$A6,'@`,))CALCULATE S$}ECONDS, ROUND OFF; PRINT666-&$A6&+P:+&$A6,'@`,,$@`A-@@A  SECONDS = P:A$$}%?P,'ARESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ $}/ OR 3 TO DINPLAY MENU.-@@"AtAvAx% +% D:MENU.MTH$} D2:PAGE61' +'0@@ @ 3-@@$7]n' +'0@@ @ 2-@@(}2  2-@@2 Šκ2-@@2 ӠϠ(}Ӡ2-@@2 (=-@@ = #ANGLE IN DEGREES,MINUTES,SECONDS 2-(}@@c//CONVERT DEGREES,MINUTES,SECONDS TO DEGRESd6-%'@`%'A6m**CALCULATE NUMBER OF C(}OMPLETE CIRCLESn6-P:'A`,w//CALCULATE ANGLE WITHIN 360 DEGREES; PRINTx8-@@8  RADIANS = $?t(}S)&$@(10RESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / (}OR 3 TO DISPLAY MENU.-@@"ATAVAX% +% D:MENU.MTH(} D2:PAGE63' +'0@@ @ 2-@@(  B EN' +'0@@ @ 5-,}@@5 5-@@5 ŠΠ5-@@5 ,}1-@@1 1) CARTESIAN TO POLAR(1@@1 2) POLAR TO CARTESIAN,}<--@@- CONVERSION TYPE FY11DIRECT PROGRAM TO PERFM PROPER CONVERSIONZ"@A ,}b%%CONVERT FRON CARTESION TO POLARc66ENTER CARTESIAN COORDINATES (ABSCISSA, ORDINATE)d3-@@3 COORDINAT,}ES (X,Y) n wPOINT ON Y AXIS?x"ApPOINT ON X AXIS?"A`11COMP,}UTE POLAR COORDIATES, ROUND OFF; PRINT]-@@]  MAGNITUDE = P:N:,$M:#@%#@,$A%?P,',}A_-@@_ ANGLE = P:D:',$A'@p$A%?P,'A DEGREES Ap!!POIN,}T ON Y AXIS, AT ORIGIN?"A@+-@@+  MAGNITUDE = O:,%%IS POINT ABOVE OR BELOW ORIGIN,}? A ,-@@, ANGLE = 90 DEGREES Ap--@@- ANGLE = 270 DEGREE,}S ApPOINT IS AT ORIGIN*-@@* MAGNITUDE = ZERO.-@@. ANGLE = ZERO DEGREE,}S ApPOINT IS ON X AXIS+-@@+  MAGNITUDE = O:, **IS POINT TO LEFT OR RIGHT OF ORIGIN?,} A.-@@. ANGLE = ZERO DEGREES" Ap,--@@- ANGLE = 180 DEGREES,}6 Ap>%%CONVERT FROM POLAR TO CARTESIAN?00ENTER POLAR COORDINATES (MAGNITUDE, ANGLE)@3-@@3 C,}OORDINATES (R,THETA) J S%%CONVERT FROM DEGREES TO RADIANST006-+&P:'A`,$A`,$@p'A]77C,}ALCULATE CARTESIAN COORDINATES, ROUND OFF; PRINT^@-@@@ X = P:$E:,$A%?P,'Ah@-@,}@@ Y = P:$G:,$A%?P,'AqRESTART OR END PROGRAM?r:-@@:  ENTER 1 TO RUN AGAI,}N, 2 TO EXIT,w/-@ @ / OR 3 TO DISPLAY MENU.|-@@"~AAA%,} +% D:MENU.MTH D2:PAGE65' +'0@@ @ 5-,7./GXXYAAABBBENLINEBLANK@@0} 0}' +'0@@ @ /-@@/ /-@0}@/ ŠԠ/-@@/ ffDIMENSIONS OF X( ) AND Y( ) SHOULD BE 0}LIMITED TO (N+1) WHERE 'N' IS THE MAXIMUM NUMBER OF POINTS//THE MAXIMUM NUMBER OF POINTS IS SET TO 999A,90}A,"ggDIMENSION THE FOLLOWING STRINGS TO THE LENGTH OF YOUR PRINTER AND ADJUST THE PROGRAM ACCORDINGLY.#;@r0},$;@r,%UU6.K '&&INPUT INFORMATION0} TO SET UP AXES(.-@@. X-AXIS INFORMATION :*#-@@ #  ENDPOINTS,.-@@. (LE0}FT,RIGHT) - .--@@- INCREMENT /2?-@@? % 0} 7%-@$@%  <-@@ Y>/-@@/ (LOWER,UPPER) 0} ? @?-@@? % A--@@- INCREMENT B0}P6-+&,'XXXY-AXIS TOO LONG FOR OUTPUT DEVICE? IF YES, CHANGE ENDPOINTS OR INCREASE INCREMENTZ@pA 0}d?-@@? % i1-@@1 -- Y-RANGE TOO LARGE --n @U0}x*-@@* NUMBER OF POINTS}--@@- TO BE PLOTTED 00NO POINTS TO PLOT? IF Y0}ES THEN END PROGRAM" ;;TOO MANY POINTS? IF YES THEN REENTER NUMBER OF POINTS@Au/0}-@@/ -- TOO MANY POINTS --$-@$@$   A%?-@@? % 0} ..LOOP TO ENTER COORDINATES FOR EACH POINT-@%-@$@%  0} 1-@@1 POINT  (X,Y)   68,-68,-<<ROUND OFF EACH COORDINATE TO NEAREST0} INCREMENT ON AXIS 68,-P:+8,&,'%?P, 68,-P:+8,&,'%?P,  11CALCULATE AN ADDITIONAL X- AND0} Y-COORDINATE''68%@,-P:%?P,%@--68%@,-P:+&,'%?P,%@4-@@!4 PR0}ESS ANY KEY TO CONTINUE." A0) (}*/-@@/ +/-@@/ 0}ŠԠ,/-@@/ 0NOTE WHERE THE AXES CROSS60-@@0  ORIGIN0} = (,)86-@@6 PLEASE WAIT WHILE THE POINTS:+-@@+ ARE BEING SORTED.?AASORT C0}OORDINATES; REORDER X(1) TO X(N), SMALLEST TO LARGEST@-@J-@&T 6-8,^ 6-8,h6-8%0}@,r6-8%@,| A0 68,- 68,-68%@,-68%@,-  0}?-@@? % :-@@:  PRESS ANY KEY TO BEGIN PLOTTING. (0} THIS RINGS THE BELL! A0 (}33THE NEXT POINT TO BE PLOTTED IS STORED IN 'T'6-@))SKIP 0}POINTS OUT OF X-POSITIVE RANGE-&@""8%@,A 99LOOP TO CALL UP EACH X 0}INCREMENT FOR LINES OF PRINT""-P:+&,'%?P,BLANK OUT THE LINE STRING 6. 6-%>>COUNT 0}NUMBER OF POINTS TO BE PLOTTED ON EACH LINE IN 'P'6-##HAVE ALL POINTS BEEN PLOTTED?!A@55IS0} AN X-VALUE ON THE X LINE? IF YES, TEST FOR Y8,"A@@IS THIS THE FIRST LINE? IF YES, THE Y-AXIS MUST BE PLO0}TTED"Ap%PLOT X-AXIS&67@<@,.*0 A@:6-%@D A N -0}W77IS THE NEXT POINT TO BE PLOTTED ON THE SAME LINE?X8,!8,A0a,,COUNT POINTS TO BE PLOTED ON EACH LINEb0}6-%@l uPLOT ONE POINTv"@A0~::LOOP TO SORT Y-COORDINATES WITH EQUAL X-COORDINATES;0}-@-@&6-8%&@,6-8%,A68%&@,-68%,-0}  -&@6-8%,((TEST FOR OUT-OF-RANGE Y-COORDINATEAp .0}.IS THE POINT TO BE PLOTTED ON TH X-AXIS?"A  --IS THE POINT TO BE PLOTED ON TH Y-AXIS? "0}APLOT X-AXIS67@<@,.* "&@Ap*-&@3((TEST FOR OUT-OF-RANGE 0}Y-COORDINATE4!A@=""BYPASS DUPLICATE COORDINATES>8%,"A`GPLOT THE POINT!H 67%@<0}%@,.+R6-8%,\ e((TEST FOR OUT-OF-RANGE Y-COORDINATEf A@p!A@yPLOT 0}THE POINT!z 67%@<%@,.+ A@ 6-%,,LOOP TO ESTABLISH PRINT FOR FIRST LINE-0}IS THERE A POINT TO PLOT?8,APLOT THE POINT! 67%@<%@,.+""BYPASS DUPLIC0}ATE COORDINATES-%&@8,"8,A  6- A   A PLOT THE Y-AXIS0} 67%@<%@,.* LABEL THE Y-AXIS 67%@<%@,.Y""PLOT (PRINT) THE LINE STRING0}  #LABEL THE X-AXIS$ 6.)67@<@,.X. 8   B''  PRESS ANY KEY TO CONTINU0}E. A0 (}RESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ 0}@/ OR 3 TO DISPLAY MENU.-@@A UA `A e%  +% D:MENU0}.MTH  6-F:Ad, AUA00 A0 AdAU $  D2:PAGE670s!"XYILINEBLANK@@ 4} ' +'0@@ @4} 7-@@7 7-@@7 ԠƠҠΠ7-@4}@7 ..COORDINATE ARRAYS ARE SET FOR 90 POINTS,66ONE EXTRA X-COORDINATE IS CAL4}CULATED IN PROGRAM.9@,9@,"aaDIMENSION THESE STRINGS TO THE WIDTH OF YOUR PRINTER, AND ADJUST THE PROG4}RAM AS NESSESSARY.#;@b,$;@b,%GG6.= ''4}'NUMBER OF POINTS TO BE CALCULATED(6-@133ABSOLUTE VALUE OF ALL AXIS ENDPOINTS IS EQUAL29-@@9 4}ABSOLUTE VALUE OF ENDPOINTS <O__CALCULATE INCREMENTS OF AXES ACCORDING TO NUMBER OF CHARACTER (ON OUTPUT DEVICE4}) PER AXISP+-@@+ AXIS INCREMENTS :U--@@-  X-AXIS = '@0Z--@@-  Y4}-AXIS = '@_6-@@6 PLOTTING WILL BEGIN IN ABOUT`(-@@ ( THREE MINUTES.n-@4}w CONVERT DEGREES TO RADIANSx6-?$""ENTER FUNCTION HERE,AS SHOWN6-@$+@&E:,,QQCA4}LCULATE EACH CARTESIAN COORDINATE, ROUND OFF TO NEAREST INCREMENT ON AXIS2268,-P:++$E:,'%@,$@0,%?P,4}3368,-P:++6$G:,'%@,$@,%?P, @@SORT COORDINATES, REORDER Y(1) TO Y(N) SMALLEST TO LARGEST4}-@-@& 6-8, 6-8,8%@,A`68,-8%@,68,-8%@4},68%@,-68%@,-  ?-@@ ? % :4}-@@:  PRESS ANY KEY TO BEGIN PLOTTING. ( THIS RINGS THE BELL!6-F:Ad,AUAw4} AtAdAU (}//NEXT POINT TO BE PLOTTED IS STORED IN 'T'6-@!))SKIP POINTS 4}OUT OF Y-POSITIVE RANGE"-&@,""8%@,A 6 ?99LOOP TO CALL UP EACH Y INCREME4}NT FOR LINES OF PRINT@-@6D11BLANK OUT THE PLOTTED (PRINTED) LINE STRINGE 6.J 6-%SBBNUMBER4} OF POINTS TO BE PLOTTED ON EACH LINE IS STORED IN 'P'T6-]ARE ALL POINTS PLOTTED?^!ApgIS A4} Y-VALUE ON Y-AXISh8,"A qPRINT THE X-AXIS?r"@A{PRINT THE Y-AXIS.|67@0<@4}0,.* A`6-%@ A@ -77IS THE NEXT POINT TO BE PLOTTED ON THE SAME LINE?4}8,!8,AP6-%@ "@A`99LOOP TO SORT X-COORDINATES WITH EQUAL Y-COORDINATES4}-@-@&6-8%&@,6-8%,A@68%&@,-68%,-4} & /PRINT X AXIS?0"@A0:6-6@D6-N-&@W??MORE THAN O4}NE POINT TO BE PLOTTED AT SAME POINT ON GRAPH?X8%,"Ab6-8%,l"@0A`u##PLOT POINT TO 4}LEFT OF Y AXIS?v @0Ap"@Ap67@0<@0,.*6-@!@`A`4}PLOT THE POINT! 67%@<%@,.+ "@A`67@0<@0,.* A`4} 6-""LOOP TO PRINT LINE OF X AXIS-@@a8,&@A0PLOT POINT ON X AXIS4}67<,.+-%&@ 8,"8,A 6-  A@* 4 A@=PRINT X AXIS>674}<,.*H QLABEL X AXISR67@b<@b,.X[""PLOT (PRINT) THE LINE STRING\ f oLABEL Y AXI4}Sp67@0<@0,.Yu yRESTART OR END PROGRAM?z* *  PRESS ANY KEY TO CONTINUE.|6-F:Ad,4}~AUA AAdAU (}:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,4}/-@ @/ OR 3 TO DISPLAY MENU.-@@A %A 0A 5% +4}% D:MENU.MTH D2:PAGE72ANK@@ 4)/0YAXXXYYYLINEFUNCTIOWHICSPAC@8} ' +'0@@ 8}@ 1-@ @1 1-@ @1 ԠƠӠ1-@ @8}1 >>NUMBER OF FUNCTIONS WHICH CAN BE PLOTTED IS LIMITED TO 99@ ,;@,'(8}(LOAD A$ CHARACTERS INTO THE STRING(-@@ 267<,.=:,< >67@,.+@67@,.+E8}--STATEMENTS 70 TO 120 REQUEST USER INPUTF--@@- NUMBER OF FUNCTIONSK2-@@2 TO BE PLOTT8}ED PZ.-@@. X-AXIS INFORMATION :\#-@@#  ENDPOINTS].-@@. 8}(LEFT,RIGHT) ^ _--@@- INCREMENT `b?-@@? % 8} d%-@$@%  n-@@ Yo/-@@/ (LOWER,UPPER) 8} p q?-@@? % r--@@- INCREMENT 8}s**CALCULATE NUMBER OF SPACES ON Y-AXIS6-+&,'iiTEST FOR A Y-AXIS TOO LONG FOR OUTPUT DEVICE. IF TOO LO9}NG, THEN LESSEN RANGE OR INCREASE INCREMENT@8A1-@@1 -- Y-RANGE TOO LARGE -- @9}##MAKE NOTE OF WHERE AXIS CROSS0-@@0  ORIGIN = (,):-@@!:  PRESS ANY KEY9} TO BEGIN PLOTTING.6-F:Ad,+AU!AdAU+ A A (}AR339}SET UP LOOP TO READ VALUE AT EACH X INCREMENT -55FUNCTIONS MUST BE ENTERED AS SHOWN AT LINE 1000-@9}6-$A AAESTABLISH THE ROUNDED VALUE OF Y FOR EACH X INCREMENT VALUE68,-P:+&,'%?P,9} ,,LOOP TO READ VALUE OF EACH Y INCREMENT- HHS COUNTS THE NUMBER OF VALUES AT EACH Y INCREMENT FOR 9}EACH X VALUE6--@!CCPLOT A POINT AT THIS SPOT? IF YES, STORE FUNCTION NUMBER IN T"8,9}A ,6-%@6 6-@ GCCTEST FOR THE NUMBER OF POINTS TO BE PLOTTED AT EACH LOCATION,HVVIF NONE, THEN9} PLOT '+' (FIRST LINE ONLY), IF ONE, THEN PLOT THE FUNCTION NUMBER,I IF MORE THAN ONE, PLOT '*'J!A`T9 }## 7N:,%@-@@> VALUE OF f(X) AT INTERVAL  IS  AP((CALCULATE f(X) AT EACH SUBINTERVAL 6E:}-%$ @P 6-##IS THIS INTERVAL EVEN OR ODD?$$'@"P:'@,A**SUM ALL ODD INTERVAE;}L FUNCTION VALUES 6-% A++SUM ALL EVEN INTERVAL FUNCTION VALUES 6-%" +COMPUTE INTEGRAL;E<} PRINT,I-@@I  INTEGRAL = '@$+%@$%@$%,5RESTART OR END PROGRAM?6:-@@E=}:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,;/-@ @ / OR 3 TO DISPLAY MENU.@-@@"BA$E>}A&A(D%F +H% D:MENU.MTHJ D2:PAGE86 DSvzRESULFUNCTIORESRES I@} ' +'0@@ @ 0-@ @0  0-@ @0 IA}κ0-@ @0 ̠Š0-@ @0  @PIB}##ENTER FUNCTION ONLY AS SHOWN!6-#@#$2/-@@ / LIMITS OF INTEGRATION72-@@IC}2 (LOWER, UPPER) < P5-@@5 NUMBER OF INTERVALS Zd6-m$$D IS ID}THE SIZE OF EACH INTERVALn6-+&,'w''ADD UP THE AREA OF EACH TRAPEZOIDx -| 6-~ @0 6-IE} 6-% COMPUTE INTERVAL; PRINT 6- @0 6- 6- @0 6-6-+&+%,'IF}@,$'-@ @'  INTEGRAL = RESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, IG}2 TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU.-@@"AAA% +IH}% D:MENU.MTH D2:PAGE88 H4RESFUNCTIORES MJ} ' +'0@@ @ 3-@@3  3-MK}@@3 κ3-@@3 ΠŠ3-@@3 ML} @@##ENTER FUNCTION ONLY AS SHOWN!6-#@#$(88.076526521,.15275339,.22778MM}585,.14917299,.37370609255.14209611,.510867,.13168864,.63605368,.11819453<88.74633191,.10193012,.83911697,.083276742,.9MN}1223443F88.062672048,.96397193,.04060143,.9931286,.017614007P/-@@ / LIMITS OF INTEGRATIONU2-@MO}@2 (LOWER, UPPER) Z d5-@@5 NUMBER OF INTERVALS nx6-+&,''@MP} 6-%6-++COMPUTE INTEGRAL FOR EACH SUBINTERVAL-@6-33COMPUTE SUMMATIOMQ}N FACTOR FOR EACH SUBINTERVAL-@@ " 6-$% @0 6- 6-&$ @0MR} 6-6-%$+%, # 6-%$6-%@$ '-@ @'  INTEGRAL = RESTAMS}RT OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU."MT}-@@"$AAA&%( +*% D:MENU.MTH, D2:PAGE90 Lv*+ DEFFNCXDFNCFUNCTIORESULTEMC0S@@QV} @ ' +'0@@ @ *-@@* *-@QW}@* Š*-@@*  @P##ENTER FUNCTION ONLY AS SHOWN!QX}&&6-@$E:$@,%#@#$2--@ @ - DERIVATIVE AT X = <P6-Y==CALCULATE QY}DIFFERENCE QUOTIENTS FOR POINTS APPROACHING XZ-@@d 6-n6-%?P#p @0r 6-s 6QZ}-t 6-v @0x 6-y 6-}6-+&,'+&, 44APPROXIMATE DERIVATIVE OF FUNCTION AT X; PRINT3Q[}-@@3  DERIVATIVE = @$&RESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 Q\}TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU.-@@"AdAfAh% +Q]}% D:MENU.MTH D2:PAGE92MC0S@@P27' +'0@@ @ <-@@U_}< "<-@@< "ӠƠàӠ<-@@PAGE177 b0mPAGE189 bPAGE192 bPAGE116  :-@@:  ̠ӠƠӺ:-@@:  ΠYr}:-@@:  EELIMIT A(?) AND B(?) TO n+1 ; WHEN THIS IS DONE, LOOP AT LINYs}E 40))SHOULD BE SET TO TEST FROM 1 TO n+19@,9@,' INITIALIZE ARRAY VARIABLES(-@@Yt}268,-<68,-F P2-@@2 DEGREE OF EQUATION Zd-@%@Yu}i -@'@   m<<ENTER COEFFICIENTS IN ORDER OF LESSER TO HIGHER DEGREEn:-@@ : COEFFYv}ICIENT A(&@) x} 68,- -@@77CALCULATE COEFFICIENT OF DERIVATIVE OF POLYYw}NOMIAL68,-8%@,$ INITIALIZE GUESS(-@@(  GUESS 6-Yx}6-@6-6-COUNT ITERATIONS6-%@-@%@!!CALCULATE VALYy}UE PF FUNCTION6-%8,$ ##CALCULATE VALUE OF DERIVATIVE6-%8,$ 6-$" +<<TEST FOR A ZERO DERIYz}VATIVE; IF YES, STOP SEARCH; PRINT,"AU5''GET NEW GUESS FROM PREVIOUS GUESS6 6-&'?55IF NEW GUEY{}SS=LAST GUESS THEN STOP SEARCH; PRINT@"AISAVE LAST GUESSJ 6-T!AA^ AcY|}-@3@  h6-@@6 DERIVATIVE IS ZERO AT X = m$-@'@$  r AY}}|#-@@# ROOT = $-@@$ ERROR = )-@@)  DERIVATIVE = 33RETY~}URN FOR ANOTHER ROOT IN THE SAME FUNCTION?:-@@:  PRESS 'RETURN' FOR ANOTHER ROOT.RESTART OR END PROGY}RAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU.-@@Y}" ?<<PEEK AT THE KEY BOARD TO SEE IF A KEY HAS BEEN PRESSED6-F:Ad,AUAE ABY}IS THE KEY 'RETURN' ?+"@!AdAU+ AR-@@"AIAPAQY}% +% D:MENU.MTH))CLEAR THE SCREEN FOR THE NEXT INPUT$-@'@$  -Y}@@"  -@@ A-@%@A %  Y}GO GET THE NEXT INPUT A<<PRINT CALCULATED VALUES AFTER 100 LOOPS; LOOP 100 MORE3-@@3 100 IY}TERATIONS COMPLETED. -@@ X = #-@@# f(X) = =-@@= "CONTINUE SEAY}RCH? (1=YES, 2=NO) CLEAR THE SCREEN-@@A-@%@A % Y}  "@A A  D2:PAGE95 XLp~ FUNCTIODABXY@ ]}' +'0@@ @ 5-@@5  5-@@5 ]}ӠƠӺ5-@@5 ƭ̠Ƞ5-@@5 ]} @@##ENTER FUNCTION ONLY AS SHOWN!556-@$#@&@P$#@&%?P#$(9@,]};))ESTABLISH INTERVAL OF RANDOM SEARCH<,-@@, LIMITS OF INTERVALA3-@@3 (LOWER, UPPER) ]} F OTEST FOR USABLE LIMITSPA Z"A d=-@@= #--INTERVAL L]}IMITS CANNOT BE EQUAL--f$-@'@$  n @`x A@?-@@? %--LOWER LI]}MIT MUST BE ENTERED FIRST--$-@'@$   @`@-@@@ & ]} 3-@@3   6- @0 6-N:, 6- @0]} 6-N:,7-@@7(-- 10 MINUTE WAIT POSSIBLE --##TEST FOR ROOT AT EITHER LIMIT$"A`]}--TEST FOR OPPOSITE SIGNS AT EITHER LIMIT$ A@@LOOP TO SEARCH 1000 NUMBERS FOR OPPOSITE SIGNS IN ]}FUNCTION-@A6-%H:@,$+&, @0 6-N:,77TEST FOR ROOT AT RANDOM NUMBER; IF YE]}S THEN PRINT"A>>TEST FOR OPPOSITE SIGNS AT RANDOM NUMBER AND LOWER LIMIT$ Ap]}TRY ANOTHER RANDOM NUMBER 2-@@2 NO CHANGE OF SIGN FOUND.$-@'@$   ]} @` 6-::STORE POSITIVE POINT IN D(3), NEGATIVE POINT IN D(1)**D(1) AND D(3) BECOME INTERVAL LIMITS6]}8@%,-"68@&,-+//CALCULATE MIDPOINT BETWEEN THE TWO POINTS,''6-+8@,%8@,,'@1 6]}-3 @06 6-N:,?TEST FOR ROOT AT MIDPOINT@"AI))GET A NEW LIMIT TO CLOSE IN ON ROOTJ]}68@%,-S<<TEST FOR A VALUE CLOSE ENOUGH TO ZERO TO ASSUME A ROOTTJJO:8@,&8@,,'O:8@,%O:]}8@,,, =A]RETEST WITH NEW LIMITS^ Ag77ROOT AT AN INTERVAL LIMIT-FIND WHICH LIMIT; PRINTh]}"Ar 6-| A 6-$-@@$ ROOT = RESTART OR END PROGRAM?:-@]}@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU.-@@"]}A4A6A8% +% D:MENU.MTH D2:PAGE97 \\@' +'0@@ @ /-@a}@/(/-@@/(Ǡ̠/-@@/(a}(3,1,2,-2,1,5,-32+-@@+(ENTER ANGLE -> <O00GET NUMBER OF PAIRS OF TERMS IN POLYNOMIAa}LP"Y88LOOP TO GET VALUES OF COEFFICIENTS FROM DATA TABLEZ-@d "n6-%$G:$,%$E:$,x a}'-@@'(f() = :-@@:( ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ /(OR a}3 TO DISPLAY MENU.-@@"AA A0% +% D:MENU.MTH D2:a}PAGE99@' +'0@@ @ /-@`  U  AEN@' +'0@@ e}@ 6-@@6 6-@@6 ӠӠ6e}-@@6 @@LIMIT A( ) TO A(R,R+1) WHERE R=MAXIMUM NUMBER OF EQUATIONS9@ e}<@,(1-@@1 NUMBER OF EQUATIONS 2<2-@@ 2 -- COEFFICIENT MATRIX --Fe}-@P%-@@%  EQUATION Z-@%@d"%@A0i$-@#@$  e} k?-@@? % n0-@@0  COEFFICIENT  x e}A@,-@@, CONSTANT 68<,-  -@ggSTATEMENTS 180 Te}O 220 FIND THE FIRST EQUATION WITH A NON-ZERO COEFFICIENT FOR THE CURRENT COLLUMN -8<,A0e} 2-@@2 -- NO UNIQUE SOLUTION -- A`DDSTATEMENTS 230 TO 270 MOVE THAT EQUATION UP TO THE CURe}RENT ROW-@%@6-8<,68<,-8<,68<,- bbSTATEMENTS 280 TO 310 GET A ONE e}COEFFICIENT IN THE FIRST NON-ZERO COLLUMN OF THE CURRENT ROW6-@'8<,"-@%@,68<,-$8e}<,6 >MMSTATEMENTS 320 TO 380 SUBTRACT THE CURRENT EQUATION FROM THE OTHER ROWS@-@J"ATe}6-+68<,,^-@%@h68<,-8<,%$8<,r | 00THIS PROCESS IS REPEATED FOR ALL EQUATIe}ONS PRINT SOLUTIONS4-@@!4 PRESS ANY KEY TO CONTINUE.6-F:Ad,+AU!Ade}AU+ A A (}6-@@6 6-@@6 e}ӠӠ6-@@6 #-@@#  SOLUTION: ( (e}-@BB  X () = P:8<%@,$A%?P,'A RESTART OR END PROGRAM?:-@e}@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU.-@@"e}AAA% +% D:MENU.MTH D2:PAGE101' +'0@@ d\)*ABCCMMMIENJFLA@@i} i}' +'0@@ @ AP##9@<@,9@,((LINEAR PROGi}RAMMING, SIMPLEX METHOD(*-@@* 1) MAXIMIZATION**-@@ * 2) MINIMIZATION-,-@@i}, WHICH OPERATION 2<"@6-6@>"@6-@A (}B APF3-@i}@3 NUMBER OF VARIABLES KP3-@@ 3 NUMBER OF CONSTRAINTS UZ%-@@% i} NUMBER OF :[7-@@7 'LESS THAN' CONSTRAINTS \]7-@@7 'EQUAL TO' CONSTRAINTS i} ^_7-@@7 'GREATER THAN' CONSTRAINTS `n"%%A@s-@4@  i}x?-@@? % }?-@@? % i}<-@@< "-- CONSTRAINT DATA INCONSISTENT -- @ (} AP((THIS IS THE INITIALIZATIi}ON ROUTINE 6-%%6-%@ 6-%%6-%@6-%@-@-@i}68<,-  -@68,- -@"-@,"168<,i}-6A0@68<,-8<,&8<,J T!A^68,-%h68<%,-@r A@|6i}8,-%%68<%%,-@!%A  A@68<%&,-6@68<%&,-@ i}-@"68<,- -@"68<,-68<,-$8<, 6-i}    ((  VARIABLES 1 TO  ARE YOURS.&"Ap066  VARIABLES %@ TO % ARE SLi}ACK.:"A< D77  VARIABLES %%@ TO  ARE SURPLUS.N"AP X99  VARIAi}BLES %@ TO  ARE ARTIFICIAL.b 6-l A@v -@8,A`8<,=i}ASET THE 'NO ANSWER' FLAG6-@ A-@O:8<,,=AP 6-i} 6- A` 6-   6-  A@*3-@@ 3 PRESS ANY KEY FOR RESULT.,6i}-F:Ad,-AUA. A/AdAU0 (}>'-@@'  -- ANSWERS --H"i}APJ@-@@@ &THIS PROBLEM HAS NO FEASIBLE SOLUTION.L AR  PRIMAL VALUES :\ i}  VARIABLEVALUEf-@p-@z8,A !!   8<, 6- i} "A  DUAL VARIABLES :   VARIABLEVALUE-@&&   i} 6$8<%,   VALUE OF))  OBJECTIVE VARIABLE = 6$8<,-  -  PRESS ANY KEY TO CONTi}INUE.6-F:Ad,AUA AAdAU A@OPTIMIZATION ROUTINEi}FIRST, PRICE OUT COLUMNS6-6=-@$8<,A. 6-86-8<,B L"6i}=A@V A0` Ae A@i++NOW, FIND WHICH VARIABLE LEAVES BASISj6-St-@i}~8<,=A8<,'8<,A 6-6-8<,'8<, $"SA@i} A`$- - " -- THE SOLUTION IS UNBOUNDED -- APERFORM 'PIVOTING'6-8<,-i}@"AP -@"A@##68<,-8<,&8<,$8<,'(O:8<,,=A@i}268<,-< F P-@Z68<,-8<,'d n-@x68<,- i}68<,-@ 68,-$ 1,1,1,1,1 .9,.8,.95,.7,.3 .05,.05,.02,.3,.7 .05,.15,.03,0,0 100i},83,14,3 6.13,7.12,5.85,4.57,3.96 (}:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @i}/ OR 3 TO DISPLAY MENU.-@@A@PA@UA@`% +% D:MENU.MTHi}2-@@2 2-@@2 ҠǠ2-@@2 i}$ D2:PAGE103@@h6 ABTAB@@ @ m} ' +'0@@ @ A44ARRAYS SHOULD BE SET TO DIMENSIONS OF MATRICESm}++9@<@,9@<@,(&-@@&  1) ADDITION2)-@@) 2) SUBTRACTION<3m}-@@3 3) SCALAR MULTIPLICATIONEDDSELECT OPERATION BY ENTERING THE NUMBER (1-3) OF THE OPERATIONF,-@m}@, WHICH OPERATION PY&&TEST FOR ADDITION OR SUBTRACTIONZ@Ad,-@@,m} VALUE OF SCALAR ns (}t Ax8-@@8 DIMENSION OF MATRIX (R,C)  !!LOOPm} TO ENTER MATRIX VALUES88FOR SUBTRACTION, MATRIX 2 SUBTRACTED FROM MATRIX 1-@@"@Am}$-@@ $  MATRIX 1 : A$-@@ $  MATRIX 2 :-@ -@@ m} ROW -@$-@(@$  1-@ @1 VALUE OF COLUMN  "@m}A`68<,- Ap 68<,-  !44ONLY ONE MATRIX USED FOR SCALAR MULTIPLICm}ATION""@A, -3-@@3 PRESS ANY KEY FOR RESULT..6-F:Ad,/+AU!Am}dAU+ A0 A12 (}-@@2 RESULTANT MATRIX :2 ( (5QQSTATEMENTS 310 TO 410 PERm}FORM REQUESTED OPERATION AND PRINT REULTANT MATRIX6-@@-@J@APT68<,-6+8m}<,,^"@Ah 8<,%8<, r A| 8<,$  --ADVANCE OUTPUT DEVICE TO m}PRINT NEXT ROW    RESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@m} @ / OR 3 TO DISPLAY MENU.-@@"AUA`Ae% +% m}D:MENU.MTH<-@@< "<-@@< "ؠάm}Π<-@@< "ҠΠ<-@@< "m}$& D2:PAGE108@@ @ l|ABRRCC@@ q} ' +'0@@ @ 5-@@5 5-@@q}5 ؠΠ5-@@5 FFARRAYS A( ) AND B( ) SHOULD BE SETq} TO DIMENSIONS OF THE MATRICES++9@<@,9@<@,#!-@4@!  (9-@@q}9 DIMENSION OF MATRIX 1 (R,C) 2 7!-@4@!  <9-@@9 DIMENSION OF MATRIXq} 2 (R,C) F OMMNUMBER OF COLUMNS IN MATRIX 1 MUST EQUAL THE NUMBER OF ROWS IN MATRIX 2P"AZ:-@q}@:  -- OTHER DIMENSIONS NECESSARY --d @5n?-@@? % q}s$-@@ $  MATRIX 1 :x-@ -@@ ROW -@%-@(@% q} 1-@ @1 VALUE OF COLUMN  68<,-  $-@@ $  MAq}TRIX 2 :-@ -@@ ROW -@%-@(@%  1-@ q}@1 VALUE OF COLUMN  68<,-  3-@@3 PRESS ANY KEY FOR RESULT.q}6-F:Ad,+AU!AdAU+ A A  (}"2-@@, RESULTANT MATRIX :/q}(2(#;;PERFORM MATRIX MULTIPLICATION; PRINT RESULTANT MATRIX'-@,-@66-@-@q}J6-%8<,$8<,T ^  h q--ADVANCE OUTPUT DEVICE TO PRINT NEXT ROWr   | RESq}TART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ / OR 3 TO DISPLAY MENU.q}-@@"AAA % +% D:MENU.MTH D2:PAGE111 pyz8 J ABEN@@ v} ' +'0@@ @ 0-@ @0 0-@ @0 v}ؠΠ0-@ @0 TTARRAYS A( ) AND B( ) SHOULD BOTH BE SET TO THE DIMEv}NSIONS OF THE SQUARE MATRIX++9@<@,9@<@,'77MATRIX IS SQUARE, SO ONLY ONE DIMENSION IS NEEDEDv}(1-@@1 DIMENSION OF MATRIX 27 A0<+-@@ + MATRIX ELEMENTS :EENTER Mv}ATRIX ELEMENTSF-@P -@@ ROW Z-@_%-@(@%  d1-@v} @1 VALUE OF COLUMN  ns68<,-x 68<,-@ --STATEMENTS 150 TO 420 Iv}NVERT THE MATRIX-@ -8<,A /-@@/ -- SINGULAR MATRIX -v}- A-@6-8<,68<,-8<,68<,-6-8<,68<,-8<,68<,-v } "6-@'8<,,-@668<,-$8<,@68<,-$8<,J T-@^"Av }h6-6@$8<,r-@|68<,-8<,%$8<,68<,-8<,%$8<,   3v }-@@3 PRESS ANY KEY FOR RESULT.6-F:Ad,+AU!AdAU+ A8 A2 v } (}+-@@+ INVERTED MATRIX : ( (-@-@ROUND OFF; PRINT.. P:86-P:8,,H6-+8,&,$@`R 6-P:,\ 6-P:+&,$@`%?P,^2-@T}@2( AZIMUTH =   ` 6-8, @Pb'-@@'( DISTANCE = d 6- @Pf&U}-@@&( DELTA N = h 6- @Pj&-@@&( DELTA E = l 6- @Pn'-@@V}'( NORTHING = p 6- @Pr&-@@&( EASTING = z 68,- A0  6-:W} (}-@@:(ANY MORE LEGS TO BE INPUT?&-@@&( (1=YES,2=NO)-@@'X}@6-%@' A @A6-O:'@, 6- @P8 (}-@@ 8( Y}PLOT AREA =  SQ.FT.J-@@J(= P:'B5`$D%?P,'D ACRES:-@@:( EZ}NTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ /(OR 3 TO DISPLAY MENU.-@@"A@AP[}A`% +$% D:MENU.MSCKL6-O:8,&8&@,,V6-O:A&,` 6-+6,j 68,\}-t6-'A$$$~ 6-@$$G:'@$,''6-$G:'@$,'E:'@$,6-8,&8&@,]} 6AA0!AA!A0 6-% A@ 6-& 6-P:,6-+&^},$@` 6-P:, 6-P:+&,$@`%?P,-@@(ARC 0-@@0(ANGLE =  _}  6- @P%-@@%( RADIUS =  6- @P*-@@*(SECTOR AREA = `} 6- @P+-@@+(CHORD LENGTH =  6- @P--@@-(TANGENT LENGTH = a}( A0- A68,-68,-+-@@+(LEG NO. % :,-@b}@ ,(QUADRANT "A"p>!@) %-@%@ 4( > A %,c}-@@,(ANGLE (D,M,S)  = !-@%@3( = A @ = d}!-@%@3( = A @*= !-@%@3( = A @4""68,-%+%e}'@`,'@`>@8,!@$-@%@6( @ A @H"@A" R"@A!Pf}\ A!pf68,-A&8,p A" z"@A! A"68,-A%8, A" g}@A" 68,-A`&8,,-@@,(DISTANCE  68,-8,!h}A"pHO:8,,O:8&@,,/-@@>( H A" -@@@A-@i}%@A(%  $ D "-@@!:(PRESS ANY KEY TO CONTINUE.Dj} A0 5-@@!5(PRESS ANY KEY FOR NEXT LEG. 6-F:Ad, AUA00 A0 Adk}AU " $ [-@@!?(% Q-@@[(  -@l}@@ A-@%@A(%    $' D2:PAGE177{[CCLEACENTIMETERWIP@' +'0@n}@ @ /-@@/(/-@@/(ϠϠà/-@o}@/(r-@@0(PRESS ANY KEY FOR LISTB-@@V(OF CONVERSIONS.` Ap}rAdAU (}a-@@3(1 INCHES TO CENTIMETERSE-@@a(2 FEET TO CENTIMEq}TERSV-@@,(3 FEET TO METERS>-@@V(4 YARDS TO METERSj-@@1(5 MILESr} TO KILOMETERSC-@@j("6 TEASPOONS TO CUBIC CENTIMETERSg-@@>($7 TABLESPOONS TO CUBIC CENs}TIMETERSP-@@g(8 CUPS TO LITERSX-@@ -(9 PINTS TO LITERS?-@@X(10 QUARt}TS TO LITERS[-@@/(11 GALLONS TO LITERSA-@@[(12 BUSHELS TO LITERSW-@@u}-(13 PECKS TO LITERS?-@@W(14 OUNCES TO GRAMS]-@@1(15 POUNDS TO KILOGRAMSC-@v}@](16 TONS TO KILOGRAMS3-@@3(17 FAHRENHEIT TO CELCIUS(9@,--@@2w}"7 68,-< F==2.540,30.480,.3048,.9144,1.609,4.929,14.788,.2365,.4732P11.9463,3.785,35.24,8.809,28.3495,.4x}536,907.2_ -@)@  ( d/-@@ /(ENTER YOUR CHOICE n!@@ (y}}AAA A@A`AAA A@A`AAA A@Az}`AA5-@@5(-- INCHES TO CENTIMETERS --/-@ @/(VALUE TO BE CONVERTED{}-@@ /-@ @/(CENTIMETERS = $8, A  A0 A3-@@|}3(-- FEET TO CENTIMETERS --/-@ @/(VALUE TO BE CONVERTED-@@ /-@ @}}/(CENTIMETERS = $8, A  A0 A.-@@.(-- FEET TO METERS --/-@ ~}@/(VALUE TO BE CONVERTED-@@ *-@ @*( METERS = $8, A  A0} A"/-@ @/(-- YARDS TO METERS --/-@ @/(VALUE TO BE CONVERTED-@@ }*-@ @*( METERS = $8, A  A0 AB3-@@3(-- MILES T}O KILOMETERS --/-@ @/(VALUE TO BE CONVERTED-@@  .-@ @.( KILOMETERS =} $8,  A  A0 Ab>-@@>($-- TEASPOONS TO CUBIC CENTIMETERS --/-@ @}/(VALUE TO BE CONVERTED-@@ 5-@ @5(CUBIC CENTIMETERS = $8,  A "} A0$ A,?-@@?(%-- TABLESPOONS TO CUBIC CENIMETERS --./-@ @/(VALUE TO BE C}ONVERTED0-@@ 25-@ @5(CUBIC CENTIMETERS = $8,4 A 6 A08 A}@.-@@.(-- CUPS TO LITERS --B/-@ @/(VALUE TO BE CONVERTEDD-@@ F*-}@ @*( LITERS = $8,H A J A0L A"T/-@ @/(-- PINTS TO LITERS --V/}-@ @/(VALUE TO BE CONVERTEDX-@@ Z*-@ @*( LITERS = $8,\ A ^} A0` ABh0-@ @0(-- QUARTS TO LITERS --j/-@ @/(VALUE TO BE CONVERTEDl-}@@ n*-@ @*( LITERS = $8,p A r A0t Ab|1-@@1(}-- GALLONS TO LITERS --~/-@ @/(VALUE TO BE CONVERTED-@@ *-@ @*( LIT}ERS = $8, A  A0 A1-@@1(-- BUSHELS TO LITERS --/-@ @/(}VALUE TO BE CONVERTED-@@ *-@ @*( LITERS = $8, A  A0 A}*-@ @*( LITERS = $8, A  A0/-@ @/(-- PECKS TO LITERS --/-}@ @/(VALUE TO BE CONVERTED-@@ *-@ @*( LITERS = $8, A  } A0 A$/-@ @/(-- OUNCES TO GRAMS --/-@ @/(VALUE TO BE CONVERTED-@}@ )-@ @)(GRAMS = $8, A  A0 AB3-@@3(-- }POUNDS TO KILOGRAMS --/-@ @/(VALUE TO BE CONVERTED-@@ --@ @-( KILOG}RAMS = $8, A  A0 Ab1-@@1(-- TONS TO KILOGRAMS --/-@ @/}(VALUE TO BE CONVERTED-@@ --@ @-( KILOGRAMS = $8, A  A0 } A5-@@5(-- FAHRENHEIT TO CELCIUS --/-@ @/(VALUE TO BE CONVERTED-@@ }]-@ @]( CELCIUS = P:++&@2,$@'@ ,$A%?P,'A A  A0} A6-F:Ad,AUA0 A$1-@@1(PRESS 'RETURN' FOR SAME}*-@@*(CONVERSION TYPE.:-@@:( ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @ /(}OR 3 TO DISPLAY MENU.-@@"(?$ A "@A00 -@@" A}0$A0&A0( %  + % D:MENU.MSC $-@ @ $   -@@"  }  -@@  A-@%@A %    AdAU $} D2:PAGE189CLEACENTIMETERWIP@' +'0@Z[3 E ATEMPBLANKINDEXINDEXINDEX1INDEX1INDEX2INDEX2LIMILIMLIMSPACENPAGWIP} }' +'0@@ @ ,-@@, },-@@, Ҡ,-@@, (/-@@/ NUMBER }OF ITEMS 2DOOLIMIT ARRAY TO 20*N WHERE 'N' IS THE MAXIMUM NUMBER OF ELEMENTS IN A LISTE99ASSUME THAT NO ELEM}ENT IS LONGER THAN 20 CHARACTERSF;A,H;@!,J;@ ,L6. M6-@}N6-@ P-@U3-@@ 3  Z*-@@ * ITEM : }de??IF THIS ENTRY IS LONGER THAN 20 CHARACTERS, THEN TRUNCATEfB:,@ Ah67<,.7@<@ },j Al67<%B:,&@,.n))67%B:,<,.7@<@ &B:,,p6-%@r6-%@ t 6.}x } 6-KKTHE SORT TECHNIQUE USED COMPARES DATA ITEMS IN DIMINISHING INCREMENTSXXTHE FIRST PASS COMPARES ITE}MS N/2 ELEMENTS APART; THEN SECOND, (N/2)/2 APART, ETC.6-P:'@,"A 6-&6-@} 6- 6-%6-$@ 6-&@6-$@ 6-&@7<,/7<,AP6.7}<,67<,.7<,67<,. 6-&@A6-%@!A0 Ap?-@}@? % ?-@@ ? % " 6}-,6-@1 6-6!@6-@;6-@@6-@ E6-@G6-@J -}K' "-@@' PAGE O -@%@ 7<,T6-%@Y6-%@ ^6-%@c} hN "-@@": PRESS ANY KEY TO CONTINUE.D AN Am6-@@"6 PRESS ANY KEY FOR }NEXT PAGE.r A A w6-%@|6-%@ !6-6-@6-%@ A0} (}RESTART OR END PROGRAM?:-@@:  ENTER 1 TO RUN AGAIN, 2 TO EXIT,/-@ @/ O}R 3 TO DISPLAY MENU.-@@A%A0A5% +% D:MENU.MSC44THI}S SUBROUTINE PAUSES FOR A KEY TO BE PRESSED6-F:Ad,AUA0 AAdAU$}99THIS SUBROUTINE CLEARS THE SCREEN FOR THE NEXT PAGE?-@@"? % -}@"@  -@@A-@%@A %  $}  D2:PAGE192ANKINDEXINDEXINDEX1INDEX1INDEX2INDEX2LIMILIMLIMSPACENPAGWIP@' +'0@@ @ **(" } **(" ӠĠӠ**(" (5-@}@5(TOTAL NUMBER OF OBJECTS 2F)()( SIZE OF SUBGROUP PZA0d_-@}@8( -- SUBGROUP TOO LARGE --J-@2@U( _ @@6-@6-@-}&%@_ 'A1('( -- MACHINE OVERFLOW --1 A` 6-$ -@} 6-$ &( ( (&(  PERMUTATIONS"("( ' CONBINATIONS:-@@:( ENTER 1 TO R}UN AGAIN, 2 TO EXIT,/-@ @ /(OR 3 TO DISPLAY MENU.-@@""AAA,}%1 +6% D:MENU.MTH D2:PAGE116' +'0@@ @ **(" 9